
How Do API Changes Trigger Stack Overflow Discussions?
A Study on the Android SDK

Mario Linares-Vásquez1, Gabriele Bavota2, Massimiliano Di Penta2, Rocco Oliveto2,
Denys Poshyvanyk1

1The College of William and Mary, Williamsburg, VA, USA 2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

mlinarev@cs.wm.edu, gbavota@unisannio.it, dipenta@unisannio.it,
rocco.oliveto@unimol.it, denys@cs.wm.edu

ABSTRACT
The growing number of questions related to mobile develop-
ment in StackOverflow highlights an increasing interest of
software developers in mobile programming. For the Android
platform, 213,836 questions were tagged with Android-related
labels in StackOverflow between July 2008 and August 2012.
This paper aims at investigating how changes occurring to
Android APIs trigger questions and activity in StackOver-
flow, and whether this is particularly true for certain kinds
of changes. Our findings suggest that Android developers
usually have more questions when the behavior of APIs is
modified. In addition, deleting public methods from APIs
is a trigger for questions that are (i) more discussed and of
major interest for the community, and (ii) posted by more
experienced developers. In general, results of this paper
provide important insights about the use of social media
to learn about changes in software ecosystems, and estab-
lish solid foundations for building new recommenders for
notifying developers/managers about important changes and
recommending them relevant crowdsourced solutions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Documentation

Keywords
Android, StackOverflow, API changes, Social media

1. INTRODUCTION
When learning about new development techniques or in

general to solve any specific development problem, develop-
ers may rely on different sources of information. Recently,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

other than using mailing lists or project-specific forums, de-
velopers rely on crowdsourced resources [23, 26, 38, 41, 42,
43] such as Stack Overflow (SO) [21], a question/answer
site about software development. The same phenomenon
is true for mobile development; a recent study by Barua
et al. [9] on SO concluded that mobile development is a
SO trend topic, and the trend increments even faster than
Web development. The SO dump as of August 2012 [7]
contains 213,836 questions, which were tagged with labels in-
cluding the “android” keyword (e.g., android, android-layout,
google-maps-android-api-2). Also, the average number of
Android-related questions posted monthly on SO was 12,515
during 2012, and the number of questions posted each year
were 41 (2008), 2,054 (2009), 28,472 (2010), 95,658 (2011),
and 87,611 (2012).

More specifically, in the case of mobile development, there
is a rapid diffusion of hand-held devices and tablets, and many
developers are getting interested in mobile development, in
particular in using Android as the software platform because
of its open-source model and tremendous commercial success.
Business models associated with mobile-development moti-
vate developers to build applications using languages and
frameworks that are slightly or drastically different than the
traditional ones. Consequently, developers learn new APIs
on demand by doing or by finding solutions/advice on differ-
ent sources of information, such as official documentation or
discussion forums [31, 37]. Therefore, knowledge portals like
SO become main actors and widely used sources of documen-
tation when developers look for answers on specific topics
related to programming languages and technologies.

According to Mamykina et al. [26], some reasons for
contributing in Question and Answer (Q&A) systems are
altruism, learning, rewards, and reputation. In particular,
when using frameworks and APIs, developers ask for advice
when implementing a solution based on unfamiliar or un-
documented APIs, when using a wrong API-based solution,
or when using an API-based solution incorrectly [20]. How-
ever, mobile-related questions in SO are not only related to
programming, and there is no existing empirical evidence
of specific causes that motivate mobile developers to find
and/or provide answers in a Q&A system like SO. A study
by Linares-Vásquez et al. [25] suggests that hot-topics in
SO mobile development related questions include general
topics such as device compatibility and IDE-related issues,
and specific topics related to database, media, and maps
programming. For instance, two examples of questions in
SO with more than 700 votes as of January 2013, are the

question 101754 [2], that asks if there is a way to run Python
on Android, and the question 1554099 [4] with more than
1000 votes, which looks into solving an issue with an Android
emulator running on a slow machine.

Thus, what are the main reasons that encourage Android
developers to ask questions on SO? Our conjecture is that
instability (change-proneness) of the Android APIs is one
of those reasons that motivates developers to ask questions
and seek answers in SO. Table 1 lists the first 17 Android
versions, the number of classes that were added to the APIs,
and the changes in methods (i.e., methods added, methods
removed, signatures modified) that were implemented in
each version. Since October 2008 to November 2012, 17
Android API revisions were released, and each version had
an average number of 6,033 changes in methods. Android
API change-proneness is a threat for the success of Android
applications [24], and previous studies by Mojica-Ruiz et
al. [29, 28] and Syer et al. [40, 39] showed that those
apps heavily rely on the Android APIs, by using inheritance
or API calls. Consequently, new Android releases could
potentially trigger developers’ rush to identify—in official
and unofficial documentation—new API features, or solve
backward-compatibility issues and bugs introduced by the
API changes.

To evaluate our conjecture, we conducted an empirical
study aimed at investigating how developers react to API
instability, in particular their reaction on SO when changes
are released on the Android APIs. We implemented an
approach based on the one reported by Parnin et al. [33] to
identify the SO questions related to Android APIs after a new
API version was released. Then, we mapped SO questions to
APIs at method level granularity. To trace those links, we
adopted the approach proposed by Panichella et al. [32] for
mining method descriptions in informal documentation such
as emails and/or bug reports. To validate the precision of
tracing SO questions to API methods, we manually validated
a sample of randomly selected links.

Once we established the methods-to-questions links, we
analyzed whether methods in the Android API with higher
levels of change-proneness are discussed more on SO as com-
pared to methods with lower levels of change-proneness. Also,
we analyzed which kinds of changes in APIs—e.g., changes
in method body, public methods removed—stimulate more
questions from developers and which trigger the most rele-
vant questions on the basis of two factors: (i) the number
of answers provided by SO contributors, and (ii) the ques-
tion score as recorded in SO. Finally, we verified which type
of changes trigger questions by more experienced software
developers.

Results of our study suggest that change-proneness of API
methods impacts the volume of the discussions among the
developers in the SO community, in particular, the changes
performed on methods’ body, because developers are usu-
ally confused if a method’s behavior is different from what
is expected on previous Android releases, in their experi-
ence. In addition, deleting public methods from APIs is a
major trigger for questions that are (i) more discussed and
of major interest for the community and (ii) posted by more
experienced developers.

Our findings can be used by consumers of APIs as a re-
minder for checking carefully release information before up-
grading applications to support new API versions. Moreover,
these results could be also useful for API designers/ devel-

Table 1: Android API Versions and Changes.
Version Release

date
New
classes

Changes in
methods

1.0 Base 10/2008 2,236 -
1.1 Base 02/2009 3 2,618
1.5 Cupcake 05/2009 110 42,789
1.6 Donut 09/2009 43 5,178
2.0 Eclair 11/2009 107 1,259
2.0.1 Eclair 12/2009 0 811
2.1 Eclair 01/2010 7 899
2.2 Froyo 06/2010 127 10,935
2.3 Gingerbread 11/2010 117 11,092
2.3.3 Gingerbread 02/2011 16 4,170
3.0 Honeycomb 02/2011 229 1,411
3.1 Honeycomb 05/2011 22 1,940
3.2 Honeycomb 06/2011 3 675
4.0 Ice Cream 10/2011 118 2,600
4.0.3 Ice Cream 12/2011 15 1,122
4.1 Jelly Bean 06/2012 72 4,259
4.2 Jelly Bean 11/2012 44 4,766

opers as a motivation for finding effective ways of notifying
developers’ community about sensitive changes (e.g., meth-
ods removed, changes in exceptions, changes to methods
behavior) introduced in new API releases. Our dataset of
Android-related questions in SO and links to the Android
APIs is available online for other researchers interested in
replicating, validating or building upon our results.

Structure of the paper. Section 2 defines our empirical
study and the research questions, and provides details about
the data extraction process and analysis method. Section 3
reports the results, and discusses them from a quantitative
and qualitative points of view. Section 4 discusses the threats
that could affect the validity of the results achieved. Section
5 relates this study to previous works. Finally, Section 6
concludes the paper and outlines directions for future work.

2. STUDY METHODOLOGY
The goal of this study is to analyze Android related dis-

cussions on SO and Android API changes, with the purpose
of investigating (i) whether the change-proneness correlates
with the number of discussion threads among developers; and
(ii) whether certain types of API changes trigger more ques-
tions by developers, and create helpful/relevant questions for
them. The perspective is of researchers interested in build-
ing recommenders aimed at notifying developers/managers
about important changes and recommending them relevant
solutions. The context of the study consists of (i) 213,836
Android-related questions extracted from the SO dump as
of August 2012; and (ii) the Android APIs together with
their change history. We chose Android as the context of our
study since it is the only platform among the top developer-
mindshare platforms (i.e., Apple iOS and Google Android)
with open-source APIs. Moreover, as shown in Table 1,
Android APIs have been subject of numerous changes in a
relatively short span of time.

2.1 Research Questions
In the context of our study, we formulated the following

research questions:

• RQ1: Does API change-proneness correlate with the
number of discussion threads? This research question

serves as a preliminary question to the other two, and
aims at verifying whether API methods having higher
levels of change-proneness are discussed more heavily
by developers in SO.

• RQ2: Which are the types of API changes trigger-
ing more questions from developers? This research
question aims at analyzing which types of source code
changes trigger more questions from developers using
the changed API methods.

• RQ3: What kind of API changes trigger more rele-
vant questions and involve more experienced develop-
ers? This analysis is useful to understand which types
of API changes are more relevant for developers. We
used the number of answers received by a question and
its score as measures of the more helpful answers for
developers as in [31]. In addition, we also used the
reputation of the question owners as measure for deter-
mining highly relevant questions; our assumption here
is that the most experienced developers provide well
specified questions that may represent more relevant
and serious questions.

The independent variable considered for the first re-
search question (RQ1) is the number of changes in an API
method having occurred in the time window between two
subsequent releases of the Android APIs. Concerning the
other two research questions (RQ2 and RQ3), we still analyze
the number of changes an API method undergoes between
two releases, however distinguishing between:

• the overall number of method changes;

• the number of changes to public methods;

• the overall number of changes in a method body;

• the number of changes in public method signatures
(method names, parameters, return types, visibility);

• the number of public methods added and removed; and

• the number of changes to the set of exceptions thrown
by public methods, as detected by analyzing their sig-
natures.

The dependent variable for the first two research ques-
tions (i.e., RQ1 and RQ2) is the number of questions posted
by developers for each Android API method in a specific
time frame. Our assumption is that questions related to
changes performed between two subsequent versions of APIs
(i.e., veri and veri+1) are posted in SO from the date when
the version veri+1 is released to the date when a new version
(i.e., veri+2) is released.

Concerning the third research question (RQ3), the de-
pendent variables are represented (for the same set of
questions identified for RQ1 and RQ2) by three factors in-
dicating the relevance of posted questions, namely (i) the
number of answers, (ii) the question score, and (iii) the ques-
tion owner reputation. Such information is available from
SO. While the number of answers for a posted question is
quite straightforward to understand, the other two indicators
need more details. The question owner reputation, as ex-
plained in the SO Frequently Asked Question page [22], is an
approximate measurement of how much SO users trust that
user. The reputation of a SO user grows when he/she posts

good questions and useful answers. Thus, in the context of
our study we assume that users having a higher reputation
are more experienced developers and thus, questions posted
by them may represent more relevant and serious questions.
Concerning the question score, it is an indication of how
many SO users consider a question as relevant. Each SO user
can increase or decrease the score of a question by one unit.
Also in this case, for the focus of our paper, questions having
a higher score are assumed to pose problems or concerns that
are experienced by more developers.

2.2 Data Extraction Process
The data required to answer our research questions consists

of (i) the SO questions related to the Android APIs; (ii) the
links between the Android APIs SO questions and the API
methods; and (iii) the change history of those APIs.

To extract Android-related questions in SO, we used the
August 2012 SO dump provided as an SQL script for the
MSR 13 challenge [7]. We considered all the questions with
tags including the android keyword (e.g., android, android-
asynctask, android -sqlite). To link the Android-related ques-
tions to methods in the Android APIs we first identified for
each question, the Android classes related to the question
using an approach similar to the one reported by Parnin et
al. [33]. In addition, we removed Java and logcat [16] stack-
traces inside <code></code> HTML tags, by matching the
content to the regular expressions in Figure 1. We removed
the stacktraces, because in our initial investigation we found
them as a source of a considerable number of false positives,
rather than as a source of information that helps precisely
link questions to source code.

We identified four types of links between a SO question
and Android classes:

• Type 1 (code-markup link): an exact match of a
class name occurring in the text inside <code></code>
HTML tags.

• Type 2 (href markup link): an exact match of a
class name occurring in the text inside <a> where
the link points to a webpage in the official Android
reference guide [15].

• Type 3 (word link): an exact match of a class name
in the question body after removing the content inside
<a> and <code></code> tags.

• Type 4 (title link): an exact match of a class name
in the question title.

For each type of link, we built a detector (filter) that uses
a class in the official Android reference guide [15] and an
SO question as arguments. Then, we concatenated the four
detectors in a conditional pipe-and-filter sequence using the
order relationship defined by the types of link enumeration
(Type 1 ≺ Type 2 ≺ Type 3 ≺ Type 4). We used this strategy
in order to reduce the number of false positives when linking
Android API class names to SO questions, because names of
Android classes in some cases are common words.1 The lower
the position of the type of the link in the order relationship,
the lower the chance for it to be a false positive; for example
when SO contributors mention an API class inside the tags

1This phenomena is described as ambiguity by Dagenais and
Robillard [14].

!"#$%&'()*+,"--)-+.!/.0122!34567385
9:5;7022/<8=8+3:5;7022.

!>,?,@,A,",B,ACBD,?"EFG,@4HC,"HHDH,
B4I4J,>"HEDK".L!/.0122!!22MN.O:PQR3:5;7
022.

:;5S:TSS+UV+SS/S;U+T"HHDHL4*W-)(WHX*'(Y%!UQQ.+T
:;5S:TSS+UV+SS/U;Z+T"HHDHLW8[=(\=Y!UQQ.+

Stacktrace Regexp

<8=8/[8*]/HX*'(Y%"#$%&'()*+TF*8^[%T')TM'8-'T
8$'(=('_T
<8=8/[8*]/CX[[`)(*'%-"#$%&'()*
8'T
8*W-)(W/8&&/4$'(=('_Ia-%8W/&%-b)-YJ8X*$a4$'(=('
_!4$'(=('_Ia-%8W/<8=8+S:c;.

Figure 1: Android stacktraces and regular expressions.

Activity

Type1 Type 2 Type 3 Type4Question
1555109

EditText

Type1 Type 2 Type 3 Type4Question
1555109

ListView

Type1 Type 2 Type 3 Type4Question
1555109

2

1

3

1

2

3

Friday, April 19, 2013

Figure 2: Pipes-and-filters for linking SO questions
to API classes.

<code></code> or have a link to the documentation of
a class at the official developer guide is because there is a
relationship between the question and the API; however,
having an API class name in the body or in the title of the
question does not assure that the question is related to the
API (e.g., window, activity, menu).

Consequently, for each Android-related question, we used
pipe-and-filter sequences aimed at recognizing all Android
classes belonging to the 17 API releases. We coined this
approach as conditional pipes-and-filter, because any time a
filter identifies a link, the next filter is not executed. Figure
2 depicts the linking process applied to question number
1555109 [3]. Let us assume that the target list of classes only
includes Activity, EditText, and ListView, and thus we want
to trace links to those classes from the question 1555109
(Figure 2-top). There are three sequences of pipe-and-filter
to identify the classes (Figure 2-bottom). The sequence
labeled with 1 identifies a Type 3 link to Activity ; sequence 2
identifies a Type 1 link to EditText ; and sequence 3 identifies
a Type 3 link to ListView.

By using this approach, we identified 963,126 links be-
tween SO questions and Android classes with the following
distribution: 791,377 Type 1, 4,097 Type 2, 141,003 Type
3, and 26,649 Type 4. Those links trace to 2,158 classes,
representing 66% of the 3,266 classes belonging to Android

Algorithm 1 Question2Methods(C, Q)

1: results ← ∅
2: for all class C linked to question Q do
3: for all method m defined in class C do
4: if m appears in Q title, body, or code fragment

then
5: results ← m
6: end if
7: end for
8: end for
9: if results == ∅ then

10: discard Q from the analysis
11: end if

packages. We were able to link 151,988 SO questions to at
least one Android API class. Then, for each of these ques-
tions we linked questions to the API methods following the
procedure reported in Algorithm 1. Specifically, a method
belonging to one of the classes related to a specific question
Q is related to such a question if it is cited in the question
title, or body (including code fragments). If no methods
belonging to classes related to Q are cited, then the question
is discarded.

Using such an approach we found 165,570 links between SO
questions and API methods. Since the linkage of questions to
methods is not trivial, the approach reported in Algorithm 1
could generate some false positives. To have an indication
of the accuracy of the approach we used, three authors and
one independent collaborator manually validated a random
sample of 100 questions aiming at identifying in how many
cases the approach correctly links the question to method(s).
Note that the exploited sample of 100 questions ensures a
confidence interval of 9.8% with a confidence level of 95%.
After validation, we computed for each subject the precision
(PREC) as the number of declared true positives out of 100,
and the false positive rate (FPR) as the number of declared
false positives out of 100. In addition, we estimated the
agreement between the subjects as the number of times (true
positive or false positive) the four subjects gave the same
answer. On average the PREC and FPR were 84.5% and
15.4% respectively with a total agreement in 78% of the links.
The links used for the manual validation and the results are
within our replication package.

Finally, we mined the change history of the Android APIs
from their Git repositories [1]. We analyzed 35,703 develop-
ers’ commits submitted between September 2009 to January

2013, and having a total of 370,180 method changes. We used
a code analyzer developed in the context of the Markos Euro-
pean project [10] to compare the APIs before and after each
commit at a fine-grained level of granularity. In particular,
while the Git logs just report the changes in a commit at file
level granularity, we used the Markos code analyzer to cap-
ture changes at method level, and to categorize them in four
types: (i) generic changes (including all kinds of changes);
(ii) changes applied to the method body; (iii) changes applied
to the method signature (i.e., visibility change, return type
change, parameter added, parameter removed, parameter
type change, method rename); and (iv) changes applied to
the set of exceptions thrown by the methods. Moreover, we
distinguished between changes performed to public and to
non public methods.

After having analyzed all the Android APIs, we used
that information to compute the changes (at method level)
performed between two subsequent versions of the APIs.

2.3 Analysis Method
To answer RQ1, for each time frame under analysis (i.e.,

the period of time going between two subsequent Android
releases), we grouped the API methods in four different
groups on the basis of the number of changes (nc) they
underwent. The four sets consist of methods that underwent
(i) no changes (nc = 0), (ii) 0 < nc ≤ 5 changes, (iii) 5 < nc ≤
10 changes, and (iv) nc > 10 changes. Then, we analyzed
whether methods that underwent more changes stimulated
more questions from developers. The analysis was performed
through descriptive statistics and the Mann-Whitney test
[13]. For the latter, we considered two of the four groups of
methods at a time (e.g., methods having nc > 10 vs. methods
having nc = 0), and we used the Mann-Whitney test to
analyze statistical significance of the differences between the
number of questions posted for those methods by developers.
The results were intended as statistically significant at α =
0.05. Since we performed multiple tests, we adjusted our p-
values using Holm’s correction procedure [18]. This procedure
sorts the p-values resulting from n tests in ascending order,
multiplying the smallest by n, the next by n− 1, and so on.
We also estimated the magnitude of the difference in terms of
asked questions for methods belonging to the four described
groups; we used Cliff’s Delta (or d), a non-parametric effect
size measure [17] for ordinal data. We followed the guidelines
in [17] to interpret the effect size values: small for d < 0.33
(positive as well as negative values), medium for 0.33 ≤ d <
0.474 and large for d ≥ 0.474.

To answer the other two research questions (i.e., RQ2

and RQ3) we report descriptive statistics, and analyze the
presence of significant differences using Mann-Whitney test
and evaluate their magnitude using Cliff’s Delta effect size
measure. In particular, for RQ2 we compared the distribution
of questions for the different types of changes considered in
our study. For RQ3, we compared the distribution of the
three independent variables presented in Section 2.1 (i.e.,
number of answers, question owner reputation, and question
score) for questions linked to methods underwent the different
types of changes.

Finally, we should point out that in our data analysis bar-
charts are preferred to boxplots due to the highly skewed
distributions of the data, which make boxplots hard to read
even in log scale. However, as explained above, our conclu-

changes > 10changes = 0 0 < changes <= 5 5 < changes <= 10

0.8

0.2

0.4

0.6

Number of changes

Av
er

ag
e

nu
m

be
r

of
 q

ue
st

io
ns

Public Methods

All Methods

Figure 3: Average number of questions per methods,
which are subject to different number of changes

sions are supported by appropriate statistical tests and effect
size measures.

2.4 Replication Package
All the data used in our study are publicly available at

http://www.cs.wm.edu/semeru/data/ICPC14-so-android/.
In particular, we provide: (i) the list of Android-related
question in the August 2012 dump of SO, (ii) the list of
links between SO questions and Android classes, (iii) the list
of links between SO questions and Android methods, and
(iv) complete information on the changes that occurred in
the Android APIs, and the list of links used in the manual
validation.

3. ANALYSIS OF THE RESULTS
This section reports the results aimed at answering the

three research questions formulated in Section 2.1.

3.1 RQ1: Does API Change-Proneness
Correlate With the Number of Discussion
Threads?

Figure 3 shows the average number of questions in SO
related to methods, which are subject to different number of
changes. Data are reported by considering all the methods
(black line) as well as by only counting public methods (gray
line). It is quite obvious to observe the trend showing a
growing number of questions for API methods that under-
went more changes between two Android API releases. For
example, by focusing on all the methods, unchanged methods
are objects, on average, of 0.07 questions each as compared
to the 0.30 (4.3 times more) of methods having 0 < nc ≤ 5,
0.59 (8.4 times more) for methods having 5 < nc ≤ 10, and
0.74 (10.6 times more) for methods that underwent more
than 10 changes.

While focusing on public methods only the trend remains
similar, even if with smaller increases. The average number
of questions for methods subject to more than ten changes
(0.50 questions each) is 5.5 times higher than for unchanged
methods (0.09 questions each).

Table 2 reports the results of the Mann-Whitney test (p-
value) and the Cliff’s d effect size. We compared each set of
methods (grouped by number of changes they underwent to)
with all other sets that underwent to a smaller number of
changes (e.g., nc > 10 vs. all other cases). For each compari-
son, the group of methods (if any) subject of more questions
by developers is reported in bold face when statistically
significant differences are observed. As we can notice from
Table 2, methods that are subject to more changes between
two releases are often related to a statistically significantly
higher number of questions by SO developers than methods
that undergo a lower number of changes (p-value < 0.05).
This is not true when comparing methods (all as well as just
public methods) subject to more than ten changes vs those
with a number of changes between five and ten. Also, we
did not observe statistically significant results when isolat-
ing the analysis to public methods and comparing methods
having 10 < nc ≤ 5 with those having 0 < nc ≤ 5 and when
comparing these latter with unchanged methods (last row in
Table 2).

The Cliff’s d for the achieved statistically significant results
is medium (-0.44) when comparing methods having nc > 10
and methods having 0 < nc ≤ 5, as well as when comparing
the most modified methods with less ones. As for the other
comparisons when considering all the methods, we always
observed a small effect size. Also, when just focusing on pub-
lic methods we observed medium effect size when comparing
methods having nc > 10 and those having nc ≤ 5.

We also compared the methods with the highest number
of changes—i.e., those that underwent more than 20 changes
between two Android releases—with the unchanged methods.
While the latter exhibits on average just 0.07 questions each,
the top changed methods reach, on average, 1.77 questions
per method (25 times more), with a statistically significant
difference (p-value < 0.01) and a large effect size (-1.12).

In summary, the results for RQ1 highlight that the
change-proneness of API methods impacts the volume
of developer discussions in the SO community. In
fact, the higher the number of changes to a method
between two Android releases, the higher the number
of questions talking about that method when the new
release of the Android APIs is made publicly available.

3.2 RQ2: Which Are the Types of API
Changes Triggering More Questions From
Developers?

To answer RQ2, we separated methods into different sets,
based on the type of changes they underwent between two
Android releases. The seven considered sets are (i) methods
with at least one change, (ii) public methods (PM) with at
least one change, (iii) methods with at least one change in
their body, (iv) public methods with at least one change
in their signature, (v) public methods added, (vi) public
methods deleted, and (vii) public methods with added or
removed thrown exceptions.

Figure 4 reports, for each of these sets of methods, the
average number of questions concerning each method. The
first two bars reported in gray–i.e., methods with at least
one change and PM with at least one change–are shown as
baselines to better understand the magnitude of the difference

Table 2: Questions per methods, which are subject
to different number of changes between two Android
releases: Mann-Whitney test (adj. p-value) and
Cliff’s Delta (d).

Considering all methods
Test adj. p-value d
(nc > 10) vs (5 < nc ≤ 10) 0.09 -0.29 (Small)
(nc > 10) vs (0 < nc ≤ 5) <0.01 -0.44 (Medium)
(nc > 10) vs (nc = 0) <0.01 -0.39 (Medium)
(5 < nc ≤ 10) vs (0 < nc ≤ 5) <0.01 -0.31 (Small)
(5 < nc ≤ 10) vs (nc = 0) <0.01 -0.30 (Small)
(0 < nc ≤ 5) vs (nc = 0) <0.01 -0.15 (Small)

Just public methods
Test adj. p-value d
(nc > 10) vs (5 < nc ≤ 10) 0.44 -0.35 (Medium)
(nc > 10) vs (0 < nc ≤ 5) 0.04 -0.36 (Medium)
(nc > 10) vs (nc = 0) 0.01 -0.35 (Medium)
(5 < nc ≤ 10) vs (0 < nc ≤ 5) 0.14 -0.20 (Small)
(5 < nc ≤ 10) vs (nc = 0) 0.04 -0.23 (Small)
(0 < nc ≤ 5) vs (nc = 0) 0.13 -0.13 (Small)

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Change Type

Av
er

ag
e

nu
m

be
r

of
 q

ue
st

io
ns

All Method changes

PM changes

Method body

PM signature

PM added

PM deleted

PM exceptions

Figure 4: Average number of questions per methods
that underwent different types of changes

between the number of questions posed by developers for
different types of changes.

As we can notice, changes to method body are those trig-
gering, on average, more questions from developers. In fact,
while the average number of questions for changed methods
is 0.32, this number grows up to 0.76 (+138%) for methods
underwent at least one “body change”. By manually ana-
lyzing questions related to methods object of body changes,
we found as often questions are triggered by the fact that
developers are confused when the behavior of a method they
use changes between two subsequent Android releases. An
example is question 12354725[6] triggered by the changed
behavior of method onKeyDown between Android Jelly Bean
4.1 and 4.2:

In older releases I was able to catch the search key
(keyCode == KeyEvent.KEYCODE SEARCH)
when I was using the onKeyDown method. But now
with new release of android it is not working anymore.Is
there another possibility to catch the search key?

Another type of change triggering questions from develop-
ers occurs when the signature of a public method is modified
(column “PM signature” in Figure 4). In fact, methods that
underwent this type of change receive, on average, 0.36 ques-
tions each, against the 0.23 (+57%) of all public methods
that underwent to at least one change (column “PM changes”
in Figure 4). We manually analyzed these questions to un-
derstand what are the problems experienced by developers in
these cases. What we found is that in most cases developers’
questions are targeted to understand how to manage the new
method signature including new parameters. In some cases,
the old version of the method was also left in the APIs (as
deprecated) creating also more doubts in developers (see e.g.,
question 4904660 [5]).

Added and deleted public methods do not generate a
high number of questions by developers. In other words,
developers ask more questions when something changes in
the methods they use and they would like to continue using
(changes to method body and to PM signatures). Instead,
they ask fewer questions about new services offered by the
APIs (PM added) and services that are no longer available
in the APIs (PM deleted).

Finally, we did not observe a strong difference in the av-
erage number of questions posted for public methods with
changes in the exceptions (0.22) as compared to the aver-
age number of questions for changed public methods (0.23),
representing our baseline in this case.

As explained in Section 2.3, we also computed the Mann-
Whitney test and the Cliff’s d to compare the distribution
of questions for different types of changes considered in our
study. We compared each type of change with all others
types of changes. Given the high number of performed tests,
we just report the statistically significant results in Table 3.
Changes triggering a statistically significant higher number
of questions from developers are highlighted in bold face.

We achieved significant results when comparing the number
of questions related to methods that underwent changes to
method body with those related to added and deleted PM, as
well as to PM with changes in signature, always observing a
medium effect size. Also, changes to PM signatures generate
more questions than added and removed public methods
(small effect size). Finally, added public methods, as well as
methods undergoing changes in thrown exceptions, generate
more questions than deleted public methods (in all the cases,
a small effect size is observed)–see Table 3.

Summarizing, the analysis performed to answer our
RQ2 highlighted that, on one side, changes performed
on methods’ body are those triggering more questions
from developers. This is likely due to the fact that
developers tend to get confused if method’s behavior is
different from that one expected by their experience on
previous Android releases. On the other side, added
and deleted public methods are the changes generating
fewer questions.

3.3 RQ3: What Kind of API Changes
Trigger More Relevant Questions and
Involve More Experienced Developers?

While results for RQ2 provided us with a ranking of the
types of changes triggering more questions by developers,

Table 3: Questions per methods underwent to differ-
ent types of changes between two Android releases:
Mann-Whitney test (adj. p-value) and Cliff’s Delta
(d). Just significant results are reported.

Test adj. p-value d
Method body vs PM added <0.01 -0.30 (Medium)
Method body vs PM deleted <0.01 -0.30 (Medium)
Method body vs PM signature <0.01 -0.42 (Medium)
PM signature vs PM added <0.01 0.23 (Small)
PM signature vs PM deleted <0.01 0.23 (Small)
PM added vs PM deleted <0.01 0.07 (Small)
PM exceptions vs PM deleted <0.01 -0.20 (Small)

Table 4: Relevance of the asked questions per
methods that underwent through different types
of changes between two Android releases: Mann-
Whitney test (adj. p-value) and Cliff’s Delta (d).
Just significant results are reported.

Number of answers
Test adj. p-value d
PM deleted vs Method body <0.01 -0.91 (Large)
PM deleted vs PM signature <0.01 -1.23 (Large)
PM deleted vs PM added <0.01 -1.18 (Large)

Question score
Test adj. p-value d
PM deleted vs Method body <0.01 -5.46 (Large)
PM deleted vs PM signature <0.01 -5.07 (Large)
PM deleted vs PM added <0.01 -2.59 (Large)
PM added vs Method body 0.02 -3.27 (Large)

Question owner reputation
Test adj. p-value d
PM added vs Method body <0.01 -3.54 (Large)
PM added vs PM signature <0.01 -2.77 (Large)
PM deleted vs Method body <0.01 -1.01 (Large)
PM deleted vs PM signature <0.01 -5.47 (Large)
PM deleted vs PM added <0.01 -1.52 (Large)

in RQ3 we analyzed the relevance of questions posed by
developers for the same type of changes investigated in RQ2.

Figure 5 shows, for the categories of methods that undergo
different types of changes: (a) the average number of answers
per question, (b) the average score per question, and (c)
the average question owner reputation. Table 4 reports the
results of the Mann-Whitney test and the Cliff’s d when
comparing the distribution of number of answers, question
scores, and question owner reputation, for questions related
to the different types of changes considered in our study. Also
in this case, we compared the distributions of each type of
change with all the others and report statistically significant
results in Table 4.

Figure 5(a) shows how changes to PM exceptions generate
more discussion between developers, resulting in an average
number of answers per question of 3.5 as compared, for exam-
ple, to the 1.2 (+192%) of changes applied to PM signatures.
However, these differences are not statistically significant.
Also, questions about added PM (2.0 answers) and deleted
PM (2.4) generally attract more answers than other types
of changes, such as those performed to method body (1.5)
and PM signature (1.2). Results shown in Table 4 shows
that questions related to deleted public methods are the only
ones receiving a statistically significant higher number of
answers than other types of changes (effect size always large).

4

0

0.5

1

1.5

2

2.5

3

3.5

Change Type

Av
er

ag
e

nu
m

be
r

of
 a

ns
w

er
s

pe
r

qu
es

tio
n

PM signature

PM added

PM deleted

changes
All Method

PM
 changes Method

body

PM
exceptions

(a)

11

1

2

3

4

5

6

7

8

9

10

Change Type

Av
er

ag
e

sc
or

e
pe

r
qu

es
tio

n

PM added

PM deleted

changes
All Method PM

 changes

Method
body PM

signature

PM
exceptions

(b)

2500

1

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Change Type

Av
er

ag
e

qu
es

tio
n

ow
ne

r
re

pu
ta

tio
n

PM added

PM deleted

All Method
Changes

PM
Changes

Method
body

signature
PM

PM
exceptions

(c)

Figure 5: API changes triggering more relevant questions from users

Note that, on the basis of the results of our RQ2, this is the
type of change generating fewer questions from developers.
However, it seems to be the one for which more developers
join the discussion to solve the posed problem.

Concerning the average score per question—see Figure
5(b)—questions formulated about added and removed PM
have a much higher score than those related to the other
types of changes. For instance, questions about deleted PM
exhibit an average score of 10.2, against the 1.7 of changes
in methods’ body (6 times higher) an 1.4 of changes in PM
signatures (7 times higher). Note that higher average score
for a question implies more interest in the SO community
for that question. Again, results of statistical tests (Table 4)
confirm that deleted PM are the one triggering significantly
more relevant questions. In fact, we observed statistically
significant higher question scores for questions related to
deleted PM as compared to other types of changes (with
always a large effect size). The results are statistically signif-
icant also when comparing the scores of questions related to
added PM with those of questions related to changes in the
method body.

Finally, as for the results achieved on the average question
owner reputation shown in Figure 5(c), it is clear that ques-
tions about added PM and especially deleted PM are posted
by more experienced developers and thus, likely represent
relevant problems to solve as compared to the other types of
changes. In particular, the average reputation of developers
asking questions about deleted public methods is 2,379 as
compared to the 602 (4 times higher) than questions about
changes in the methods’ body, 535 (4.4 times higher) than
questions about changes in PM signatures, and 437 (5.4 times
higher) than questions about changes in exceptions thrown
by PM. A similar trend is also observed for questions related
to added PM, having an average question owner reputation
of 1,948. Statistical tests confirm that questions related to
deleted PM are the ones posted by most experienced devel-
opers, followed by questions having as object newly added
API methods.

Summarizing, the results for RQ3 demonstrate that
deleting PM from APIs is the type of change that gen-
erates most relevant and discussed questions in the
developer community. In fact, questions related to this
change are (i) more discussed and of major interest for
the community and (ii) posted by more experienced
developers.

4. THREATS TO VALIDITY
A threat to construct validity concerns the study design

decision about using the number of answers, the question’s
owner reputation, and question’s scores as proxies for rele-
vant questions in RQ3. Assumptions in this case are that
relevant questions are posted by developers with high rep-
utation, and also are highly scored because they might be
helpful for the developer community as suggested by Nasehi
et al. [31]. However, further studies are required to validate
with real SO contributors whether or not those measures
represent problematic questions. A source of imprecision of
our approach could be in the way we map paragraphs to
methods, when a discussion is related to multiple classes
having methods with the same name. The used mapping
approach, validated by Panichella et al. [32], exhibited a
precision between 79% and 87%.

A threat for the internal validity of the study is the number
of Type 3 and Type 4 links (i.e., matches between names
of classes and words in a question’s title and body) that
we found. Those types of links can potentially be false
positives because non-compound names of Android classes
also represent concepts commonly used by people and are
unrelated to Android code elements. However, our manual
validation with a sample of 100 links between SO questions
and Android methods suggests that only around 20% or fewer
of the links identified by our approach are false positives. In
the set of our methods-questions links, the exploited sample
of 100 questions ensures a confidence interval of 9.8% with a
confidence level of 95%.

For what concerns the relationship between the data treat-
ment and the results (i.e., threats to conclusion validity), our
conclusions are supported by using non-parametric statistics
(p-values were properly adjusted when multiple comparisons
were performed). Moreover, the practical relevance of the
observed differences is highlighted by effect size measures.

Our findings are based on the Android APIs and Android-
related questions in SO. The release history of the Android
APIs, in addition to the model for developing Android apps,
are threats to external validity, because particularities such
as release frequency, commercial success, and high dependen-
cy of the apps on the API. Therefore, our results may not
necessarily generalize to the other APIs, frameworks, and
developer communities.

5. RELATED WORK
This section discusses related work about (i) issues when

using APIs, and (ii) linking documentation to source code.

5.1 Issues when using APIs
Difficulties when using APIs are related to learning issues,

effects of API evolution (e.g., API instability and backward
compatibility), and problematic features. Robillard and
DeLine [36] found that the top two obstacles for using APIs
are inadequate API documentation and the API structure.
The findings of Robbes et al. [35] and Businge et al. [12] also
provide some evidence about the usage of API guidelines.
Robbes et al. [35] present a study on the impact of deprecated
API classes and methods in a Smalltalk ecosystem. According
to [35] deprecation instructions are not always useful, because
they are absent or unclear, or developers decided not to take
them into account; in addition, half of the developers (30)
surveyed by Robbes et al. reported that they do not know
about the existence of the guidelines and only one of the
developers answered that she always follows the guidelines.

Hou and Li [20] categorized the questions that developers
ask when using the Java Swing API. Usually, developers look
for advice when implementing a solution based on unfamiliar
or undocumented APIs, when using a wrong API-based
solution, or when using an API-based solution incorrectly.

In the particular case of the Android ecosystem, Linares-
Vásquez et al. [24] analyzed the impact of API change- and
bug-proneness on the success of android apps, and McDonnell
et al.[27] investigated the relationship between unstable APIs
and their adoption in client code. Main conclusions are that
change- and bug-proneness of the Android API is a threat
to success of mobile apps [24], and developers avoid frequent
upgrades to change-prone (unstable) APIs [27]. Our results
are complimentary to both studies in the sense that provide
evidence of the reaction of developers to changes in Android
APIs from a different perspective. In particular, we found
that developers in the SO community react to changes in
Android APIs. Therefore, we guess that the slow adoption
of API changes could be also explained by the time it takes
to developers find solutions to the effects of the API changes,
by using Q&A systems such as SO.

5.2 Linking documentation to source code
Linking informal documentation—e.g., emails, bug reports,

forums—to source code elements is usually achieved by ex-
tracting predefined code elements from textual descriptions
[8, 14, 32, 33, 44]. Other techniques that slightly differ
from typical textual-analysis-based approaches are the ones
presented by Bettenburg et al. [11], Rigby and Robillard
[34], and [38]. Table 5 lists these techniques, reporting their
main characteristics and some performance indicators of the
underlying study.

The coverage of APIs in SO discussions was analyzed by
Parnin et al. [33]. To measure the coverage, the authors iden-
tified traceability links between SO threads (i.e., questions
and answers) and API classes by using heuristics. Those
heuristics are based on exact matching of classes names with
words in textual elements (i.e., question title and body, snip-
pets, HTML anchors), but, exact matching with words on the
title and body leads to false positives. In our study, we identi-
fied the same types of links as Parnin et al. [33], however, we
pipelined the links detectors instead of using them indepen-
dently. Dagenais and Robillard [14] used meta-models to link

developer documentation and support channels to fine-grain
code elements (i.e., classes, attributes, variables, methods).
Instead of using exact matching of classes names as Parnin et
al. [33], Dagenais and Robillard [14] recover traceability links
using code-like terms in the documentation and augmented
contexts. After the links are traced, a pipeline of filtering
heuristics are applied to remove potential code elements that
can be false positives because of different levels of ambiguity
(declaration, overload, external reference, language). In our
study, we also used a pipeline of steps, but to reduce the
chance of getting false positives that are introduced by the
exact matching. Moreover, we traced links only at class and
method granularity levels.

Panichella et al. [32] present an automatic approach for
mining method descriptions in informal documentation. Can-
didate method descriptions in emails or bug reports are
matched against API methods using a three steps approach:
(i) identifying fully-qualified class names or class file names
in the text of emails/bug reports, (ii) extracting paragraphs
from the text using preprocessing techniques, and (iii) tracing
such paragraphs to specific methods of the classes, computing
the textual similarity between the paragraphs and method
signatures. We used the same heuristics for tracing descrip-
tive text fragments to API methods, however we considered
code fragments in SO questions as descriptive text fragments.
Moreover, we linked descriptive fragments (SO questions) to
API classes as Parnin et al. [33].

Topic modeling was used by Wang and Godfrey [44] on SO,
to identify API usage obstacles in iOS and Android developer
questions. As the first step in the process, the authors traced
SO questions to API classes by collecting all SO tags that
can be mapped to API classes in the official reference of the
iOS and Android. Therefore, this is another type of links
that can be considered in future work, in addition to the
ones that we considered in this study.

Rigby and Robillard [34] proposed an approach that does
not require a term index, and conjectured that not all ele-
ments are equally essential to a document. The target list of
code-like terms (term index) is extracted from the documents
using an island parser [30] and validated using contexts as
done by Dagenais and Robillard [14]; then, the documents
are parsed again to identify terms that match code elements
in the term index. In our case, we used the list of classes and
methods in the Android APIs as the term index, because we
were interested in a particular API. However, by using the
approach by Rigby and Robillard [34] we could potentially
improve our results because some SO questions can refer
to the Android APIs without using specific names of API
elements.

Zhang and Hou [45] identified problematic features in the
Java Swing API by analyzing negative sentiment sentences
in forum threads. Nouns, verbs, and adjectives in the official
Java Swing tutorial were extracted to represent the features
and build a dictionary. Then, negative sentiment sentences
containing terms in the dictionary were identified as indica-
tors of potential problems in API design or usage. In our
study we did not use sentiment analysis because we were not
looking for specific reactions of developers. However, looking
for negative/positive sentences related to API elements could
be used to identify problematic changes in APIs.

Subramanian et al. [38] proposed a technique for linking
types and methods in code snippets to API documentation.
Incomplete ASTs extracted from the snippets are analyzed

Table 5: Techniques for linking informal documentation to code elements. The table lists the code elements
used for each technique (Classes, Packages, Annotations, Types, Methods, Fields, Code Fragments, and
specifies whether the approach uses a dictionary (term index).

Technique Elements Dictionary Validation Precision
Bacchelli et al. [8] C Yes Mailing lists of six different soft-

ware systems
23.33% (using exact match-
ing), 53.27% and 32.83%
(using regular expressions),
23.33% (using VSM), and
42.50% (using LSI)

Parnin et al. [33] C Yes Questions and answers about
Java, Android and GWT in SO,
but without validation

–

Dagenais and Robillard [14] P,A,T,M,F Yes Documentation, and support
channels of four open source sys-
tems

95.9%

Panichella et al. [32] M Yes Bug reports from Eclipse, and
emails and bug reports from
Apache Lucene

79% (Eclipse), 87% (Lucene)

Betternburg et al. [11] CF No Bug reports from Eclipse 70.13%
Wang and Godfrey [44] C Yes iOS- and Android-related SO

posts, but without validation
–

Rigby and Robillard [34] P,A,T,M,F No Questions and answers about
HttpClient, Hibernate and An-
droid in SO

96% (HttpClient), 91% (Hi-
bernate), 90% (Android)

Subramanian et al. [38] T+M in CF Yes Java and Javascript snippets
from SO and GitHub

98%(Java),97%(Javascript)

Our study M Yes Android-related questions
in SO

84.5 %

iteratively until all relevant nodes (i.e., some elements in-
volved in declarations, invocations, and assignments) are
associated with a single fully qualified name, or the iteration
has converged (i.e., there is not improvement on the results
for any element). The qualified names belonging to the APIs
are identified by using an oracle (a.k.a., dictionary) for Java
and Javascript. The validation shows that the approach out-
performs previous work, however it only considers snippets
reducing the ambiguities introduced by non-snippet text in
the titles and bodies of SO discussions.

6. CONCLUSION AND FUTURE WORK
In this paper we reported a study investigating a relation-

ship between API changes in Android SDK and developers’
reaction to those changes, motivated by three facts: (i) the
increasing number of questions about Android in discussion
forums, (ii) the speed of release of new versions of the An-
droid APIs with considerable number of changes, and (iii)
the high dependency of Android apps on the corresponding
APIs. As a proxy of the developer community, we used the
questions posted in SO and tagged to Android-related labels
between July 2008 and August 2012; and as a proxy of the
changes, we analyzed 35,703 developers’ commits performed
in a period going from September 2009 to January 2013 for
a total of 370,180 method changes.

Our findings suggest that developers in the SO community
react to changes in Android APIs, in particular when the
body of API methods is modified. In addition, deleting
public methods from APIs is a trigger for questions that are
(i) discussed more and of major interest for the community,
and (ii) posted by more experienced developers. Therefore,
new strategies should be used by API designers/developers

to notify API consumers when elements are deprecated in
the APIs, or when sensitive changes are introduced in new
releases.

Future work will be devoted to identifying the resilience of
API classes and methods when tracing links from discussions
to source code as in [34]. Moreover, to reduce the impact of
sensitive changes in the Android API, recommender systems
such as the one proposed in [19] should be developed to
recommend change events to a specific developer or notify
the community (e.g., Android apps developers) when new
changes are released with the APIs, in particular when the
changes modify the behavior of methods, or remove pubic
methods.

7. ACKNOWLEDGEMENTS
We would like to thank Carlos Bernal-Cárdenas for his

help in the manual validation of links between SO questions
and Android API methods. We also acknowledge Bogdan
Dit for his help in verifying the results and proofreading
the paper. This work is supported in part by the NSF
CCF-1016868, NSF CCF-1218129, and NSF CAREER CCF-
1253837 grants. Gabriele Bavota and Massimiliano Di Penta
are partially funded by the EU FP7-ICT-2011-8 project
Markos, contract no. 317743. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

8. REFERENCES
[1] Android Git repositories.

https://android.googlesource.com.

[2] Is there any way to run Python on Android?.

http://stackoverflow.com/questions/101754,
September 2008.

[3] Stop EditText from gaining focus at Activity startup.
http://stackoverflow.com/questions/1555109,
October 2009.

[4] Why is the Android emulator so slow?.
http://stackoverflow.com/questions/1554099,
October 2009.

[5] Android BitmapDrawable Constructor Undefined.
http://stackoverflow.com/questions/4904660,
February 2011.

[6] Android how to catch search key.
http://stackoverflow.com/questions/12354725,
September 2012.

[7] A. Bacchelli. Mining challenge 2013: Stack overflow. In
The 10th Working Conference on Mining Software
Repositories, 2013.

[8] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails
and source code artifacts. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, pages 375–384. ACM, 2010.

[9] A. Barua, S. Thomas, and A. Hassan. What are
developers talking about? an analysis of topics and
trends in stack overflow. Empirical Software
Engineering (EMSE), 2012.

[10] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro,
M. Di Penta, D. Galletti, R. Galoppini, T. Gordon,
P. Kedziora, I. Lener, F. Torelli, R. Pratola, J. Pukacki,
Y. Rebahi, and S. Garcia Villalonga. The MARKet for
Open Source: An intelligent virtual open source
marketplace. In IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE’14), pages 399–402. 2014.

[11] N. Bettenburg, S. Thomas, and A. Hassan. Using fuzzy
code search to link code fragments in discussions to
source code. In 16th European Conference on Software
Maintenance and Reengineering (CSMR’12), pages
319–328, 2012.

[12] J. Businge, A. Serebrenik, and M. van den Brand.
Analyzing the eclipse API usage: Putting the developer
in the loop. In 17th European Conference on Software
Maintenance and Reengineering (CSMR’13), pages
37–46, 2013.

[13] W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

[14] B. Dagenais and M. Robillard. Recovering traceability
links between an API and its learning resources. In
34th International Conference on Software Engineering
(ICSE’12), pages 47–57, 2012.

[15] Google. Android Developer Reference Guide.
http://developer.android.com/reference/.

[16] Google. Reading and Writing Logs. [?].

[17] R. J. Grissom and J. J. Kim. Effect sizes for research:
A broad practical approach. Lawrence Earlbaum
Associates, 2nd edition edition, 2005.

[18] S. Holm. A simple sequentially rejective Bonferroni test
procedure. Scandinavian Journal on Statistics, 6:65–70,
1979.

[19] R. Holmes and R. Walker. Customized awareness:
Recommending relevant external change events. In

32nd ACM/IEEE International Conference on Software
Engineering (ICSE’10), pages 465–474, 2010.

[20] D. Hou and L. Li. Obstacles in using frameworks and
APIs: An exploratory study of programmers’
newsgroup discussions. In IEEE 19th International
Conference on Program Comprehension (ICPC’11),
pages 91–100, 2011.

[21] S. E. inc. Stack Overflow- http://stackoverflow.com.

[22] S. E. inc. Stack Overflow FAQ-
http://stackoverflow.com/faq.

[23] H. Li, Z. Xing, X. Peng, and W. Zhao. What help do
developers seek, when and how? In 20th Working
Conference on Reverse Engineering (WCRE’13), pages
142–152, 2013.

[24] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
M. Di Penta, R. Oliveto, and D. Poshyvanyk. API
change and fault proneness: A threat to the success of
android apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 477–487. ACM, 2013.

[25] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An
exploratory analysis of mobile development issues using
stack overflow. In 10th IEEE Working Conference on
Mining Software Repositories (MSR’13), pages 93–96,
2013.

[26] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and
B. Hartmann. Design lessons from the fastest Q&A site
in the west. In 2857-2866, editor, SIGCHI Conference
on Human Factors in Computing Systems (CHI’11),
2011.

[27] T. McDonnell, B. Ray, and M. Kim. An empirical
study of API stability and adoption in the Android
ecosystem. In IEEE International Conference on
Software Maintenance (ICSM’13), pages 70–79, 2013.

[28] I. Mojica, B. Adams, M. Nagappan, S. Dienst,
T. Berger, and A. Hassan. A large scale empirical study
on software reuse in mobile apps. IEEE Software
Special Issue on Next Generation Mobile Computing,
2013.

[29] I. Mojica Ruiz, M. Nagappan, B. Adams, and
A. Hassan. Understanding reuse in the Android market.
In 20th IEEE International Conference on Program
Comprehension (ICPC’12), pages 113–122, 2012.

[30] L. Moonen. Generating robust parsers using island
grammars. In 8th IEEE Working Conference on
Reverse Engineering (WCRE), pages 13–22, 2001.

[31] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example?: A study of programming
Q&A in stackoverflow. In 28th IEEE International
Conference on Software Maintenance (ICSM’12), page
25.34, 2012.

[32] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from
developer communications. In IEEE 20th International
Conference on Program Comprehension (ICPC’12),
pages 63–72, 2012.

[33] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.
Crowd documentation: Exploring the coverage and
dynamics of API discussions on stack overflow.
Technical Report GIT-CS-12-05, Georgia Tech, 2012.

[34] P. Rigby and M. Robillard. Discovering essential code
elements in informal documentation. In 35th

International Conference on Software Engineering
(ICSE’13), 2013.

[35] R. Robbes, M. Lungu, and D. Rothlisberger. How do
developers react to API deprecation?: the case of a
Smalltalk ecosystem. In ACM SIGSOFT 20th
International Symposium on the Foundations of
Software Engineering (FSE’12), 2012.

[36] M. Robillard and R. DeLine. A field study of API
learning obstacles. Empirical Software Engineering
(EMSE), 16:703–732, 2012.

[37] C. Rupakheti and H. Daquing. Evaluating forum
discussions to inform the design of an API critic. In
IEEE 20th International Conference on Program
Comprehension (ICPC’12), pages 53–62, 2012.

[38] S. Subramanian, L. Inozemtseva, , and R. Holmes. Live
API documentation. In 36th International Conference
on Software Engineering (ICSE’14), page to appear,
2014.

[39] M. Syer, M. Nagappan, B. Adams, and A. Hassan.
Revisiting prior empirical findings for mobile apps: An
empirical case study on the 15 most popular
open-source android apps. In CASCON 2013, 2013.

[40] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan.
Exploring the development of micro-apps: A case study
on the BlackBerry and Android platforms. In IEEE

11th International Working Conference on Source Code
Analysis and Manipulation (SCAM’11), pages 55–64,
2011.

[41] C. Treude and M.-A. Storey. Effective communication
of software development knowledge through community
portals. In 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software
engineering (ESEC/FSE’11), pages 91–101, 2011.

[42] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov.
How social q&a sites are changing knowledge sharing in
open source software communities. In 17th ACM
Conference on Computer Supported Cooperative Work
and Social Computing (CSCW 2014), 2014.

[43] S. Wang, D. Lo, and L. Jiang. An empirical study on
developer interactions in stackoverflow. In 28th Annual
ACM Symposium on Applied Computing, pages
1019–1024, 2013.

[44] W. Wang and M. Godfrey. Detecting API usage
obstacles: A study of iOS and Android developer
questions. In 10th IEEE Working Conference on
Mining Software Repositories (MSR’13), 2013.

[45] Y. Zhang and D. Hou. Extracting problematic API
features from forum discussions. In IEEE 21th
International Conference on Program Comprehension
(ICPC’13), 2013.

