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Abstract — The paper presents an exploratory study of two 
feature location techniques utilizing three strategies for 
splitting identifiers: CamelCase, Samurai and manual splitting 
of identifiers. The main research question that we ask in this 
study is if we had a perfect technique for splitting identifiers, 
would it still help improve accuracy of feature location 
techniques applied in different scenarios and settings? In order 
to answer this research question we investigate two feature 
location techniques, one based on Information Retrieval and 
the other one based on the combination of Information 
Retrieval and dynamic analysis, for locating bugs and features 
using various configurations of preprocessing strategies on two 
open-source systems, Rhino and jEdit. The results of an 
extensive empirical evaluation reveal that feature location 
techniques using Information Retrieval can benefit from better 
preprocessing algorithms in some cases, and that their 
improvement in effectiveness while using manual splitting over 
state-of-the-art approaches is statistically significant in those 
cases. However, the results for feature location technique using 
the combination of Information Retrieval and dynamic 
analysis do not show any improvement while using manual 
splitting, indicating that any preprocessing technique will 
suffice if execution data is available. Overall, our findings 
outline potential benefits of putting additional research efforts 
into defining more sophisticated source code preprocessing 
techniques as they can still be useful in situations 
where execution information cannot be easily collected.  

Keywords-feature location; information retrieval; dynamic 
analysis; identifier splitting algorithms 

I. INTRODUCTION 

Early work on program comprehension and mental 
models [33, 35] highlighted the significance of textual 
information to capture and encode programmers’ intent and 
knowledge in software.  Recent research efforts have studied 
how software developers capture and express their intent in 
natural language embodied in source code.  Identifiers used 
by programmers as names for classes, methods, or attributes 
in source code or other artifacts contain vital problem 
domain information [2, 4, 7, 15, 18, 23, 28, 34] and account 
for approximately more than half the source code in software 
[7].  These names often serve as a starting point in many 
program comprehension tasks [4]; thus, it is imperative that 
these names clearly reflect the concepts that they are 
supposed to represent, since self-documenting identifiers 
reduce the time and effort to acquire a basic comprehension 
level for any maintenance task [2]. 

The magnitude of a program’s lexicon can hardly be 
underestimated.  Identifiers and comments represent an 

important source of domain information that is used by 
(semi-) automated techniques to recover traceability links 
among software artifacts [1, 24] and locate features in source 
code [8, 21, 25, 27, 29, 30].  Prior work [16, 32] employed a 
natural language-based representation of source code, based 
on the conjecture that there is an intrinsic pattern in 
unstructured textual information, to support a range of 
program comprehension activities.  Due to the large 
abstraction gap between the domain of a software system and 
the implementation mechanisms offered by programming 
languages, the mapping between domain concepts and their 
implementation in source code is frequently ambiguous, as 
these concepts are distorted and scattered in the code [28].  

The problem of extracting and analyzing the textual 
information in software artifacts was recognized by the 
software engineering research community only recently. 
Information Retrieval (IR) methods were proposed and used 
effectively to support program comprehension tasks, such as 
feature (or concept) location and traceability link recovery.  
These IR-based approaches vary not only in their scope, but 
also in their underlying indexing mechanisms, corpus 
generation, or results analysis methods. Identifier splitting is 
one of the essential ingredients in any feature location or 
traceability recovery technique [1, 8, 21, 24, 27, 29] , since it 
helps disambiguate conceptual information encoded in 
compound (or abbreviated) identifiers. The widely adopted 
approach is based on the CamelCase splitting algorithm, with 
more sophisticated strategies, such as Samurai [11] and 
TIDIER [14], recently proposed in the literature. 

In this paper we investigate the impact of three identifier 
splitting techniques (CamelCase, Samurai and manually built 
splitting (i.e., Oracle)) on the accuracy of feature location in 
presence and absence of execution information. The main 
research question that we ask in this study is if we had a 
perfect technique for splitting identifiers, such as a manually 
built oracle, would it still help improve accuracy of feature 
location techniques applied in different scenarios and 
settings? To answer this research question we investigate two 
feature location techniques (FLTs), one based on IR and the 
other one based on the combination of IR and dynamic 
analysis (IRDyn), for locating bugs and features using 
different configurations of preprocessing strategies on two 
open-source systems, Rhino and jEdit. Our findings reveal 
that feature location techniques using IR can benefit from 
better preprocessing algorithms, and that their improvement 
in effectiveness while using manual splitting over state-of-
the-art approaches is statistically significant. However, the 
results of the IRDyn FLT do not show any improvement 
while using manual splitting, indicating that any 



 

preprocessing technique will suffice if execution data is 
available. 

II. BACKGROUND ON PREPROCESSING UNSTRUCTURED 

INFORMATION IN SOFTWARE 

In this section we overview some of the existing work in 
the field of feature location and identifier splitting. In 
particular, we overview two feature location techniques and 
three approaches for splitting identifiers that are used in our 
empirical study. 

A. Feature Location in Software 

Unstructured textual information in software, found in 
identifiers and comments encodes important problem domain 
and design decisions about a software system.  This 
unstructured data lends itself for further analysis using IR 
techniques that can be leveraged to support feature location 
in source code.  Feature location is the activity of finding the 
source code elements (i.e., methods or classes) that 
implement a specific feature (e.g., “print page in a text editor” 
or “add bookmark in a web-browser”) [25, 27].  In this work, 
we rely on two feature location approaches that use IR and a 
combination of IR and dynamic analysis.  While there are 
several IR techniques that have been successfully applied in 
the context of feature location, such as the Vector Space 
Model [8], Latent Semantic Indexing (LSI) [21, 27, 29, 30], 
and Latent Dirichlet Allocation [22], this empirical study 
focuses on evaluating LSI for feature location, and the 
notation IR is used to denote that LSI is the default 
information retrieval method used in the study.  We also 
provide the details of these feature location approaches and 
explain the role of identifier splitting techniques in this 
process.  Feature location via LSI follows five main steps: 
generating a corpus, preprocessing the corpus, indexing the 
corpus using LSI, formulating a search query and generating 
similarities and finally, examining the results. 

Step one – generating the corpus.  The source code of a 
software system is parsed, and all the information associated 
with a method (i.e., comments, method declaration, signature 
and body) will become a document in the system corpus. In 
other words, we are using a method-level granularity for the 
corpus, so each method from the source code has a 
corresponding document in the corpus. 

Step two – preprocessing the corpus.  The generated 
corpus is then preprocessed in order to normalize the text 
contained in the documents. This step includes removing 
operators, programming language keywords, or special 
characters. Additionally, compound identifiers are split using 
the algorithms that are explained in details in subsection II.B, 
as these algorithms are at the core of this paper. The split 
identifiers are then stemmed (i.e., reduced to their root form) 
using the Porter stemmer [26], and finally the words that 
appear commonly in English (i.e., “a”, “the”, etc.) are 
eliminated. 

Step three - indexing the corpus using LSI.  The 
preprocessed corpus is transformed into a term-by-document 
matrix, where each document (i.e., method) from the corpus 
is represented as a vector of terms (i.e., identifiers). The 
values of the matrix cells represent the weights of the terms 

from the documents, which are computed using the term 
frequency – inverse document frequency (tf-idf) weight. The 
matrix is then decomposed using Singular Value 
Decomposition [6] which decrease the dimensionality of the 
matrix by exploiting statistical co-occurrences of related 
words across the documents.  

Step four – formulating a search query and 
generating similarities. The software developer chooses a 
set of words (i.e., a query) that describe the feature or bug 
being sought (e.g., “print page”).  The query is converted 
into a vector-based representation, and the cosine similarity 
between the query and every document in the reduced space 
is computed. In other words, the textual similarity between 
the bug description and every method from the software 
system is computed. 

Step five – examining the results.  The list of methods 
is ranked based on their cosine similarities with the user 
query. The developer starts investigating the methods in 
order, from the top of the list (i.e., most relevant methods 
first). After examining each method the developer decides if 
that method belongs to the feature of interest or not. If it 
does, the feature location process terminates. Otherwise, the 
developer can continue examining other methods, or refine 
the query based on new information gathered from 
examining the methods and starting from Step 4 again. 

Feature location via LSI and dynamic information has 
one additional step, which can take place before the Step 4 
described earlier. 

Step for collecting execution information. The software 
developer triggers the bug, or exercises the feature by 
running the software system and executing the steps to 
reproduce from the description of the feature or bug. This 
process invokes the methods that are responsible for the bug 
or feature and these methods are collected in an execution 
trace. The developer can take advantage of this information 
by formulating a query (Step 4) and examining the results 
(Step 5) produced by ranking only the methods found in the 
execution trace (as opposed to ranking all the methods of the 
software system). The advantage of using execution 
information is that it reduces the search space, thus 
increasing the performance of feature location. 

In this paper, we consider the IR and IRDyn FLTs. While 
previous studies have shown that the IRDyn FLT 
outperforms its basic version (i.e., IR FLT) [21, 27, 29, 30], 
the goal of this paper is to study the impact of the 
preprocessing techniques from Step 2 on the accuracy of 
feature location. 

B. Background on Identifier Splitting Technique 

State-of-the-art approaches to split identifiers into 
separate words are the CamelCase splitter, the Samurai 
approach proposed by Enslen et al. [11], and the recent 
TIDIER approach [14]. 

1) CamelCase Splitting Technique 
The de facto splitting algorithm is CamelCase. This 

simple, fast, and widely used preprocessing algorithm has 
been previously applied in multiple approaches to feature 
location and traceability link recovery [1, 21, 24, 25, 27, 29, 



 

30]. This approach splits compound identifiers according to 
the following rules: 

RuleA: Underscore, structure and pointer access, as well 
as special symbols are replaced with the space character. 

RuleB: Identifiers are split where terms are separated 
using the CamelCase convention. For example, userId is 
split into user and Id while setGID is split into set and GID. 

RuleC: When two or more upper case characters are 
followed by one or more lower case characters, the identifier 
is split at the last-but-one upper-case character. For example, 
SSLCertificate is split into SSL and Certificate. 

Sometimes, a space is inserted before and after each 
sequence of digits. For example, print_file2device is split 
into print, file, 2, and device, while cipher128_code is split 
into cipher, 128, and code.  Overall, a CamelCase splitting 
algorithm cannot split effectively same-case composite 
words, such as USERID, currentsize, into separate terms. 

2) Samurai Splitting Algorithm 
Samurai [11] is an automatic approach to split identifiers 

into sequences of terms by mining term frequencies in large 
source code bases. It relies on two assumptions. First, it 
assumes that a substring composing an identifier is also 
likely to be used in other parts of the program (or in other 
programs) alone or as a part of other identifiers. Second, 
given two possible splits, the split that most likely represents 
the developer’s intent partitions the identifier into terms 
occurring more often in the program. In other words, central 
to Samurai is the idea of using two tables of frequencies: one 
program specific and one mined out of a large corpus of 
programs, to find the most likely identifier split. 
Furthermore, the frequency tables are used in conjunction 
with CamelCase rules. In fact, Samurai algorithm first tries 
to apply CamelCase split and then ranks possible splits 
according to its identifiers frequency tables. In this way 
Samurai overcomes the main limitation of CamelCase, by 
being able to correctly split same-case identifiers, such as 
USERID, currentsize, or mixed-case (e.g., DEFMASKBit). 
Refer to [11] for more details on Samurai and its evaluation.  

3) TIDIER: Term IDentifier RecognizER 
TIDIER [14] is a novel approach to split program 

identifiers using high-level and domain concepts captured 
into multiple dictionaries. The approach is based on a 
thesaurus of words and abbreviations and uses a modified 
string-edit distance [20] between terms and words as a proxy 
for the distance between the terms and the concepts they 
represent. The main assumption made by TIDIER is the fact 
that it is possible to mimic developers when creating an 
identifier relying on a set of transformation rules on 
terms/words.  For example, to create an identifier for a 
variable that counts the number of software defects, the two 
words, number and defects, can be concatenated with or 
without an underscore, or following the CamelCase 
convention e.g., defects_number, defectsnumber or 
defectsNumber. Developers may drop vowels and (or) 
characters to shorten one or both words of the identifier, thus 
creating defectsNbr or nbrOfdefects. TIDIER uses contextual 
information in the form of specialized dictionaries (e.g., 
acronyms, contractions and domain specific terms) and 
mimics the process of transforming words via contraction 

rules; more details can be found in [14]. It is important to 
emphasize that TIDIER does not perform significantly better 
than Samurai on Java code and even though TIDIER and 
Samurai outperform CamelCase, Samurai is much faster than 
TIDIER. For this reason, TIDIER was only used as a 
reference in supporting the construction of the Oracle but not 
in the empirical study or to generate new terms as in [14]. 

III. EMPIRICAL STUDY DESIGN 

The goal of this study is to compare accuracy of two 
FLTs (i.e., IR and IRDyn), when utilizing three identifier 
splitting algorithms: CamelCase, Samurai and Oracle (i.e., 
manual splitting of identifiers). This study is done from the 
perspective of researchers who want to understand if existing 
approaches for splitting identifiers can improve accuracy of 
FLTs under different scenarios and settings, including best 
possible scenario where splitting is done by experts. In 
addition, we are interested to know if an advanced splitting 
algorithm would be still useful for enhancing the accuracy of 
feature location when execution information is used. 

The context consists of two Java applications: Rhino and 
jEdit where the main characteristics are described in 
Subsection III.C. 

A. Variable Selection and Study Design 

The main independent variable of our study is the type of 
splitting algorithm used: CamelCase, Samurai and Oracle 
(i.e., manually split identifiers). 

The second independent variable is the use of dynamic 
information. Thus, we have two FLTs, and each has three 
configurations, which depend on the identifier splitting 
technique (see Table 1). For example, IRCamelCase, IRSamurai, 
and IROracle are the IR based feature location techniques that 
use LSI to compute similarities between queries and 
methods, after applying the CamelCase, the Samurai and the 
Oracle splitting algorithms on the identifiers from the 
methods and queries. Similarly IRCamelCaseDyn, IRSamuraiDyn 
and IROracleDyn were defined. 

In order to compare which configuration of the FLTs is 
more accurate than another (i.e., IRCamelCase vs. IRSamurai), we 
considered their effectiveness measure [21]. The 
effectiveness measure is the best rank (i.e., lowest rank) 
among all the methods from the gold set for a specific 
feature. Intuitively, the effectiveness measure quantifies the 
number of methods a developer has to examine from a list of 
ranked methods returned by the feature location technique, 
before she is able to locate a relevant method pertaining to 
the feature. Obviously, a technique that consistently places 
relevant methods towards the top of the ranked list (i.e., 
lower ranks) is more effective than a technique that contains 
relevant methods towards the middle or the bottom of the 
ranked list (i.e., higher ranks). In this analysis we focus on 
the scenario of finding just one relevant method, as opposed 

Table 1 The configurations of the two FLTs (i.e., IR and IRDyn) based on 
the splitting algorithm 

Splitting Algorithm IR FLT IRDyn FLT 
CamelCase (Baseline) IRCamelCase IRCamelCaseDyn 

Samurai IRSamurai IRSamuraiDyn
Oracle (Manual Split) IROracle IROracleDyn 



 

to finding all relevant methods from the gold set, for two 
reasons. First, we are focusing on concept location, rather 
than impact analysis. Second, once a relevant method has 
been identified, it is much easier to find other related 
methods by following program dependencies from the 
relevant method, or by using other heuristics. 

In literature, the identifiers that are split using CamelCase 
are referred as hard-words, whereas the identifiers split using 
Samurai or TIDIER are called soft-words. During our 
analysis, we treat the hard and soft words in the same way 
and we refer to them as split identifiers. 

The dependent variable considered in our study is the 
effectiveness measure of the FLTs. 

We aim at answering the following overarching question: 
if we had a perfect technique for splitting identifiers, would it 
still help improve accuracy of FLTs? We plan to answer this 
question by examining these more specific research 
questions (RQ): 
RQ1: Does IRSamurai outperform IRCamelCase in terms of 

effectiveness? 
RQ2: Does IRSamuraiDyn outperform IRCamelCaseDyn in terms of 

effectiveness? 
RQ3: Does IROracle outperform IRCamelCase in terms of

effectiveness? 
RQ4: Does IROracleDyn outperform IRCamelCaseDyn in terms of

effectiveness? 
Previous work [11, 14] compared the CamelCase, 

Samurai and TIDIER splitting algorithms in terms of their 
accuracy for correctly splitting identifiers. However, in our 
study we are addressing the impact that splitting algorithms 
have on feature location. 

B. Building an Oracle – “Perfect Splitter” 

The aim of the Oracle is to provide an exact identifier 
splitting into terms, and possibly mapping acronyms and 
contractions into terms or English words, thus building a 
reference dictionary to be used in subsequent feature location 
phases. Application dictionaries, collected identifiers and 
terms from comments, may contain thousands of words. 
Hence, manual verification and split is a tedious and error 
prone task.  To simplify Oracle building we applied a multi-
step strategy aiming at minimizing the manual effort. In the 
following subsections we report details of each step. 

Step one – building software application dictionary.  
We parsed and extracted identifiers and comments from both 
Rhino and jEdit and created a dictionary for each system. 
During this step we also built an application specific 
identifier (or term) frequency table for Samurai. Following 
this preliminary step, we filtered some dictionary entries to 
reduce manual validation effort. 

Step two – filtering concordant identifier split.  For 
each dictionary entry we ran the CamelCase, Samurai and 
TIDIER splitters to locate the identifiers for which these 
three splitting algorithms were in agreement. TIDIER was 
configured with WordNet 1  dictionary, as well as with 
acronyms and abbreviations known to the authors.  We used 
the Samurai global frequency table made available by 

                                                           
1 http://wordnet.princeton.edu/ 

Samurai authors [11], as well as a local frequency table 
estimated from the software application under analysis (see 
Step 1). Whenever the three splitting algorithms agreed on 
the identifier term subdivision, we considered this as a strong 
indication that the resulting split was actually correct. This 
assumption divided the dictionary into two sub-dictionaries: 
one on which the algorithms disagree and one where there is 
agreement among them. The sub-dictionary where the tools 
agreed was then manually inspected to make sure that no 
errors were present. For example, out of about 6,000 
dictionary entries (or words) for Rhino, about 2,500 words 
were split in this phase with a minimum manual effort. 

Step three – filtering discordant identifier split.  We 
manually inspected the identifiers for which the three 
splitting algorithms did not agree, in order to provide the best 
splitting. Examples of identifiers from the Rhino dictionary 
are words such as DToA, DCMPG or impdep2. Most of 
identifiers were manually split in this step (including careful 
inspection of the source code to understand the exact context 
of those identifiers), but there was a reduced set where it was 
unfeasible to assign any evident meaning even after 
inspecting the source code. For example, about 120 Rhino 
dictionary entries fell into this category. Examples of such 
identifiers include short strings (e.g., DT, i3 or m5) and 
cryptic identifiers (e.g., P754, u00A0 or zzz). 

During the Oracle building process, the authors validated 
the split identifiers following a consensus approach (i.e., one 
author proposed an identifier split, which was then verified 
and validated by a second author). In a few cases, 
disagreements were discussed among all the authors. We 
adapted this approach in order to minimize the bias and the 
risk of producing erroneous results. This decision was 
motivated by the complexity of identifiers, which capture 
developers’ domain and solution knowledge, experience, 
personal preference, etc., thus, it is difficult to decode the 
true meaning of identifiers in some cases. 

C. Systems 

We conducted our evaluation on two open source Java 
systems, Rhino and jEdit, and we constructed four datasets 
from these two systems. The first system considered is 
Rhino2, an open-source implementation of JavaScript written 
in Java. Rhino version 1.6R5 has 138 classes, 1,870 methods 
and 32K lines of code. Rhino implements the specifications 
of the European Computer Manufacturers Association 
(ECMA) Script3. We constructed two datasets from Rhino.  

The first dataset is RhinoFeatures and contains 241 features 
extracted from the specifications. Each feature has a textual 
description that was used as a query in the evaluation. These 
descriptions correspond to sections of the ECMAScript 
specifications. Each feature also has a set of methods which 
are associated with the features (i.e., gold set). The gold sets 
were constructed using the mappings between the source 
code and the features, which were made available by Eaddy 
et al. [9]. These mappings4 were produced by considering the 

                                                           
2 http://www.mozilla.org/rhino/ 
3 http://www.ecmascript.org/ 
4 http://www.cs.columbia.edu/~eaddy/concerntagger/ 



 

sections of the ECMAScript specification as features, and 
associating them with software artifacts using the following 
prune dependency rule, created by Eaddy et al. [9]: “A 
program element is relevant to a concern if it should be 
removed, or otherwise altered, when the concern is pruned.” 
These mappings were used in other research papers, such as 
[8, 9, 29].  Rhino is distributed with a suite of test cases, and 
each test case has a correspondence in the ECMAScript 
specification. We used these test cases to collect full traces 
for each of the features. 

The second dataset collected is RhinoBugs and contains 
143 issue reports (i.e., bugs) that were collected from 
Bugzilla, the issue tracking system of Rhino5. Each bug from 
Bugzilla has a title and a description, and we used this 
information as queries in the evaluation. As in the 
RhinoFeatures dataset, we used the information made available 
by Eaddy et al. [9] to associate each bug with a set of 
methods from Rhino which are responsible for the bug (i.e., 
the gold set). Eaddy et al. extracted the mappings between 
bugs and source code by analyzing CVS commits. However, 
there was no association between the 143 issue reports and 
the test cases, hence, we did not collect any execution traces 
for this dataset. 

The second system considered is jEdit6, a popular open-
source text editor written in Java. jEdit version 4.3 has 483 
classes, 6.4K methods and 109K lines of code. We 
constructed two datasets from this system. 

The first dataset is jEditFeatures and consists of 64 issues 
(34 features and 30 patches) extracted from jEdit’s issue 
tracking system7. The second dataset is jEditBugs and consist 
of 86 bug reports. We now describe some steps used for 
collecting additional information for these two datasets. We 
used the changes associated with the SVN commits between 
releases 4.2 and 4.3 to construct the gold sets. In addition, 
the SVN logs were parsed for issue identifiers which were 
matched against the issues from the tracking system. 
Similarly to the RhinoBugs dataset, the title and description of 
these issues were used in the evaluation as queries. We used 
a tracer to generate marked traces, by executing jEdit and 
following the steps to reproduce from the issue description. 
For more details about the process of generating this dataset, 
and for the complete dataset, which includes queries and 
execution traces, please refer to our online appendix8. 

                                                           
5 https://bugzilla.mozilla.org/  
6 http://www.jedit.org/  
7 http://sourceforge.net/tracker/?group_id=588 
8 http://www.cs.wm.edu/semeru/data/icpc11-identifier-splitting/ 

The four datasets, extracted from Rhino and jEdit, which 
were used in the evaluation, are summarized in Table 2. We 
also present additional information about the datasets used in 
the evaluation in Table 3. First, we present details about the 
number of methods from the gold sets of each dataset. Each 
data point (i.e., a feature or a bug) from the RhinoFeatures 
dataset has on average 12 methods, whereas the RhinoBugs 
dataset has only two methods on average. For jEdit there are 
on average four to six methods associated with each issue. 
The features from the RhinoFeaturess dataset have many gold 
set methods in common, hence the total number of methods 
is much higher than for the other datasets.  

Second, we present information about the number of 
methods extracted from the traces. For both systems, the 
average number of unique methods extracted from each trace 
was about one thousand. Third, we present information about 
the size of the corpora in terms of the number of identifiers, 
after applying the CamelCase, Samurai and Oracle splitting 
techniques. As expected, the more accurately we split the 
identifiers, the more we reduce the number of unique 
identifiers. For example, the corpus for RhinoFeatures has 3,318 
identifiers after applying the CamelCase splitting technique, 
and has only 2,030 identifiers after using the Oracle splitting 
technique. This is explained by the fact that identifiers that 
could not be split by CamelCase formed an unique identifier, 
whereas the Oracle split the identifier into two or more 
(common) terms that already appear in the corpus, hence 
reducing the number of unique identifiers. 

D. Analysis 

For each dataset, every FLT will produce a list of ranks 
(i.e., effectiveness measures) that has the size of the number 
of features in the dataset. For example, the dataset 
RhinoFeatures produces 241 ranks for IRCamelCase, 241 ranks for 
IRSamurai and 241 ranks for IROracle, and each of those ranks 
represents the best position (i.e., lowest rank) of a method 
from the gold set associated with that feature. These lists of 
ranks are used as an input for the following comparison 
techniques: descriptive statistics, side by side comparisons, 
and statistical tests. 

Table 2 Summary of the four datasets used in the evaluation: name 
(number of features/issues), source of the queries and gold sets, and the 

type of execution information 
Dataset 
(Size) 

Queries Gold Sets 
Execution 

Information 
RhinoFeatures 

(241) 
Sections of  

ECMAScript 
Eaddy et al. 

Full Execution 
Traces 

RhinoBugs 
(143) 

Bug title and  
description 

Eaddy et al. 
(CVS) 

N/A 

jEditFeatures 
(64) 

Feature (or Patch)  
title and description 

SVN 
Marked Execution 

Traces 
jEditBugs 

(86) 
Bug title  

and description 
SVN 

Marked Execution 
Traces 

Table 3 Descriptive statistics from datasets: number of methods in the gold 
set, number of methods in traces, and number of identifiers from corpora 

# of … Measure RhinoFeatures RhinoBugs jEditFeatures jEditBugs 

methods in 
gold set 

min 1 1 1 1 
median 4 1 5 2 
average 12.82 2.24 6.3 4.01 

max 280 15 19 41 
st. dev 28.8 2.39 5.33 5.63 
total 3,089 320 403 345 

unique 
methods 

from traces

min 777 N/A 227 227 
median 917 N/A 1.1K 1.1K 
average 912 N/A 1.1K 1.1K 

max 1.1K N/A 1.9K 1.9K 
st. dev 54 N/A 310 310 

identifiers in 
the corpus 

(with 
queries) 

split by 
CamelCase

3,318 
(4,154) 

3,318 
(4,223) 

4,227 
(4,361) 

4,227 
(4,596) 

split by 
Samurai 

2,642 
(3,416) 

2,642 
(3,411) 

3,439 
(3,552) 

3,439 
(3,751) 

Split by 
Oracle 

2,030 
(2,921) 

2,030 
(2,718) 

2,758 
(2,852) 

2,758 
(3,051) 



 

First, we compare the ranks using descriptive statistics, 
such as minimum, first quartile, median, third quartile, 
maximum, and average. We present all these descriptive 
statistics graphically, using box plots (i.e., whisker charts). 
Although this technique provides a quick and intuitive view 
of the data, it only presents a high level perspective. 

The second comparison technique examines the data in 
more details and works as follows. Given two lists of ranks 
produced by two different FLTs, we compare the ranks side 
by side and we count the number of cases the first technique 
produces lower ranks than the other, as well as the number of 
cases the second technique produces lower ranks (i.e., better 
results) than the other. We report these values as 
percentages. 

The third comparison of the ranks is a statistical analysis. 
We use the Wilcoxon signed-rank test [5] to test whether the 
difference in terms of effectiveness for two measures is 
statistically significant or not. This test is non-parametric and 
it takes as an input two lists of ranks produced by two 
different feature techniques. In the test we used a 
significance level α = 0.05, and the output of the test is a p-
value, which can be interpreted as follows. If the p-value is 
less than α, then the difference in ranks produced by one 
feature location technique is statistically significantly lower 
than the ranks produced by the other technique. Otherwise, if 
the p-value is larger than α, then we conclude that the two 
techniques produce almost equivalent results. 

E. Hypotheses 

We formulate several null hypotheses in order to test 
whether an improved splitting algorithm has a higher 
effectiveness measure than a simple splitting algorithm. For 
example: 
H0,IRSamurai There is no statistical significant difference in

terms of effectiveness between IRSamurai and 
IRCamelCase. 

H0,IRSamuraiDynThere is no statistical significant difference in
terms of effectiveness between IRSamuraiDyn 
and IRCamelCaseDyn.

We also define several alternative hypotheses for the case 
when a null hypothesis is rejected with high confidence. 
These alternative hypotheses state that an improved identifier 
splitting technique (e.g., Samurai, Oracle) would produce 
higher effectiveness than the baseline splitting technique 
(i.e., CamelCase). The following alternative hypotheses 
correspond to the null hypotheses defined above. 
HA,IRSamurai IRSamurai has statistically significantly higher 

effectiveness than IRCamelCase. 
HA,IRSamuraiDynIRSamuraiDyn has statistically significantly

higher effectiveness than IRCamelCaseDyn.
The corresponding null and alternative hypotheses for the 

Oracle splitting technique are defined analogously. 

IV. RESULTS AND DISCUSSION 

This section presents the effectiveness measures of the 
FLTs presented in Table 1, which were applied on the four 
datasets (see Table 2) extracted from Rhino and jEdit. Please 
refer to our online appendix for complete data. 

Figure 1 presents the box plots of the effectiveness 
measures of the three IR based FLTs applied on the four 
datasets. For each dataset, all the instances of the IR feature 
location technique produce very similar results in terms of 
lower quartile, median, mean, upper quartile, etc. For 
example, Figure 1(a) shows that for the RhinoFeatures dataset, 
using the CamelCase splitting (IRCamelCase) we obtain a 
median of 23 and an average of 86, and if we use the Oracle 
splitting (IROracle), we obtain a median of 20 and an average 
of 86. The same small differences between the descriptive 
statistics measures are observed among all the IR instances, 
and in all the four datasets. 

Similarly to Figure 1, Figure 2 presents the box plots of 
the effectiveness measure of the three IRDyn FLTs which 
were applied on the following three datasets: RhinoFeatures 
(Figure 2 (a)), jEditFeatures (Figure 2 (b)) and jEditBugs (Figure 
2 (c)). For all the datasets, the three FLTs produce almost 
identical results, regardless of the technique used for splitting 
the identifiers. For example, Figure 2(a) shows that for the 
RhinoFeatures dataset, using CamelCase splitting 
(IRCamelCaseDyn), the median and average are 9 and 30 
respectively, whereas for Oracle splitting (IROracleDyn) the 
median and average are 8 and 32 respectively. The small 
differences observed on the IR based instances are also 
observed here. Even more so, for the other datasets, when 
incorporating dynamic information the differences produced 
by the feature location techniques seem to be less noticeable 

 
a)  RhinoFeatures 

 
b)  RhinoBugs

 
c)  jEditFeatures 

 
d)  jEditBugs

Figure 1 Box plots of the effectiveness measure of the three IR-based FLTs
(IRCamelCase, IRSamurai and IROracle) for the four datasets: a) RhinoFeatures, b) 

RhinoBugs, c) jEditFeatures and d) jEditBugs 

a)  RhinoFeatures 
 

b)  jEditFeatures c)  jEditBugs 
Figure 2 Box plots of the effectiveness measure of the 3 FLTs 

(IRCamelCaseDyn (IRCCDyn), IRSamuraiDyn (IRSamDyn) and IROracleDyn 
(IROraDyn)) for the 3 datasets: a) RhinoFeatures, b) jEditFeatures and c) jEditBugs



 

than the differences produced by IR-based feature location 
techniques. This fact may suggest that dynamic information 
has some influence and the splitting techniques used for 
identifiers may not be as important. It is also interesting to 
observe that feature location techniques applied on the 
datasets that use features as queries (i.e., RhinoFeatures and 
jEditFeatures) have lower effectiveness measures than the 
feature location techniques applied on the datasets that use 
bug descriptions as queries. For example, for Rhino, the 
median effectiveness when using feature descriptions as 
queries is about 21 (see Figure 1(a)), whereas the median 
effectiveness when using bug descriptions as queries is about 
110 (see Figure 1(b)). The same observation is valid for the 
jEdit when only textual information is used (see Figure 
1(c)(d)) as well as when textual and execution information 
are combined (see Figure 2(b)(c)). 

The results illustrated in Figure 1 and Figure 2 provide 
only a high level picture of the effectiveness measure. We 
now present results from a case by case comparison of the 
effectiveness measure. Table 4 presents the percentage of 
times an instance of the IR based FLT produces lower ranks 
than another instance of the IR based FLT. The first cell 
value represents the percentage of times the FLT from the 
corresponding row produces lower ranks than IRCamelCase, 
whereas the number in parenthesis represents the percentage 
of times IRCamelCase produces lower ranks than the technique 
from the row (in the remaining percentages, the two 
techniques produce identical ranks). In this case, a higher 
percentage denotes a more effective technique. Similarly, 
Table 5 shows the percentage of times the FLT form the row 
produces better results than IRCamelCaseDyn. 

We observe from Table 4 that comparing the 
effectiveness measures of IROracle and IRCamelCase side by side, 
IROracle produces lower ranks in 49% of cases, whereas 
IRCamelCase produces better results in 33% of cases. In the 
remaining 18% of cases (i.e., 100%-49%-33%) the two 
techniques produce identical ranks. 

Similarly, from Table 5 we observe that when dynamic 
information is taken into account, for the RhinoFeatures dataset, 
IROracleDyn produces lower ranks (i.e., better results) in 42% 
of cases, whereas IRCamelCaseDyn produces better results in 
35% of cases. In the remaining 23% of cases (i.e., 100%-
42%-35%) the techniques produce the same results. 

It is interesting to observe that for both systems, IROracle 
and IROracleDyn produce a higher percentage of good results 
than IRCamelCase and IRCamelCaseDyn respectively, when these 
techniques are applied on the datasets that use features as 
queries (see columns two and four of the last rows of Table 4 
and Table 5). However, when these techniques are applied 

on the datasets that use bug description as queries, the 
opposite phenomenon is observed. In other words IRCamelCase 
and IRCamelCaseDyn produce higher percentage of good results 
than IROracle and IROracleDyn respectively (see columns three 
and five of the last rows of Table 4 and Table 5). 

The effectiveness measures presented as box plots and 
percentages are statistically analyzed using the Wilcoxon 
signed-rank test. Table 6 presents the p-values of the 
Wilcoxon signed-rank test for all the instances of the IR-
based FLTs. The results that are statistically significant (i.e., 
the p-value is lower than α = 0.05) are highlighted in bold. 
The table shows that there is only one instance when the 
Oracle splitting technique (i.e., IROracle) produces results that 
are statistically significantly better than the technique that 
uses CamelCase splitting (i.e., IRCamelCase). This is for the 
RhinoFeatures dataset and the p-value is equal to 0.005. We 
performed the same analysis between IROracle and IRSamurai 
and the results show that only for the RhinoFeatures dataset 
IROracle produces results that are statistically significantly 
better than IRSamurai (p-value=0.009). Refer to our online 
appendix for the data. 

Similarly, Table 7 shows the p-values of the Wilcoxon 
signed-rank test applied on the effectiveness measures 
produced by the IRDyn FLTs. The results show that no 
technique produces statistically better results than any other 
technique. This observation helps in answering the research 
questions RQ2 and RQ4, that the splitting technique used is 
not as important if dynamic information is considered. Refer 
to our online appendix for the results comparing IROracleDyn 
and IRSamuraiDyn. When dynamic information is involved, no 
technique produces statistically significant results than the 
other for any of the datasets. 

If we look at the same results (i.e., the effectiveness 
measure) from three different points of view (i.e., box plots, 
percentages and statistical analysis), we derive the following 
conclusions. First, there are instances where a better 
identifier splitting technique (i.e., Oracle) improves feature 
location. This has been the case for the Rhino, for the 
RhinoFeatures dataset. Second, there are cases when even a 
perfect identifier splitting technique cannot help in the 
process of feature location. Such an example is given by the 
jEditFeatures dataset, when the effectiveness measure is 
improved for a few cases, but the difference is not 
statistically significant. Moreover, there are instances where 
the perfect splitting technique can have negative impact on 
feature location, as it was the case for the jEditBugs dataset. In 
this case, the original CamelCase splitting technique 
produced better results than the Oracle in terms of 
percentages (see Table 4), but the difference is still not 

Table 4 Percentages of times the effectiveness of the FLT from the row is 
higher than IRCamelCase, and vice-versa (see percentages from parenthesis) 

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
IRSamurai 39 (40) 36 (48) 33 (36) 41 (41) 
IROracle 49 (33) 45 (48) 44 (38) 40 (55) 

 
Table 5 Percentages of times the effectiveness of the FLT from the row is 
higher than IRCamelCaseDyn, and vice-versa (percentages from parenthesis) 

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
IRSamuraiDyn 33 (36) N/A 27 (22) 28 (41) 
IROracleDyn 42 (35) N/A 34 (22) 35 (50) 

Table 6 The p-values of the Wilcoxon signed-rank test for the FLT from 
the row compared with IRCamelCase (statistical significance values are bold).

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
IRSamurai 0.692 0.890 0.742 0.479 
IROracle 0.005 0.497 0.202 0.785 

 
Table 7 The p-values of the Wilcoxon signed-rank test for the FLTs from 
the row compared with IRCamelCaseDyn (there are no stat. significant values)

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs 
IRSamuraiDyn 0.713 N/A 0.307 0.928 
IROracleDyn 0.265 N/A 0.095 0.937 



 

statistically significant. Finally, there is one instance, 
RhinoFeatures, where splitting helps when textual information 
is used. However, when dynamic information is used, all the 
splitting techniques produce equivalent results from a 
statistical point of view.  

A. Qualitative Results 

This section presents some observations after examining 
the results produced by the splitting techniques and after 
examining the queries. 

One of the problems that we encountered using Samurai 
was that it tended to split certain types of identifiers into 
many meaningless terms, some of them having between one-
three characters. Examples of identifiers from Rhino, where 
Samurai split them incorrectly were: debugAccelerators, 
tolocale, imitating, imlementation, etc. Their incorrect 
Samurai splitting was: debug Ac ce le r at o rs, tol ocal e, imi 
ta ting, i ml eme n tat ion (see Table 8). For these examples, 
CamelCase performed better, as it correctly split the first 
identifier (debug accelerators), but it left the other ones 
unaltered. Please refer to our online appendix for more 
information. 

One of the benefits of using Samurai was that it 
accurately split same-case identifiers composed of multiple 
words. For these cases, CamelCase left the identifiers 
unmodified. Examples of such identifiers from Rhino 
include SHORTNUMBER, readadapterobject, GETPROP 
which are correctly split by Samurai as SHORT NUMBER, 
read adapter object, and GET PROP, and are left unchanged 
by CamelCase (see Table 8). 

However, there were some cryptic identifiers that were 
almost impossible to split using CamelCase or Samurai. 
Examples of such identifiers from Rhino include ldbl, njm, 
pun, rve, wbdry, etc. In these cases, inferring the meaning 
from the context in which these identifiers appeared was the 
only way to split or expand them correctly. 

We observed a vocabulary mismatch problem, which 
produced inconsistencies between the identifiers used in the 
queries, and the identifiers used in the code.  

This problem seemed to be less noticeable for features, 
and more severe for bugs. For jEdit, the issues that described 
features often contained terms that were later used in the 
code as identifiers for classes, methods, variables, etc. For 
example, jEdit’s feature #16084869 (“Support ‘thick’ caret”), 
contained in its description many identifiers that were also 
found in the name of the methods (e.g., thick, caret, text, 
area, etc.). For features, their queries were expressive, and 
more consistent with the source code vocabulary, so they 
benefitted less from an Oracle splitting. Hence, when using 
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feature descriptions as queries for both Rhino and jEdit, the 
median effectiveness of the FLTs, regardless of splitting, 
were about 20 for Rhino (see Figure 1 (a)) and about 10 for 
jEdit (see Figure 1 (c)). 

On the other hand, the vocabulary of the queries 
extracted from bug reports was less consistent with the 
source code vocabulary, and a splitting technique, helped 
bridge this gap. For example, jEdit’s bug #157550510 (“C+j 
bug”) reported a problem with the “join lines” 
implementation, yet nowhere in its description were the 
words join or lines mentioned. In general, the identifiers 
from the bug descriptions were less consistent with the code, 
and this issue was reflected in terms of the effectiveness 
measures produced by the FLTs, when these bug 
descriptions were used as queries. For example, in Figure 1 
(b) the median effectiveness for Rhino system was about 110 
(as opposed to a median of 20 when features were used as 
queries). Also, Figure 1 (d), shows that the median 
effectiveness of the techniques that used bugs as queries was 
around 67, as opposed to 10, which was the median 
effectiveness when features were used as queries. 

Another problem with the queries is that some identifiers 
were used just for communication between developers, and 
no matter what splitting technique was used, these identifiers 
provided no useful information, because they appeared only 
in the query vocabulary, and did not appear at all in the 
source code vocabulary. Examples of such identifiers 
included words that are common in communication, such as 
btw (i.e., by the way), thanks, hate, rant, greetings, fly, 
annoying, etc., name of developers, ApeHanger, Slava, 
Carlos, etc. 

B. Threats to Validity 

In this section we present several threats to validity 
associated with the evaluation. 

Threats to construct validity concern the relation between 
the theory and the observation. This threat is mainly due to 
mistakes in the Oracle and gold set. We cannot guarantee 
that no errors are present in the Oracle. As the intent of the 
Oracle is to explain identifier semantics, we cannot 
guarantee that some identifiers could have been split in 
different ways by developers that originally created them. 
This problem is difficult and it relates to guessing the 
developers’ intent. To limit this threat, different sources of 
information such as comments, source code context, and 
online documentation were used when producing the Oracle. 
To minimize the risk on the accuracy of the gold set, we used 
data produced by other researchers, which was used in 
previous studies and made available to the research 
community. 

Threats to internal validity concern any confounding 
factors that could have influenced our study results. In 
particular, these threats are due to the subjectivity of the 
manual building of the Oracle and to the possible biases 
introduced by manually splitting identifiers. To limit this 
threat, the Oracle was produced by a joint work among the 
authors, using CamelCase, Samurai and TIDIER. In addition, 
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Table 8 Examples of splitted identifiers from Rhino using CamelCase and 
Samurai. The identifiers which are split correctly are highlighted in bold  
Original Identifier CamelCase Samurai 

GETPROP getprop GET PROP 
readadapterobject readadapterobject read adapter object 
SHORTNUMBER shortnumber SHORT NUMBER 
debugAccelerators debug accelerators debug Ac ce le r at o rs 

tolocale tolocale tol ocal e 
imitating imitating imi ta ting 



 

inconsistencies in splitting/mapping to dictionary words 
were discussed. 

Threats to conclusion validity concern the relations 
between the treatment and the outcome. Proper tests were 
performed to statistically reject the null hypotheses. In 
particular, we used a non-parametric test (i.e., Wilcoxon 
signed-rank test), which does not make any assumptions on 
the underlying distributions of the data. Furthermore, as the 
only significant p-value is 0.005 (see Table 6), even with the 
conservative Bonferroni correction, it will remain significant 
as the limit in such case is equal to α-value/number of tests 
(i.e., 0.05 / 3 = 0.01666 < 0.05). 

Threats to external validity concern the possibility of 
generalizing our results. To make our results as generalizable 
as possible, we used two Java applications from two different 
application domains but we cannot be sure that our findings 
will be valid for other domains, applications, programming 
languages or software engineering tasks (i.e., different from 
feature location). More case studies are needed to confirm 
the results presented and to verify if indeed, in the general 
case, dynamic information reduces the gain of more 
sophisticated identifier split techniques. 

V. RELATED WORK 

Given the paramount role of source code identifiers in 
maintenance tasks such as traceability link recovery or 
feature and concept location, a large body of relevant work is 
available in this area. We divided this section into the related 
work on the role of unstructured information in program 
comprehension and approaches to feature location.  

A. The Role of Unstructured Information in Program 
Comprehension 

Takang et al. [34] attempted to determine the 
informativeness of identifiers. They conducted experiments 
to compare abbreviated identifiers to full-word identifiers 
and uncommented code to commented code. Their study 
results showed that commented programs are more 
understandable than non-commented programs and that 
programs containing full-word identifiers are more 
understandable than those with abbreviated identifiers.  

Lawrie et al. [18, 19] have performed an empirical study 
to assess the quality of source code identifiers. Their study 
with over 100 programmers indicated that full words as well 
as recognizable abbreviations lead to better comprehension. 
Lawrie et al. [17] introduced GenTest, a splitting algorithm 
which by incorporating vocabulary normalization is able to 
outperform Samurai. 

Binkley et al. [3] have investigated the use of different 
identifier separators in program comprehension. They found 
that the CamelCase convention led to better understanding 
than underscores and, when subjects are properly trained, 
they performed faster with identifiers in the CamelCase style 
rather than identifiers built using underscores. Binkley et 
al.’s study was replicated by Sharif and Maletic [31] using an 
eye tracking system. Their results indicate that there was no 
difference in terms of accuracy between the CamelCase and 
underscore style, and that subjects recognized identifiers that 
used the underscore notation more quickly. 

Caprile and Tonella [4] have analyzed the internal 
structure of identifiers. Their in-depth analysis showed that 
identifiers are one of the most important source of 
information about system concepts, and that the information 
carried by identifiers is often the starting point for program 
comprehension. 

Deißenböck and Pizka [7] have provided guidelines for 
the production of high-quality identifiers. With such 
guidelines, identifiers should contain enough information for 
an engineer to understand the program concepts. 

B. Related Work on Feature Location 

Marcus et al. introduced LSI-based feature location 
technique [25]. This approach was later extended to include 
the Rocchio algorithm for relevance feedback [12] by 
allowing developers to reformulate search queries. Grant et 
al. [13] used Independent Component Analysis for feature 
location, by separating the features (modeled as input 
signals) into independent components and estimating the 
relevance to each source code method. Shepherd et al. [32] 
proposed an approach to feature location that is based on the 
program model that captures action-oriented relations 
between identifiers in a program.  

There are several FLTs that use more than one type of 
information (or underlying analysis). For example, SITIR 
[21] and PROMESIR [27] both utilize textual and execution 
information. Eisenbarth et al. [10] proposed a technique that 
applies formal concept analysis to traces to generate a 
mapping between features and methods. Cerberus [8] is 
another hybrid technique which combines static, dynamic 
and textual analysis. The up-to-date summary of feature 
location approaches can be found in [29]. 

VI. CONCLUSIONS 

Perfecting splitting techniques can improve the accuracy 
of feature location, easing program comprehension and thus, 
software evolution. In situations where execution 
information cannot be collected (e.g., mission critical and 
time critical applications), the benefits of using advanced 
splitting techniques can be mostly visible. In fact, by 
splitting source code identifiers and mapping them to domain 
concepts, the localisation of entities contributing to 
implementing some user observable functionality may be 
easier, which could minimize feature location effort. 

In this paper, we presented an exploratory study of two 
FLTs (i.e., IR and IRDyn) for locating bugs and features, 
utilizing three strategies for splitting identifiers: CamelCase, 
Samurai and manual splitting of identifiers. These FLTs and 
their preprocessing techniques were evaluated on two open-
source systems, Rhino and jEdit, and compared in terms of 
their effectiveness measure. 

The results of the IR-based FLT reveal that Samurai and 
CamelCase produce similar results. However, the IROracle 
outperforms IRCamelCase in terms of the effectiveness measure, 
on the RhinoFeatures dataset. This supports our conjecture that 
when only textual information is available, an improved 
splitting technique can help improve effectiveness of feature 
location. The results also show that when both textual and 
execution information are used, any splitting algorithm will 



 

suffice, as FLTs produce equivalent results. In other words, 
because execution information helps pruning the search 
space considerably, the benefit of an advanced splitting 
algorithm is comparably smaller than the benefit obtained 
from execution information; hence the splitting algorithm 
will have little impact on the final results. Overall, our 
findings outline potential benefits of creating advanced 
preprocessing techniques as they can be useful in situations 
where execution information cannot be easily collected. 

Future work will extend evaluating feature location 
techniques on other software systems. In addition, we plan to 
apply the splitting strategy namely, TIDIER, which is based 
on the use of contextual-aware dictionaries and specialized 
knowledge, as well as GenTest, which uses vocabulary 
normalization. 
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