

Can Better Identifier Splitting Techniques Help Feature Location?

Bogdan Dit1, Latifa Guerrouj2, Denys Poshyvanyk1, Giuliano Antoniol2
1Department of Computer Science
The College of William and Mary

Williamsburg, Virginia, USA
{bdit, denys}@cs.wm.edu

2Department of Computer Science Engineering
École Polytechnique de Montréal

Québec, Canada
{latifa.guerrouj, giuliano.antoniol}@polymtl.ca

Abstract — The paper presents an exploratory study of two
feature location techniques utilizing three strategies for
splitting identifiers: CamelCase, Samurai and manual splitting
of identifiers. The main research question that we ask in this
study is if we had a perfect technique for splitting identifiers,
would it still help improve accuracy of feature location
techniques applied in different scenarios and settings? In order
to answer this research question we investigate two feature
location techniques, one based on Information Retrieval and
the other one based on the combination of Information
Retrieval and dynamic analysis, for locating bugs and features
using various configurations of preprocessing strategies on two
open-source systems, Rhino and jEdit. The results of an
extensive empirical evaluation reveal that feature location
techniques using Information Retrieval can benefit from better
preprocessing algorithms in some cases, and that their
improvement in effectiveness while using manual splitting over
state-of-the-art approaches is statistically significant in those
cases. However, the results for feature location technique using
the combination of Information Retrieval and dynamic
analysis do not show any improvement while using manual
splitting, indicating that any preprocessing technique will
suffice if execution data is available. Overall, our findings
outline potential benefits of putting additional research efforts
into defining more sophisticated source code preprocessing
techniques as they can still be useful in situations
where execution information cannot be easily collected.

Keywords-feature location; information retrieval; dynamic
analysis; identifier splitting algorithms

I. INTRODUCTION

Early work on program comprehension and mental
models [33, 35] highlighted the significance of textual
information to capture and encode programmers’ intent and
knowledge in software. Recent research efforts have studied
how software developers capture and express their intent in
natural language embodied in source code. Identifiers used
by programmers as names for classes, methods, or attributes
in source code or other artifacts contain vital problem
domain information [2, 4, 7, 15, 18, 23, 28, 34] and account
for approximately more than half the source code in software
[7]. These names often serve as a starting point in many
program comprehension tasks [4]; thus, it is imperative that
these names clearly reflect the concepts that they are
supposed to represent, since self-documenting identifiers
reduce the time and effort to acquire a basic comprehension
level for any maintenance task [2].

The magnitude of a program’s lexicon can hardly be
underestimated. Identifiers and comments represent an

important source of domain information that is used by
(semi-) automated techniques to recover traceability links
among software artifacts [1, 24] and locate features in source
code [8, 21, 25, 27, 29, 30]. Prior work [16, 32] employed a
natural language-based representation of source code, based
on the conjecture that there is an intrinsic pattern in
unstructured textual information, to support a range of
program comprehension activities. Due to the large
abstraction gap between the domain of a software system and
the implementation mechanisms offered by programming
languages, the mapping between domain concepts and their
implementation in source code is frequently ambiguous, as
these concepts are distorted and scattered in the code [28].

The problem of extracting and analyzing the textual
information in software artifacts was recognized by the
software engineering research community only recently.
Information Retrieval (IR) methods were proposed and used
effectively to support program comprehension tasks, such as
feature (or concept) location and traceability link recovery.
These IR-based approaches vary not only in their scope, but
also in their underlying indexing mechanisms, corpus
generation, or results analysis methods. Identifier splitting is
one of the essential ingredients in any feature location or
traceability recovery technique [1, 8, 21, 24, 27, 29] , since it
helps disambiguate conceptual information encoded in
compound (or abbreviated) identifiers. The widely adopted
approach is based on the CamelCase splitting algorithm, with
more sophisticated strategies, such as Samurai [11] and
TIDIER [14], recently proposed in the literature.

In this paper we investigate the impact of three identifier
splitting techniques (CamelCase, Samurai and manually built
splitting (i.e., Oracle)) on the accuracy of feature location in
presence and absence of execution information. The main
research question that we ask in this study is if we had a
perfect technique for splitting identifiers, such as a manually
built oracle, would it still help improve accuracy of feature
location techniques applied in different scenarios and
settings? To answer this research question we investigate two
feature location techniques (FLTs), one based on IR and the
other one based on the combination of IR and dynamic
analysis (IRDyn), for locating bugs and features using
different configurations of preprocessing strategies on two
open-source systems, Rhino and jEdit. Our findings reveal
that feature location techniques using IR can benefit from
better preprocessing algorithms, and that their improvement
in effectiveness while using manual splitting over state-of-
the-art approaches is statistically significant. However, the
results of the IRDyn FLT do not show any improvement
while using manual splitting, indicating that any

preprocessing technique will suffice if execution data is
available.

II. BACKGROUND ON PREPROCESSING UNSTRUCTURED

INFORMATION IN SOFTWARE

In this section we overview some of the existing work in
the field of feature location and identifier splitting. In
particular, we overview two feature location techniques and
three approaches for splitting identifiers that are used in our
empirical study.

A. Feature Location in Software

Unstructured textual information in software, found in
identifiers and comments encodes important problem domain
and design decisions about a software system. This
unstructured data lends itself for further analysis using IR
techniques that can be leveraged to support feature location
in source code. Feature location is the activity of finding the
source code elements (i.e., methods or classes) that
implement a specific feature (e.g., “print page in a text editor”
or “add bookmark in a web-browser”) [25, 27]. In this work,
we rely on two feature location approaches that use IR and a
combination of IR and dynamic analysis. While there are
several IR techniques that have been successfully applied in
the context of feature location, such as the Vector Space
Model [8], Latent Semantic Indexing (LSI) [21, 27, 29, 30],
and Latent Dirichlet Allocation [22], this empirical study
focuses on evaluating LSI for feature location, and the
notation IR is used to denote that LSI is the default
information retrieval method used in the study. We also
provide the details of these feature location approaches and
explain the role of identifier splitting techniques in this
process. Feature location via LSI follows five main steps:
generating a corpus, preprocessing the corpus, indexing the
corpus using LSI, formulating a search query and generating
similarities and finally, examining the results.

Step one – generating the corpus. The source code of a
software system is parsed, and all the information associated
with a method (i.e., comments, method declaration, signature
and body) will become a document in the system corpus. In
other words, we are using a method-level granularity for the
corpus, so each method from the source code has a
corresponding document in the corpus.

Step two – preprocessing the corpus. The generated
corpus is then preprocessed in order to normalize the text
contained in the documents. This step includes removing
operators, programming language keywords, or special
characters. Additionally, compound identifiers are split using
the algorithms that are explained in details in subsection II.B,
as these algorithms are at the core of this paper. The split
identifiers are then stemmed (i.e., reduced to their root form)
using the Porter stemmer [26], and finally the words that
appear commonly in English (i.e., “a”, “the”, etc.) are
eliminated.

Step three - indexing the corpus using LSI. The
preprocessed corpus is transformed into a term-by-document
matrix, where each document (i.e., method) from the corpus
is represented as a vector of terms (i.e., identifiers). The
values of the matrix cells represent the weights of the terms

from the documents, which are computed using the term
frequency – inverse document frequency (tf-idf) weight. The
matrix is then decomposed using Singular Value
Decomposition [6] which decrease the dimensionality of the
matrix by exploiting statistical co-occurrences of related
words across the documents.

Step four – formulating a search query and
generating similarities. The software developer chooses a
set of words (i.e., a query) that describe the feature or bug
being sought (e.g., “print page”). The query is converted
into a vector-based representation, and the cosine similarity
between the query and every document in the reduced space
is computed. In other words, the textual similarity between
the bug description and every method from the software
system is computed.

Step five – examining the results. The list of methods
is ranked based on their cosine similarities with the user
query. The developer starts investigating the methods in
order, from the top of the list (i.e., most relevant methods
first). After examining each method the developer decides if
that method belongs to the feature of interest or not. If it
does, the feature location process terminates. Otherwise, the
developer can continue examining other methods, or refine
the query based on new information gathered from
examining the methods and starting from Step 4 again.

Feature location via LSI and dynamic information has
one additional step, which can take place before the Step 4
described earlier.

Step for collecting execution information. The software
developer triggers the bug, or exercises the feature by
running the software system and executing the steps to
reproduce from the description of the feature or bug. This
process invokes the methods that are responsible for the bug
or feature and these methods are collected in an execution
trace. The developer can take advantage of this information
by formulating a query (Step 4) and examining the results
(Step 5) produced by ranking only the methods found in the
execution trace (as opposed to ranking all the methods of the
software system). The advantage of using execution
information is that it reduces the search space, thus
increasing the performance of feature location.

In this paper, we consider the IR and IRDyn FLTs. While
previous studies have shown that the IRDyn FLT
outperforms its basic version (i.e., IR FLT) [21, 27, 29, 30],
the goal of this paper is to study the impact of the
preprocessing techniques from Step 2 on the accuracy of
feature location.

B. Background on Identifier Splitting Technique

State-of-the-art approaches to split identifiers into
separate words are the CamelCase splitter, the Samurai
approach proposed by Enslen et al. [11], and the recent
TIDIER approach [14].

1) CamelCase Splitting Technique
The de facto splitting algorithm is CamelCase. This

simple, fast, and widely used preprocessing algorithm has
been previously applied in multiple approaches to feature
location and traceability link recovery [1, 21, 24, 25, 27, 29,

30]. This approach splits compound identifiers according to
the following rules:

RuleA: Underscore, structure and pointer access, as well
as special symbols are replaced with the space character.

RuleB: Identifiers are split where terms are separated
using the CamelCase convention. For example, userId is
split into user and Id while setGID is split into set and GID.

RuleC: When two or more upper case characters are
followed by one or more lower case characters, the identifier
is split at the last-but-one upper-case character. For example,
SSLCertificate is split into SSL and Certificate.

Sometimes, a space is inserted before and after each
sequence of digits. For example, print_file2device is split
into print, file, 2, and device, while cipher128_code is split
into cipher, 128, and code. Overall, a CamelCase splitting
algorithm cannot split effectively same-case composite
words, such as USERID, currentsize, into separate terms.

2) Samurai Splitting Algorithm
Samurai [11] is an automatic approach to split identifiers

into sequences of terms by mining term frequencies in large
source code bases. It relies on two assumptions. First, it
assumes that a substring composing an identifier is also
likely to be used in other parts of the program (or in other
programs) alone or as a part of other identifiers. Second,
given two possible splits, the split that most likely represents
the developer’s intent partitions the identifier into terms
occurring more often in the program. In other words, central
to Samurai is the idea of using two tables of frequencies: one
program specific and one mined out of a large corpus of
programs, to find the most likely identifier split.
Furthermore, the frequency tables are used in conjunction
with CamelCase rules. In fact, Samurai algorithm first tries
to apply CamelCase split and then ranks possible splits
according to its identifiers frequency tables. In this way
Samurai overcomes the main limitation of CamelCase, by
being able to correctly split same-case identifiers, such as
USERID, currentsize, or mixed-case (e.g., DEFMASKBit).
Refer to [11] for more details on Samurai and its evaluation.

3) TIDIER: Term IDentifier RecognizER
TIDIER [14] is a novel approach to split program

identifiers using high-level and domain concepts captured
into multiple dictionaries. The approach is based on a
thesaurus of words and abbreviations and uses a modified
string-edit distance [20] between terms and words as a proxy
for the distance between the terms and the concepts they
represent. The main assumption made by TIDIER is the fact
that it is possible to mimic developers when creating an
identifier relying on a set of transformation rules on
terms/words. For example, to create an identifier for a
variable that counts the number of software defects, the two
words, number and defects, can be concatenated with or
without an underscore, or following the CamelCase
convention e.g., defects_number, defectsnumber or
defectsNumber. Developers may drop vowels and (or)
characters to shorten one or both words of the identifier, thus
creating defectsNbr or nbrOfdefects. TIDIER uses contextual
information in the form of specialized dictionaries (e.g.,
acronyms, contractions and domain specific terms) and
mimics the process of transforming words via contraction

rules; more details can be found in [14]. It is important to
emphasize that TIDIER does not perform significantly better
than Samurai on Java code and even though TIDIER and
Samurai outperform CamelCase, Samurai is much faster than
TIDIER. For this reason, TIDIER was only used as a
reference in supporting the construction of the Oracle but not
in the empirical study or to generate new terms as in [14].

III. EMPIRICAL STUDY DESIGN

The goal of this study is to compare accuracy of two
FLTs (i.e., IR and IRDyn), when utilizing three identifier
splitting algorithms: CamelCase, Samurai and Oracle (i.e.,
manual splitting of identifiers). This study is done from the
perspective of researchers who want to understand if existing
approaches for splitting identifiers can improve accuracy of
FLTs under different scenarios and settings, including best
possible scenario where splitting is done by experts. In
addition, we are interested to know if an advanced splitting
algorithm would be still useful for enhancing the accuracy of
feature location when execution information is used.

The context consists of two Java applications: Rhino and
jEdit where the main characteristics are described in
Subsection III.C.

A. Variable Selection and Study Design

The main independent variable of our study is the type of
splitting algorithm used: CamelCase, Samurai and Oracle
(i.e., manually split identifiers).

The second independent variable is the use of dynamic
information. Thus, we have two FLTs, and each has three
configurations, which depend on the identifier splitting
technique (see Table 1). For example, IRCamelCase, IRSamurai,
and IROracle are the IR based feature location techniques that
use LSI to compute similarities between queries and
methods, after applying the CamelCase, the Samurai and the
Oracle splitting algorithms on the identifiers from the
methods and queries. Similarly IRCamelCaseDyn, IRSamuraiDyn
and IROracleDyn were defined.

In order to compare which configuration of the FLTs is
more accurate than another (i.e., IRCamelCase vs. IRSamurai), we
considered their effectiveness measure [21]. The
effectiveness measure is the best rank (i.e., lowest rank)
among all the methods from the gold set for a specific
feature. Intuitively, the effectiveness measure quantifies the
number of methods a developer has to examine from a list of
ranked methods returned by the feature location technique,
before she is able to locate a relevant method pertaining to
the feature. Obviously, a technique that consistently places
relevant methods towards the top of the ranked list (i.e.,
lower ranks) is more effective than a technique that contains
relevant methods towards the middle or the bottom of the
ranked list (i.e., higher ranks). In this analysis we focus on
the scenario of finding just one relevant method, as opposed

Table 1 The configurations of the two FLTs (i.e., IR and IRDyn) based on
the splitting algorithm

Splitting Algorithm IR FLT IRDyn FLT
CamelCase (Baseline) IRCamelCase IRCamelCaseDyn

Samurai IRSamurai IRSamuraiDyn
Oracle (Manual Split) IROracle IROracleDyn

to finding all relevant methods from the gold set, for two
reasons. First, we are focusing on concept location, rather
than impact analysis. Second, once a relevant method has
been identified, it is much easier to find other related
methods by following program dependencies from the
relevant method, or by using other heuristics.

In literature, the identifiers that are split using CamelCase
are referred as hard-words, whereas the identifiers split using
Samurai or TIDIER are called soft-words. During our
analysis, we treat the hard and soft words in the same way
and we refer to them as split identifiers.

The dependent variable considered in our study is the
effectiveness measure of the FLTs.

We aim at answering the following overarching question:
if we had a perfect technique for splitting identifiers, would it
still help improve accuracy of FLTs? We plan to answer this
question by examining these more specific research
questions (RQ):
RQ1: Does IRSamurai outperform IRCamelCase in terms of

effectiveness?
RQ2: Does IRSamuraiDyn outperform IRCamelCaseDyn in terms of

effectiveness?
RQ3: Does IROracle outperform IRCamelCase in terms of

effectiveness?
RQ4: Does IROracleDyn outperform IRCamelCaseDyn in terms of

effectiveness?
Previous work [11, 14] compared the CamelCase,

Samurai and TIDIER splitting algorithms in terms of their
accuracy for correctly splitting identifiers. However, in our
study we are addressing the impact that splitting algorithms
have on feature location.

B. Building an Oracle – “Perfect Splitter”

The aim of the Oracle is to provide an exact identifier
splitting into terms, and possibly mapping acronyms and
contractions into terms or English words, thus building a
reference dictionary to be used in subsequent feature location
phases. Application dictionaries, collected identifiers and
terms from comments, may contain thousands of words.
Hence, manual verification and split is a tedious and error
prone task. To simplify Oracle building we applied a multi-
step strategy aiming at minimizing the manual effort. In the
following subsections we report details of each step.

Step one – building software application dictionary.
We parsed and extracted identifiers and comments from both
Rhino and jEdit and created a dictionary for each system.
During this step we also built an application specific
identifier (or term) frequency table for Samurai. Following
this preliminary step, we filtered some dictionary entries to
reduce manual validation effort.

Step two – filtering concordant identifier split. For
each dictionary entry we ran the CamelCase, Samurai and
TIDIER splitters to locate the identifiers for which these
three splitting algorithms were in agreement. TIDIER was
configured with WordNet 1 dictionary, as well as with
acronyms and abbreviations known to the authors. We used
the Samurai global frequency table made available by

1 http://wordnet.princeton.edu/

Samurai authors [11], as well as a local frequency table
estimated from the software application under analysis (see
Step 1). Whenever the three splitting algorithms agreed on
the identifier term subdivision, we considered this as a strong
indication that the resulting split was actually correct. This
assumption divided the dictionary into two sub-dictionaries:
one on which the algorithms disagree and one where there is
agreement among them. The sub-dictionary where the tools
agreed was then manually inspected to make sure that no
errors were present. For example, out of about 6,000
dictionary entries (or words) for Rhino, about 2,500 words
were split in this phase with a minimum manual effort.

Step three – filtering discordant identifier split. We
manually inspected the identifiers for which the three
splitting algorithms did not agree, in order to provide the best
splitting. Examples of identifiers from the Rhino dictionary
are words such as DToA, DCMPG or impdep2. Most of
identifiers were manually split in this step (including careful
inspection of the source code to understand the exact context
of those identifiers), but there was a reduced set where it was
unfeasible to assign any evident meaning even after
inspecting the source code. For example, about 120 Rhino
dictionary entries fell into this category. Examples of such
identifiers include short strings (e.g., DT, i3 or m5) and
cryptic identifiers (e.g., P754, u00A0 or zzz).

During the Oracle building process, the authors validated
the split identifiers following a consensus approach (i.e., one
author proposed an identifier split, which was then verified
and validated by a second author). In a few cases,
disagreements were discussed among all the authors. We
adapted this approach in order to minimize the bias and the
risk of producing erroneous results. This decision was
motivated by the complexity of identifiers, which capture
developers’ domain and solution knowledge, experience,
personal preference, etc., thus, it is difficult to decode the
true meaning of identifiers in some cases.

C. Systems

We conducted our evaluation on two open source Java
systems, Rhino and jEdit, and we constructed four datasets
from these two systems. The first system considered is
Rhino2, an open-source implementation of JavaScript written
in Java. Rhino version 1.6R5 has 138 classes, 1,870 methods
and 32K lines of code. Rhino implements the specifications
of the European Computer Manufacturers Association
(ECMA) Script3. We constructed two datasets from Rhino.

The first dataset is RhinoFeatures and contains 241 features
extracted from the specifications. Each feature has a textual
description that was used as a query in the evaluation. These
descriptions correspond to sections of the ECMAScript
specifications. Each feature also has a set of methods which
are associated with the features (i.e., gold set). The gold sets
were constructed using the mappings between the source
code and the features, which were made available by Eaddy
et al. [9]. These mappings4 were produced by considering the

2 http://www.mozilla.org/rhino/
3 http://www.ecmascript.org/
4 http://www.cs.columbia.edu/~eaddy/concerntagger/

sections of the ECMAScript specification as features, and
associating them with software artifacts using the following
prune dependency rule, created by Eaddy et al. [9]: “A
program element is relevant to a concern if it should be
removed, or otherwise altered, when the concern is pruned.”
These mappings were used in other research papers, such as
[8, 9, 29]. Rhino is distributed with a suite of test cases, and
each test case has a correspondence in the ECMAScript
specification. We used these test cases to collect full traces
for each of the features.

The second dataset collected is RhinoBugs and contains
143 issue reports (i.e., bugs) that were collected from
Bugzilla, the issue tracking system of Rhino5. Each bug from
Bugzilla has a title and a description, and we used this
information as queries in the evaluation. As in the
RhinoFeatures dataset, we used the information made available
by Eaddy et al. [9] to associate each bug with a set of
methods from Rhino which are responsible for the bug (i.e.,
the gold set). Eaddy et al. extracted the mappings between
bugs and source code by analyzing CVS commits. However,
there was no association between the 143 issue reports and
the test cases, hence, we did not collect any execution traces
for this dataset.

The second system considered is jEdit6, a popular open-
source text editor written in Java. jEdit version 4.3 has 483
classes, 6.4K methods and 109K lines of code. We
constructed two datasets from this system.

The first dataset is jEditFeatures and consists of 64 issues
(34 features and 30 patches) extracted from jEdit’s issue
tracking system7. The second dataset is jEditBugs and consist
of 86 bug reports. We now describe some steps used for
collecting additional information for these two datasets. We
used the changes associated with the SVN commits between
releases 4.2 and 4.3 to construct the gold sets. In addition,
the SVN logs were parsed for issue identifiers which were
matched against the issues from the tracking system.
Similarly to the RhinoBugs dataset, the title and description of
these issues were used in the evaluation as queries. We used
a tracer to generate marked traces, by executing jEdit and
following the steps to reproduce from the issue description.
For more details about the process of generating this dataset,
and for the complete dataset, which includes queries and
execution traces, please refer to our online appendix8.

5 https://bugzilla.mozilla.org/
6 http://www.jedit.org/
7 http://sourceforge.net/tracker/?group_id=588
8 http://www.cs.wm.edu/semeru/data/icpc11-identifier-splitting/

The four datasets, extracted from Rhino and jEdit, which
were used in the evaluation, are summarized in Table 2. We
also present additional information about the datasets used in
the evaluation in Table 3. First, we present details about the
number of methods from the gold sets of each dataset. Each
data point (i.e., a feature or a bug) from the RhinoFeatures
dataset has on average 12 methods, whereas the RhinoBugs
dataset has only two methods on average. For jEdit there are
on average four to six methods associated with each issue.
The features from the RhinoFeaturess dataset have many gold
set methods in common, hence the total number of methods
is much higher than for the other datasets.

Second, we present information about the number of
methods extracted from the traces. For both systems, the
average number of unique methods extracted from each trace
was about one thousand. Third, we present information about
the size of the corpora in terms of the number of identifiers,
after applying the CamelCase, Samurai and Oracle splitting
techniques. As expected, the more accurately we split the
identifiers, the more we reduce the number of unique
identifiers. For example, the corpus for RhinoFeatures has 3,318
identifiers after applying the CamelCase splitting technique,
and has only 2,030 identifiers after using the Oracle splitting
technique. This is explained by the fact that identifiers that
could not be split by CamelCase formed an unique identifier,
whereas the Oracle split the identifier into two or more
(common) terms that already appear in the corpus, hence
reducing the number of unique identifiers.

D. Analysis

For each dataset, every FLT will produce a list of ranks
(i.e., effectiveness measures) that has the size of the number
of features in the dataset. For example, the dataset
RhinoFeatures produces 241 ranks for IRCamelCase, 241 ranks for
IRSamurai and 241 ranks for IROracle, and each of those ranks
represents the best position (i.e., lowest rank) of a method
from the gold set associated with that feature. These lists of
ranks are used as an input for the following comparison
techniques: descriptive statistics, side by side comparisons,
and statistical tests.

Table 2 Summary of the four datasets used in the evaluation: name
(number of features/issues), source of the queries and gold sets, and the

type of execution information
Dataset
(Size)

Queries Gold Sets
Execution

Information
RhinoFeatures

(241)
Sections of

ECMAScript
Eaddy et al.

Full Execution
Traces

RhinoBugs
(143)

Bug title and
description

Eaddy et al.
(CVS)

N/A

jEditFeatures
(64)

Feature (or Patch)
title and description

SVN
Marked Execution

Traces
jEditBugs

(86)
Bug title

and description
SVN

Marked Execution
Traces

Table 3 Descriptive statistics from datasets: number of methods in the gold
set, number of methods in traces, and number of identifiers from corpora

of … Measure RhinoFeatures RhinoBugs jEditFeatures jEditBugs

methods in
gold set

min 1 1 1 1
median 4 1 5 2
average 12.82 2.24 6.3 4.01

max 280 15 19 41
st. dev 28.8 2.39 5.33 5.63
total 3,089 320 403 345

unique
methods

from traces

min 777 N/A 227 227
median 917 N/A 1.1K 1.1K
average 912 N/A 1.1K 1.1K

max 1.1K N/A 1.9K 1.9K
st. dev 54 N/A 310 310

identifiers in
the corpus

(with
queries)

split by
CamelCase

3,318
(4,154)

3,318
(4,223)

4,227
(4,361)

4,227
(4,596)

split by
Samurai

2,642
(3,416)

2,642
(3,411)

3,439
(3,552)

3,439
(3,751)

Split by
Oracle

2,030
(2,921)

2,030
(2,718)

2,758
(2,852)

2,758
(3,051)

First, we compare the ranks using descriptive statistics,
such as minimum, first quartile, median, third quartile,
maximum, and average. We present all these descriptive
statistics graphically, using box plots (i.e., whisker charts).
Although this technique provides a quick and intuitive view
of the data, it only presents a high level perspective.

The second comparison technique examines the data in
more details and works as follows. Given two lists of ranks
produced by two different FLTs, we compare the ranks side
by side and we count the number of cases the first technique
produces lower ranks than the other, as well as the number of
cases the second technique produces lower ranks (i.e., better
results) than the other. We report these values as
percentages.

The third comparison of the ranks is a statistical analysis.
We use the Wilcoxon signed-rank test [5] to test whether the
difference in terms of effectiveness for two measures is
statistically significant or not. This test is non-parametric and
it takes as an input two lists of ranks produced by two
different feature techniques. In the test we used a
significance level α = 0.05, and the output of the test is a p-
value, which can be interpreted as follows. If the p-value is
less than α, then the difference in ranks produced by one
feature location technique is statistically significantly lower
than the ranks produced by the other technique. Otherwise, if
the p-value is larger than α, then we conclude that the two
techniques produce almost equivalent results.

E. Hypotheses

We formulate several null hypotheses in order to test
whether an improved splitting algorithm has a higher
effectiveness measure than a simple splitting algorithm. For
example:
H0,IRSamurai There is no statistical significant difference in

terms of effectiveness between IRSamurai and
IRCamelCase.

H0,IRSamuraiDynThere is no statistical significant difference in
terms of effectiveness between IRSamuraiDyn
and IRCamelCaseDyn.

We also define several alternative hypotheses for the case
when a null hypothesis is rejected with high confidence.
These alternative hypotheses state that an improved identifier
splitting technique (e.g., Samurai, Oracle) would produce
higher effectiveness than the baseline splitting technique
(i.e., CamelCase). The following alternative hypotheses
correspond to the null hypotheses defined above.
HA,IRSamurai IRSamurai has statistically significantly higher

effectiveness than IRCamelCase.
HA,IRSamuraiDynIRSamuraiDyn has statistically significantly

higher effectiveness than IRCamelCaseDyn.
The corresponding null and alternative hypotheses for the

Oracle splitting technique are defined analogously.

IV. RESULTS AND DISCUSSION

This section presents the effectiveness measures of the
FLTs presented in Table 1, which were applied on the four
datasets (see Table 2) extracted from Rhino and jEdit. Please
refer to our online appendix for complete data.

Figure 1 presents the box plots of the effectiveness
measures of the three IR based FLTs applied on the four
datasets. For each dataset, all the instances of the IR feature
location technique produce very similar results in terms of
lower quartile, median, mean, upper quartile, etc. For
example, Figure 1(a) shows that for the RhinoFeatures dataset,
using the CamelCase splitting (IRCamelCase) we obtain a
median of 23 and an average of 86, and if we use the Oracle
splitting (IROracle), we obtain a median of 20 and an average
of 86. The same small differences between the descriptive
statistics measures are observed among all the IR instances,
and in all the four datasets.

Similarly to Figure 1, Figure 2 presents the box plots of
the effectiveness measure of the three IRDyn FLTs which
were applied on the following three datasets: RhinoFeatures
(Figure 2 (a)), jEditFeatures (Figure 2 (b)) and jEditBugs (Figure
2 (c)). For all the datasets, the three FLTs produce almost
identical results, regardless of the technique used for splitting
the identifiers. For example, Figure 2(a) shows that for the
RhinoFeatures dataset, using CamelCase splitting
(IRCamelCaseDyn), the median and average are 9 and 30
respectively, whereas for Oracle splitting (IROracleDyn) the
median and average are 8 and 32 respectively. The small
differences observed on the IR based instances are also
observed here. Even more so, for the other datasets, when
incorporating dynamic information the differences produced
by the feature location techniques seem to be less noticeable

a) RhinoFeatures

b) RhinoBugs

c) jEditFeatures

d) jEditBugs

Figure 1 Box plots of the effectiveness measure of the three IR-based FLTs
(IRCamelCase, IRSamurai and IROracle) for the four datasets: a) RhinoFeatures, b)

RhinoBugs, c) jEditFeatures and d) jEditBugs

a) RhinoFeatures

b) jEditFeatures c) jEditBugs
Figure 2 Box plots of the effectiveness measure of the 3 FLTs

(IRCamelCaseDyn (IRCCDyn), IRSamuraiDyn (IRSamDyn) and IROracleDyn
(IROraDyn)) for the 3 datasets: a) RhinoFeatures, b) jEditFeatures and c) jEditBugs

than the differences produced by IR-based feature location
techniques. This fact may suggest that dynamic information
has some influence and the splitting techniques used for
identifiers may not be as important. It is also interesting to
observe that feature location techniques applied on the
datasets that use features as queries (i.e., RhinoFeatures and
jEditFeatures) have lower effectiveness measures than the
feature location techniques applied on the datasets that use
bug descriptions as queries. For example, for Rhino, the
median effectiveness when using feature descriptions as
queries is about 21 (see Figure 1(a)), whereas the median
effectiveness when using bug descriptions as queries is about
110 (see Figure 1(b)). The same observation is valid for the
jEdit when only textual information is used (see Figure
1(c)(d)) as well as when textual and execution information
are combined (see Figure 2(b)(c)).

The results illustrated in Figure 1 and Figure 2 provide
only a high level picture of the effectiveness measure. We
now present results from a case by case comparison of the
effectiveness measure. Table 4 presents the percentage of
times an instance of the IR based FLT produces lower ranks
than another instance of the IR based FLT. The first cell
value represents the percentage of times the FLT from the
corresponding row produces lower ranks than IRCamelCase,
whereas the number in parenthesis represents the percentage
of times IRCamelCase produces lower ranks than the technique
from the row (in the remaining percentages, the two
techniques produce identical ranks). In this case, a higher
percentage denotes a more effective technique. Similarly,
Table 5 shows the percentage of times the FLT form the row
produces better results than IRCamelCaseDyn.

We observe from Table 4 that comparing the
effectiveness measures of IROracle and IRCamelCase side by side,
IROracle produces lower ranks in 49% of cases, whereas
IRCamelCase produces better results in 33% of cases. In the
remaining 18% of cases (i.e., 100%-49%-33%) the two
techniques produce identical ranks.

Similarly, from Table 5 we observe that when dynamic
information is taken into account, for the RhinoFeatures dataset,
IROracleDyn produces lower ranks (i.e., better results) in 42%
of cases, whereas IRCamelCaseDyn produces better results in
35% of cases. In the remaining 23% of cases (i.e., 100%-
42%-35%) the techniques produce the same results.

It is interesting to observe that for both systems, IROracle
and IROracleDyn produce a higher percentage of good results
than IRCamelCase and IRCamelCaseDyn respectively, when these
techniques are applied on the datasets that use features as
queries (see columns two and four of the last rows of Table 4
and Table 5). However, when these techniques are applied

on the datasets that use bug description as queries, the
opposite phenomenon is observed. In other words IRCamelCase
and IRCamelCaseDyn produce higher percentage of good results
than IROracle and IROracleDyn respectively (see columns three
and five of the last rows of Table 4 and Table 5).

The effectiveness measures presented as box plots and
percentages are statistically analyzed using the Wilcoxon
signed-rank test. Table 6 presents the p-values of the
Wilcoxon signed-rank test for all the instances of the IR-
based FLTs. The results that are statistically significant (i.e.,
the p-value is lower than α = 0.05) are highlighted in bold.
The table shows that there is only one instance when the
Oracle splitting technique (i.e., IROracle) produces results that
are statistically significantly better than the technique that
uses CamelCase splitting (i.e., IRCamelCase). This is for the
RhinoFeatures dataset and the p-value is equal to 0.005. We
performed the same analysis between IROracle and IRSamurai
and the results show that only for the RhinoFeatures dataset
IROracle produces results that are statistically significantly
better than IRSamurai (p-value=0.009). Refer to our online
appendix for the data.

Similarly, Table 7 shows the p-values of the Wilcoxon
signed-rank test applied on the effectiveness measures
produced by the IRDyn FLTs. The results show that no
technique produces statistically better results than any other
technique. This observation helps in answering the research
questions RQ2 and RQ4, that the splitting technique used is
not as important if dynamic information is considered. Refer
to our online appendix for the results comparing IROracleDyn
and IRSamuraiDyn. When dynamic information is involved, no
technique produces statistically significant results than the
other for any of the datasets.

If we look at the same results (i.e., the effectiveness
measure) from three different points of view (i.e., box plots,
percentages and statistical analysis), we derive the following
conclusions. First, there are instances where a better
identifier splitting technique (i.e., Oracle) improves feature
location. This has been the case for the Rhino, for the
RhinoFeatures dataset. Second, there are cases when even a
perfect identifier splitting technique cannot help in the
process of feature location. Such an example is given by the
jEditFeatures dataset, when the effectiveness measure is
improved for a few cases, but the difference is not
statistically significant. Moreover, there are instances where
the perfect splitting technique can have negative impact on
feature location, as it was the case for the jEditBugs dataset. In
this case, the original CamelCase splitting technique
produced better results than the Oracle in terms of
percentages (see Table 4), but the difference is still not

Table 4 Percentages of times the effectiveness of the FLT from the row is
higher than IRCamelCase, and vice-versa (see percentages from parenthesis)

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs
IRSamurai 39 (40) 36 (48) 33 (36) 41 (41)
IROracle 49 (33) 45 (48) 44 (38) 40 (55)

Table 5 Percentages of times the effectiveness of the FLT from the row is
higher than IRCamelCaseDyn, and vice-versa (percentages from parenthesis)

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs
IRSamuraiDyn 33 (36) N/A 27 (22) 28 (41)
IROracleDyn 42 (35) N/A 34 (22) 35 (50)

Table 6 The p-values of the Wilcoxon signed-rank test for the FLT from
the row compared with IRCamelCase (statistical significance values are bold).

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs
IRSamurai 0.692 0.890 0.742 0.479
IROracle 0.005 0.497 0.202 0.785

Table 7 The p-values of the Wilcoxon signed-rank test for the FLTs from
the row compared with IRCamelCaseDyn (there are no stat. significant values)

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs
IRSamuraiDyn 0.713 N/A 0.307 0.928
IROracleDyn 0.265 N/A 0.095 0.937

statistically significant. Finally, there is one instance,
RhinoFeatures, where splitting helps when textual information
is used. However, when dynamic information is used, all the
splitting techniques produce equivalent results from a
statistical point of view.

A. Qualitative Results

This section presents some observations after examining
the results produced by the splitting techniques and after
examining the queries.

One of the problems that we encountered using Samurai
was that it tended to split certain types of identifiers into
many meaningless terms, some of them having between one-
three characters. Examples of identifiers from Rhino, where
Samurai split them incorrectly were: debugAccelerators,
tolocale, imitating, imlementation, etc. Their incorrect
Samurai splitting was: debug Ac ce le r at o rs, tol ocal e, imi
ta ting, i ml eme n tat ion (see Table 8). For these examples,
CamelCase performed better, as it correctly split the first
identifier (debug accelerators), but it left the other ones
unaltered. Please refer to our online appendix for more
information.

One of the benefits of using Samurai was that it
accurately split same-case identifiers composed of multiple
words. For these cases, CamelCase left the identifiers
unmodified. Examples of such identifiers from Rhino
include SHORTNUMBER, readadapterobject, GETPROP
which are correctly split by Samurai as SHORT NUMBER,
read adapter object, and GET PROP, and are left unchanged
by CamelCase (see Table 8).

However, there were some cryptic identifiers that were
almost impossible to split using CamelCase or Samurai.
Examples of such identifiers from Rhino include ldbl, njm,
pun, rve, wbdry, etc. In these cases, inferring the meaning
from the context in which these identifiers appeared was the
only way to split or expand them correctly.

We observed a vocabulary mismatch problem, which
produced inconsistencies between the identifiers used in the
queries, and the identifiers used in the code.

This problem seemed to be less noticeable for features,
and more severe for bugs. For jEdit, the issues that described
features often contained terms that were later used in the
code as identifiers for classes, methods, variables, etc. For
example, jEdit’s feature #16084869 (“Support ‘thick’ caret”),
contained in its description many identifiers that were also
found in the name of the methods (e.g., thick, caret, text,
area, etc.). For features, their queries were expressive, and
more consistent with the source code vocabulary, so they
benefitted less from an Oracle splitting. Hence, when using

9 http://tinyurl.com/4ne9u9v

feature descriptions as queries for both Rhino and jEdit, the
median effectiveness of the FLTs, regardless of splitting,
were about 20 for Rhino (see Figure 1 (a)) and about 10 for
jEdit (see Figure 1 (c)).

On the other hand, the vocabulary of the queries
extracted from bug reports was less consistent with the
source code vocabulary, and a splitting technique, helped
bridge this gap. For example, jEdit’s bug #157550510 (“C+j
bug”) reported a problem with the “join lines”
implementation, yet nowhere in its description were the
words join or lines mentioned. In general, the identifiers
from the bug descriptions were less consistent with the code,
and this issue was reflected in terms of the effectiveness
measures produced by the FLTs, when these bug
descriptions were used as queries. For example, in Figure 1
(b) the median effectiveness for Rhino system was about 110
(as opposed to a median of 20 when features were used as
queries). Also, Figure 1 (d), shows that the median
effectiveness of the techniques that used bugs as queries was
around 67, as opposed to 10, which was the median
effectiveness when features were used as queries.

Another problem with the queries is that some identifiers
were used just for communication between developers, and
no matter what splitting technique was used, these identifiers
provided no useful information, because they appeared only
in the query vocabulary, and did not appear at all in the
source code vocabulary. Examples of such identifiers
included words that are common in communication, such as
btw (i.e., by the way), thanks, hate, rant, greetings, fly,
annoying, etc., name of developers, ApeHanger, Slava,
Carlos, etc.

B. Threats to Validity

In this section we present several threats to validity
associated with the evaluation.

Threats to construct validity concern the relation between
the theory and the observation. This threat is mainly due to
mistakes in the Oracle and gold set. We cannot guarantee
that no errors are present in the Oracle. As the intent of the
Oracle is to explain identifier semantics, we cannot
guarantee that some identifiers could have been split in
different ways by developers that originally created them.
This problem is difficult and it relates to guessing the
developers’ intent. To limit this threat, different sources of
information such as comments, source code context, and
online documentation were used when producing the Oracle.
To minimize the risk on the accuracy of the gold set, we used
data produced by other researchers, which was used in
previous studies and made available to the research
community.

Threats to internal validity concern any confounding
factors that could have influenced our study results. In
particular, these threats are due to the subjectivity of the
manual building of the Oracle and to the possible biases
introduced by manually splitting identifiers. To limit this
threat, the Oracle was produced by a joint work among the
authors, using CamelCase, Samurai and TIDIER. In addition,

10 http://tinyurl.com/64wonla

Table 8 Examples of splitted identifiers from Rhino using CamelCase and
Samurai. The identifiers which are split correctly are highlighted in bold
Original Identifier CamelCase Samurai

GETPROP getprop GET PROP
readadapterobject readadapterobject read adapter object
SHORTNUMBER shortnumber SHORT NUMBER
debugAccelerators debug accelerators debug Ac ce le r at o rs

tolocale tolocale tol ocal e
imitating imitating imi ta ting

inconsistencies in splitting/mapping to dictionary words
were discussed.

Threats to conclusion validity concern the relations
between the treatment and the outcome. Proper tests were
performed to statistically reject the null hypotheses. In
particular, we used a non-parametric test (i.e., Wilcoxon
signed-rank test), which does not make any assumptions on
the underlying distributions of the data. Furthermore, as the
only significant p-value is 0.005 (see Table 6), even with the
conservative Bonferroni correction, it will remain significant
as the limit in such case is equal to α-value/number of tests
(i.e., 0.05 / 3 = 0.01666 < 0.05).

Threats to external validity concern the possibility of
generalizing our results. To make our results as generalizable
as possible, we used two Java applications from two different
application domains but we cannot be sure that our findings
will be valid for other domains, applications, programming
languages or software engineering tasks (i.e., different from
feature location). More case studies are needed to confirm
the results presented and to verify if indeed, in the general
case, dynamic information reduces the gain of more
sophisticated identifier split techniques.

V. RELATED WORK

Given the paramount role of source code identifiers in
maintenance tasks such as traceability link recovery or
feature and concept location, a large body of relevant work is
available in this area. We divided this section into the related
work on the role of unstructured information in program
comprehension and approaches to feature location.

A. The Role of Unstructured Information in Program
Comprehension

Takang et al. [34] attempted to determine the
informativeness of identifiers. They conducted experiments
to compare abbreviated identifiers to full-word identifiers
and uncommented code to commented code. Their study
results showed that commented programs are more
understandable than non-commented programs and that
programs containing full-word identifiers are more
understandable than those with abbreviated identifiers.

Lawrie et al. [18, 19] have performed an empirical study
to assess the quality of source code identifiers. Their study
with over 100 programmers indicated that full words as well
as recognizable abbreviations lead to better comprehension.
Lawrie et al. [17] introduced GenTest, a splitting algorithm
which by incorporating vocabulary normalization is able to
outperform Samurai.

Binkley et al. [3] have investigated the use of different
identifier separators in program comprehension. They found
that the CamelCase convention led to better understanding
than underscores and, when subjects are properly trained,
they performed faster with identifiers in the CamelCase style
rather than identifiers built using underscores. Binkley et
al.’s study was replicated by Sharif and Maletic [31] using an
eye tracking system. Their results indicate that there was no
difference in terms of accuracy between the CamelCase and
underscore style, and that subjects recognized identifiers that
used the underscore notation more quickly.

Caprile and Tonella [4] have analyzed the internal
structure of identifiers. Their in-depth analysis showed that
identifiers are one of the most important source of
information about system concepts, and that the information
carried by identifiers is often the starting point for program
comprehension.

Deißenböck and Pizka [7] have provided guidelines for
the production of high-quality identifiers. With such
guidelines, identifiers should contain enough information for
an engineer to understand the program concepts.

B. Related Work on Feature Location

Marcus et al. introduced LSI-based feature location
technique [25]. This approach was later extended to include
the Rocchio algorithm for relevance feedback [12] by
allowing developers to reformulate search queries. Grant et
al. [13] used Independent Component Analysis for feature
location, by separating the features (modeled as input
signals) into independent components and estimating the
relevance to each source code method. Shepherd et al. [32]
proposed an approach to feature location that is based on the
program model that captures action-oriented relations
between identifiers in a program.

There are several FLTs that use more than one type of
information (or underlying analysis). For example, SITIR
[21] and PROMESIR [27] both utilize textual and execution
information. Eisenbarth et al. [10] proposed a technique that
applies formal concept analysis to traces to generate a
mapping between features and methods. Cerberus [8] is
another hybrid technique which combines static, dynamic
and textual analysis. The up-to-date summary of feature
location approaches can be found in [29].

VI. CONCLUSIONS

Perfecting splitting techniques can improve the accuracy
of feature location, easing program comprehension and thus,
software evolution. In situations where execution
information cannot be collected (e.g., mission critical and
time critical applications), the benefits of using advanced
splitting techniques can be mostly visible. In fact, by
splitting source code identifiers and mapping them to domain
concepts, the localisation of entities contributing to
implementing some user observable functionality may be
easier, which could minimize feature location effort.

In this paper, we presented an exploratory study of two
FLTs (i.e., IR and IRDyn) for locating bugs and features,
utilizing three strategies for splitting identifiers: CamelCase,
Samurai and manual splitting of identifiers. These FLTs and
their preprocessing techniques were evaluated on two open-
source systems, Rhino and jEdit, and compared in terms of
their effectiveness measure.

The results of the IR-based FLT reveal that Samurai and
CamelCase produce similar results. However, the IROracle
outperforms IRCamelCase in terms of the effectiveness measure,
on the RhinoFeatures dataset. This supports our conjecture that
when only textual information is available, an improved
splitting technique can help improve effectiveness of feature
location. The results also show that when both textual and
execution information are used, any splitting algorithm will

suffice, as FLTs produce equivalent results. In other words,
because execution information helps pruning the search
space considerably, the benefit of an advanced splitting
algorithm is comparably smaller than the benefit obtained
from execution information; hence the splitting algorithm
will have little impact on the final results. Overall, our
findings outline potential benefits of creating advanced
preprocessing techniques as they can be useful in situations
where execution information cannot be easily collected.

Future work will extend evaluating feature location
techniques on other software systems. In addition, we plan to
apply the splitting strategy namely, TIDIER, which is based
on the use of contextual-aware dictionaries and specialized
knowledge, as well as GenTest, which uses vocabulary
normalization.

ACKNOWLEDGMENT

This work is supported by NSF CCF-0916260 and NSF
CCF-1016868 grants. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E.,

"Recovering Traceability Links between Code and Documentation",
IEEE Transactions on Software Engineering, vol. 28, no. 10, October
2002, pp. 970 - 983.

[2] Antoniol, G., Gueheneuc, Y.-G., Merlo, E., and Tonella, P., "Mining the
Lexicon Used by Programmers during Software Evolution", in Proc. of
23rd IEEE ICSM'07, Paris, France, 2007, pp. 14-23.

[3] Binkley, D., Davis, M., Lawrie, D., and Morrell, C., "To CamelCase or
Under_score", in Proc. of 17th IEEE ICPC'09, Vancouver, British
Columbia, Canada, May 17-19 2009, pp. 158-167.

[4] Caprile, C. and Tonella, P., "Nomen Est Omen: Analyzing the Language
of Function Identifiers", in Proc. of 6th IEEE WCRE'99, Atlanta,
Georgia, USA, 6-8 October 1999, pp. 112-122.

[5] Conover, W. J., Practical Nonparametric Statistics, Third Edition,
Wiley, 1998.

[6] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, 1990, pp. 391-407.

[7] Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming",
Software Quality Journal, vol. 14, no. 3, 2006, pp. 261-282

[8] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G.,
"CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis", in Proc. of 16th
IEEE ICPC'08, Amsterdam, The Netherlands, 2008, pp. 53-62.

[9] Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G.,
Nagappan, N., and Aho, A. V., "Do Crosscutting Concerns Cause
Defects?", IEEE Transaction on Software Engineering, vol. 34, no. 4,
July-August 2008, pp. 497-515.

[10] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in
Source Code", IEEE Transactions on Software Engineering, vol. 29, no.
3, March 2003, pp. 210 - 224.

[11] Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K., "Mining Source
Code to Automatically Split Identifiers for Software Analysis", in Proc.
of 6th IEEE MSR'09, Vancouver, Canada May 16-17 2009, pp. 71-80.

[12] Gay, G., Haiduc, S., Marcus, M., and Menzies, T., "On the Use of
Relevance Feedback in IR-Based Concept Location", in Proc. of 25th
IEEE ICSM'09, Edmonton, Canada, September 2009, pp. 351-360.

[13] Grant, S., Cordy, J. R., and Skillicorn, D. B., "Automated Concept
Location Using Independent Component Analysis ", in Proc. of 15th
WCRE'08, Antwerp, Belgium, October 15-18 2008, pp. 138-142.

[14] Guerrouj, L., Di Penta, M., Antoniol, G., and Guéhéneuc, Y.-G.,
"TIDIER: An Identifier Splitting Approach using Speech Recognition

Techniques", Journal of Software Maintenance and Evolution: Research
and Practice (JSME), vol. to appear, 2011.

[15] Haiduc, S. and Marcus, A., "On the Use of Domain Terms in Source
Code", in Proc. of 16th IEEE ICPC'08, Amsterdam, The Netherlands,
June 10-13 2008, pp. 113-122.

[16] Hill, E., Pollock, L., and Vijay-Shanker, K., "Automatically Capturing
Source Code Context of NL-Queries for Software Maintenance and
Reuse", in Proc. of 31st IEEE/ACM ICSE'09, May 16-24 2009.

[17] Lawrie, D., Binkley, D., and Morrell, C., "Normalizing Source Code
Vocabulary", in Proc. of 17th IEEE WCRE'10, Beverly, Massachusetts,
USA, October 13-16 2010, pp. 3-12.

[18] Lawrie, D., Morrell, C., Feild, H., and Binkley, D., "What's in a Name?
A Study of Identifiers", in Proc. of 14th IEEE ICPC'06, Athens, Greece,
June 14-16 2006, pp. 3-12.

[19] Lawrie, D., Morrell, C., Feild, H., and Binkley, D., "Effective Identifier
Names for Comprehension and Memory", Innovations in Systems and
Software Engineering, vol. 3, no. 4, 2007, pp. 303-318.

[20] Levenshtein, V. I., "Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals", Cybernetics and Control Theory, vol. 10, no.
8, 1966, pp. 707-710.

[21] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature
Location via Information Retrieval based Filtering of a Single Scenario
Execution Trace", in Proc. of 22nd IEEE/ACM ASE'07, Atlanta, Georgia,
November 5-9 2007, pp. 234-243.

[22] Lukins, S. K., Kraft, N. A., and Etzkorn, L. H., "Bug localization using
Latent Dirichlet Allocation", Information and Software Technology, vol.
52, no. 9, 2010, pp. 972-990.

[23] Maletic, J. I. and Marcus, A., "Supporting Program Comprehension
Using Semantic and Structural Information", in Proc. of 23rd ICSE'01,
Toronto, Ontario, Canada, May 12-19 2001, pp. 103-112.

[24] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of Traceability
Links Between Software Documentation and Source Code", International
Journal of Software Engineering and Knowledge Engineering, vol. 15,
no. 4, October 2005, pp. 811-836.

[25] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An Information
Retrieval Approach to Concept Location in Source Code", in Proc. of
11th IEEE WCRE'04, Delft, The Netherlands, November 9-12 2004, pp.
214-223.

[26] Porter, M., "An Algorithm for Suffix Stripping", Program, vol. 14, no.
3, July 1980, pp. 130-137.

[27] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., "Feature Location using Probabilistic Ranking of Methods
based on Execution Scenarios and Information Retrieval", IEEE
Transactions on Software Engineering, vol. 33, no. 6, June 2007, pp. 420-
432.

[28] Ratiu, D. and Deissenboeck, F., "From Reality to Programs and (Not
Quite) Back Again", in Proc. of 15th IEEE ICPC'07, Banff, Canada,
2007, pp. 91-102.

[29] Revelle, M., Dit, B., and Poshyvanyk, D., "Using Data Fusion and Web
Mining to Support Feature Location in Software", in Proc. of 18th IEEE
ICPC'10, Braga, Portugal, June 30 - July 2 2010, pp. 14-23.

[30] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on Assessing
Feature Location Techniques", in Proc. of 17th IEEE ICPC'09,
Vancouver, British Columbia, Canada, May 17-19 2009, pp. 218-222.

[31] Sharif, B. and Maletic, J. I., "An Eye Tracking Study on camelCase and
under_score Identifier Styles", in Proc. of 18th IEEE ICPC'10, Braga,
Portugal, June 30 - July 2 2010, pp. 196-205.

[32] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K.,
"Using Natural Language Program Analysis to Locate and Understand
Action-Oriented Concerns", in Proc. of 6th AOSD'07, 2007, pp. 212-224.

[33] Soloway, E., Bonar, J., and Ehrlich, K., "Cognitive Strategies and
Looping Constructs: An Empirical Study", Communications of the ACM,
vol. 26, no. 11, November 1983.

[34] Takang, A., Grubb, P., and Macredie, R., "The Effects of Comments
and Identifier Names on Program Comprehensibility: An Experimental
Investigation", Journal of Programming Languages, vol. 4, no. 3, 1996,
pp. 143-167.

[35] Von Mayrhauser, A. and Vans, A. M., "Program Comprehension
During Software Maintenance and Evolution", Computer, vol. 28, no. 8,
1995, pp. 44-55.

