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Abstract—Information Retrieval (IR) methods, and in partic-
ular topic models, have recently been used to support essential
software engineering (SE) tasks, by enabling software textual
retrieval and analysis. In all these approaches, topic models have
been used on software artifacts in a similar manner as they
were used on natural language documents (e.g., using the same
settings and parameters) because the underlying assumption was
that source code and natural language documents are similar.
However, applying topic models on software data using the same
settings as for natural language text did not always produce the
expected results.

Recent research investigated this assumption and showed that
source code is much more repetitive and predictable as compared
to the natural language text. Our paper builds on this new
fundamental finding and proposes a novel solution to adapt,
configure and effectively use a topic modeling technique, namely
Latent Dirichlet Allocation (LDA), to achieve better (acceptable)
performance across various SE tasks. Our paper introduces a
novel solution called LDA-GA, which uses Genetic Algorithms
(GA) to determine a near-optimal configuration for LDA in
the context of three different SE tasks: (1) traceability link
recovery, (2) feature location, and (3) software artifact labeling.
The results of our empirical studies demonstrate that LDA-GA
is able to identify robust LDA configurations, which lead to a
higher accuracy on all the datasets for these SE tasks as compared
to previously published results, heuristics, and the results of a
combinatorial search.

Index Terms—Textual Analysis in Software Engineering, La-
tent Dirichlet Allocation, Genetic Algoritms.

I. INTRODUCTION

A significant amount of research on applying Information
Retrieval (IR) methods for analyzing textual information in
software artifacts [1] has been conducted in the SE community
in recent years. Among the popular and promising IR tech-
niques used, we enumerate Latent Semantic Indexing (LSI)
[2] and Latent Dirichlet Allocation (LDA) [3]. The latter is
a probabilistic statistical model that estimates distributions of
latent topics from textual documents. It assumes that these
documents have been generated using the probability distribu-
tion of these topics, and that the words in the documents were
generated probabilistically in a similar manner.

A number of approaches using LSI and LDA have been

proposed to support software engineering tasks: feature lo-
cation [4], change impact analysis [5], bug localization [6],
clone detection [7], traceability link recovery [8], [9], expert
developer recommendation [10], code measurement [11], [12],
artifact summarization [13], and many others [14], [15], [16].
In all these approaches, LDA and LSI have been used on
software artifacts in a similar manner as they were used on
natural language documents (i.e., using the same settings,
configurations and parameters) because the underlying as-
sumption was that source code (or other software artifacts)
and natural language documents exhibit similar properties.
More specifically, applying LDA requires setting the number
of topics and other parameters specific to the particular LDA
implementation. For example, the fast collapsed Gibbs sam-
pling generative model for LDA requires setting the number
of iterations n and the Dirichlet distribution parameters α
and β [17]. Even though LDA was successfully used in the
IR and natural language analysis community, applying it on
software data, using the same parameter values used for natural
language text, did not always produce the expected results
[18]. As in the case of machine learning and optimization
techniques, a poor parameter calibration or wrong assumptions
about the nature of the data could lead to poor results [19].

Recent research has challenged this assumption and showed
that text extracted from source code is much more repet-
itive and predictable as compared to natural language text
[20]. According to recent empirical findings, “corpus-based
statistical language models capture a high level of local
regularity in software, even more so than in English” [20].
This fundamental new research finding explains in part why
these fairly sophisticated IR methods showed rather low per-
formance when applied on software data using parameters and
configurations that were generally applicable for and tested on
natural language corpora.

This paper builds on the finding that text in software artifacts
has different properties, as compared to natural language text,
thus, we need new solutions for calibrating and configuring
LDA and LSI to achieve better (acceptable) performance on
software engineering tasks. This paper introduces LDA-GA,



a novel solution that uses a Genetic Algorithm (GA) [21]
to determine the near-optimal configuration for LDA in the
context of three different software engineering tasks, namely
(1) traceability link recovery, (2) feature location, and (3)
software artifacts labeling.

The contributions of our paper are summarized as follows:
• we introduced LDA-GA, a novel and theoretically sound

approach for calibrating LDA on software text corpora
using a GA, and we show that it can be applied success-
fully on three software engineering tasks: traceability link
recovery, feature location and software artifact labeling;

• we conducted several experiments to study the perfor-
mance of LDA configurations based on LDA-GA with
those previously reported in the literature; to perform
such a comparison we replicated previously published
case studies;

• we compared LDA-GA with existing heuristics for cali-
brating LDA; the empirical results demonstrate that our
proposed approach is able to identify LDA configurations
that lead to better accuracy as compared to existing
heuristics;

• we make publicly available in our online appendix1 all
the data, results and algorithms used in our studies, for
replication purposes and to support future studies.

The paper is organized as follows. Section II provides
background notions for LDA and overviews its applications
to SE problems. Section III describes the LDA-GA approach.
Section IV describes the empirical study aimed at applying
LDA-GA in the context of traceability link recovery, feature
location, and software artifact labeling. Results are reported
and discussed in Section V, while Section VI discusses the
threats to validity that could have affected our study. Finally,
Section VII concludes the paper and outlines directions for
future work.

II. BACKGROUND AND RELATED WORK

This section provides (i) background information about
LDA, (ii) discussions about its applications to software en-
gineering tasks and (iii) discussions about related approaches
aiming at determining the best configuration for LDA.

A. LDA in a Nutshell

Latent Dirichlet Allocation (LDA) [3] is an IR model that
allows to fit a generative probabilistic model from the term
occurrences in a corpus of documents. Specifically, given a
collection of documents, the IR process generates a m × n
term-by-document matrix M , where m is the number of terms
occurring in all artifacts, and n is the number of artifacts in
the repository. A generic entry wij of this matrix denotes a
measure of the weight (i.e., relevance) of the ith term in the
jth document [22]. One of the most used weighting schemas,
which we also applied in this work, is the tf-idf since it
gives more importance to words having high frequency in a
document and appearing in a small number of documents [1].

1http://www.distat.unimol.it/reports/LDA-GA

Then, the term-by-document matrix is taken as an input by
LDA, which identifies the latent variables (topics) hidden in
the data and generates as output a k × n matrix θ, called
topic-by-document matrix, where k is the number of topics
and n is the number of documents. A generic entry θij of
such a matrix denotes the probability of the jth document
to belong to the ith topic. Since typically k << m, LDA is
mapping the documents from the space of terms (m) into a
smaller space of topics (k). The latent topics allow us to cluster
them on the basis of their shared topics. More specifically,
documents having the same relevant topics are grouped in the
same cluster, and documents having different topics belong to
different clusters.

LDA requires as input a set of hyper-parameters (i.e., a set
of parameters that have a smoothing effect on the topic model
generated as output). In this work we used the fast collapsed
Gibbs sampling generative model for LDA because it provides
the same accuracy as the standard LDA implementation, yet
it is much faster [17]. For such an implementation, the set of
hyper-parameters are:
• k, which is the number of topics that the latent model

should extract from the data. To some extent this is
equivalent to the number of clusters in a clustering
algorithm;

• n, which denotes the number of Gibbs iterations, where a
single iteration of the Gibbs sampler consists of sampling
a topic for each word;

• α, which influences the topic distributions per document.
A high α value results in a better smoothing of the topics
for each document (i.e., the topics are more uniformly
distributed for each document);

• β, which affects the term’s distribution per topic. A high
β value results in a more uniform distribution of terms
per topic.

Note that k, α, and β are the parameters of any LDA
implementation, while n is an additional parameter required
by the Gibbs sampling generative model.

B. LDA Applications to Software Engineering

Some recent applications of LDA to SE tasks operate on
models of software artifacts (e.g., source code) rather than
directly on those artifacts. Approaches that generate these
models require as input a corpus (i.e., a document collection)
that represents the software artifacts being analyzed. The
corpus is constructed from textual information embedded in
the artifacts, including identifiers and comments.

While a number of different SE tasks have been supported
using advanced textual retrieval techniques, such as LDA,
the common problem remains: the way LDA is commonly
configured is based on the assumption that the underlying
corpus is composed of natural language text. In our survey
of the literature, the following SE tasks have been supported
using LDA and all of these papers and approaches used ad-
hoc heuristics to configure LDA, perhaps resulting in sub-
optimal performance in virtually all the cases: feature location
[23], bug localization [6], impact analysis [24], source code



labeling [13], aspect identification [14], expert identification
[25], software traceability [9], [26], test case prioritization
[27], and evolution analysis [28], [16].

C. Approaches for Estimating the Parameters of LDA

Finding an LDA configuration that provides the best perfor-
mance is not a trivial task. Some heuristics have been proposed
[29], [30]; however, these approaches focus only on identifying
the number of topics that would result in the best performance
of a task, while ignoring all the other parameters that are
required to apply LDA in practice. Moreover, such approaches
have not been evaluated on real SE applications or have been
defined for natural language documents only, thus, they may
not be applicable for software corpora.

One such technique is based on a heuristic for determining
the “optimal” number of LDA topics for a source code corpus
of methods by taking into account the location of these
methods in files or folders, as well as the conceptual similarity
between methods [29]. However, the utility of this heuristic
was not evaluated in the context of specific SE tasks.

On a more theoretical side, a non-parametric extension
of LDA called Hierarchical Dirichlet Processes [31] tries to
infer the optimal number of topics automatically from the
input data. Griffiths and Steyvers [30] proposed a method for
choosing the best number of topics for LDA among a set of
predefined topics. Their approach consists of (i) choosing a
set of topics, (ii) computing a posterior distribution over the
assignments of words to topics P (z|w, T ), (iii) computing
the harmonic mean of a set of values from the posterior
distribution to estimate the likelihood of a word belonging
to a topic (i.e., P (w|T )), and (iv) choosing the topic with the
maximum likelihood. In their approach, the hyper-parameters
α and β are fixed, and only the number of topics is varied,
which in practice, is not enough to properly calibrate LDA.
In our approach, we vary all the parameters (i.e., k, n, α and
β), to find a (near) optimal configuration for LDA.

III. FINDING A (NEAR) OPTIMAL LDA CONFIGURATION
FOR SOFTWARE

As explained in Section II, LDA—and in particular its
implementation based on fast collapsed Gibbs sampling gen-
erative model—requires the calibration of four parameters,
k, n, α, and β. Without a proper calibration, or with an
ad-hoc calibration of these parameters, LDA’s performance
may be sub-optimal. Finding the best configuration of these
parameters poses two problems. Firstly, we need a measure
that can be used to assess the performances of LDA before
applying it to a specific task (e.g., traceability link recovery).
This measure should be independent from the supported SE
task. In other words, we cannot simply train an LDA model
on the data for one particular task, since obtaining such data
means solving the task. For example, for traceability link
recovery, if we identify all the links to assess the quality of
the LDA model for extracting the links themselves, then there
is no need to have an LDA-based model to recover these links
anymore. In other words, we need to build such a model on

raw data (e.g., source code and documentation) without having
additional information about the links. Secondly, we need an
efficient way to find the best configuration of parameters, as an
exhaustive analysis of all possible combinations is impractical
due to (i) the combinatorial nature of the problem (i.e., the
large number of possible configuration values for the LDA
parameters), as well as (ii) the large amount of computational
time required for even such a configuration. In the next section
we present our approach that addresses these problems, called
LDA-GA, which is able to find a near-optimal configuration
for the parameters of LDA.

A. Assessing the Quality of an LDA Configuration

LDA can be considered as a topic-based clustering tech-
nique, which can be used to cluster documents in the topics
space using the similarities between their topics distributions.
Our conjecture is that there is a strong relationship between
the performances obtained by LDA on software corpora and
the quality of clusters produced by LDA. Thus, measuring
the quality of the produced clusters could provide some
insights into the accuracy of LDA when applied to software
engineering tasks. Indeed, if the quality of the clusters pro-
duced by LDA is poor, it means that LDA was not able to
correctly extract the dominant topics from the software corpus,
because the documents, which are more similar to each other,
are assigned to different clusters (i.e., LDA assigns different
dominant topics to neighboring documents).

In our paper, we use the concept of a dominant topic
to derive the textual clustering generated by a particular
LDA configuration applied on a term-by-document matrix.
Formally, the concept of a dominant topic can be defined as
follows:

Definition 1. Let θ be the topic-by-document matrix generated
by a particular LDA configuration P = [k, n, α, β]. A generic
document dj has a dominant topic ti, if and only if θi,j =
max{θh,j , h = 1 . . . k}.

Starting from the definition of the dominant topic, we can
formalize how LDA clusters documents within the topic space
(the number of clusters is equal to the number of topics) as
follows:

Definition 2. Let θ be the topic-by-document matrix generated
by a particular LDA configuration P = [k, n, α, β]. A generic
document dj belongs to the ith cluster, if and only if ti is the
dominant topic of dj .

Thus, we can define a cluster as a set of documents in
which each document is closer (i.e., shares the same dominant
topic) to every other document in the cluster, and it is further
from any other document from the other clusters. It is worth
noting that the concept of a dominant topic is specific to
software documents only. Collections of natural language
documents are usually heterogeneous, meaning that documents
can contain information related to multiple topics. In source
code artifacts, heterogeneity is not always present, especially
when considering single classes. More specifically, a class is a
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Fig. 1. Example of the Silhouette coefficient.

crisp abstraction of a domain/solution object, and should have
a few, clear responsibilities. Hence, software documents should
be clustered considering only the dominant topic, assuming
that each document is related to only one specific topic.

Different LDA configurations provide different clustering
models of the documents. However, not all clustering models
that can be obtained by configuring LDA are good. There
are two basic ways to evaluate the quality of a clustering
structure: internal criteria, based on similarity/dissimilarity
between different clusters and external criteria, which uses
additional and external information (e.g., using judgement
provided by users) [32]. Since the internal criterion does not
require any manual effort and it is not software engineering
task dependent, in our paper we use the internal criteria for
measuring the quality of clusters. More specifically, we use
two types of internal quality metrics: cohesion (similarity),
which determines how closely related the documents in a clus-
ter are, and separation (dissimilarity), which determines how
distinct (or well-separated) a cluster is from other clusters[32].
Since these two metrics are contrasting each other, we use a
popular method for combining both cohesion and separation
in only one scalar value, called Silhouette coefficient [32]. The
Silhouette coefficient is computed for each document using the
concept of centroids of clusters. Formally, let C be a cluster;
its centroid is equal to the mean vector of all documents
belonging to C: Centroid(C) =

∑
di∈C di/|C|.

Starting from the definition of centroids, the computation of
the Silhouette coefficient consists of the following three steps:

1) For document di, calculate the maximum distance from
di to the other documents in its cluster. We call this
value a(di).

2) For document di, calculate the minimum distance from
di to the centroids of the clusters not containing di. We
call this value b(di).

3) For document di, the Silhouette coefficient s(di) is:

s(di) =
b(di)− a(di)

max (a(di), b(di))

The value of the Silhouette coefficient ranges between -1

and 1. A negative value is undesirable, because it corresponds
to the case in which a(di) > b(di), i.e., the maximum
distance to other documents in the cluster is greater then
the minimum distance to other documents in other clusters.
For measuring the distance between documents we used the
Euclidean distance, since it is one of the most commonly used
distance functions for data clustering [32]. Fig. 1 provides a
graphical interpretation of the Silhouette coefficient computed
for a document di. In particular, it represents an example of a
good Silhouette coefficient, since di is close to the furthest
document situated in its cluster, and far from the centroid
of the nearest cluster. In the end, the overall measure of the
quality of a clustering C = {C1, . . . , Ck} can be obtained by
computing the mean Silhouette coefficient of all documents.
Let C = {C1, . . . , Ck} be the clustering obtained using a
particular LDA configuration, and let M be an m×n term-by-
document matrix. The mean Silhouette coefficient is computed
as:

s(C) =
1

n

n∑
i=1

s(di)

In this paper, we used the mean Silhouette coefficient as the
measure for predicting the accuracy of LDA in the context of
specific software engineering tasks.

B. Finding a (Near) Optimal LDA Configuration

Based on the conjecture that the higher the clustering quality
produced by LDA, the higher the accuracy of LDA when
used for software engineering tasks, we present an approach
to efficiently identify the LDA configuration P = [k, n, α, β]
that maximizes the overall quality (measured using the mean
Silhouette coefficient) of the clustering produced by LDA.
For solving such an optimization problem we applied Genetic
Algorithms (GA) which is a stochastic search technique based
on the mechanism of a natural selection and natural genetics.
Since the introduction of GA by Holland [21] in the 1970s, this
algorithm has been used in a wide range of applications where
optimization is required and finding an exact solution is NP-
Hard. The advantage of GA with respect to the other search
algorithm is its intrinsic parallelism, i.e., having multiple
solutions (individuals) evolving in parallel to explore different
parts of the search space.

The GA search starts with a random population of solutions,
where each individual (i.e., chromosome) from the population
represents a solution of the optimization problem. The pop-
ulation evolves through subsequent generations and, during
each generation, the individuals are evaluated based on the
fitness function that has to be optimized. For creating the
next generation, new individuals (i.e., offsprings) are generated
by (i) applying a selection operator, which is based on the
fitness function, for the individuals to be reproduced, (ii)
recombining, with a given probability, two individuals from
the current generation using the crossover operator, and (iii)
modifying, with a given probability, individuals using the
mutation operator. More details about GA can be found in
a book by Goldberg [33].



In our paper, we used a simple GA [33] with elitism of two
individuals (i.e., the two best individuals are kept alive across
generations). Individuals (solutions) are represented as an ar-
ray with four floats, where each element represents k, n, α, and
β, respectively. Thus, an individual (or chromosome) is a par-
ticular LDA configuration and the population is represented by
a set of different LDA configurations. The selection operator is
the Roulette wheel selection, which assigns to the individuals
with higher fitness a higher chances to be selected. The
crossover operator is the arithmetic crossover, that creates new
individuals by performing a linear combination—with random
coefficients—of the two parents. The mutation operator is the
uniform mutation, which randomly changes one of the genes
(i.e., one of the four LDA parameter values) of an individual,
with a different parameter value within a specified range. The
fitness function that drives the GA evolution is the Silhouette
coefficient described in Section III-A. Our GA approach can be
briefly summarized as (i) generating LDA configurations, (ii)
using them to cluster documents, (iii) evaluating the cluster
quality using the Silhouette coefficient, and (iv) using that
value to drive the GA evolution.

IV. EMPIRICAL STUDY DEFINITION

This section describes the design of the empirical studies
that we conducted in order to evaluate LDA-GA in the
context of three software engineering tasks. The studies aim
at answering the following research questions:
• RQ1: What is the impact of the configuration parameters

on LDA’s performance in the context of software engi-
neering tasks? This research question aims at justifying
the need for an automatic approach that calibrates LDA’s
settings when LDA is applied to support SE tasks. For this
purpose, we analyzed a large number of LDA configura-
tions for three software engineering tasks. The presence
of a high variability in LDA’s performances indicates that,
without a proper calibration, such a technique risks being
severely under-utilized.

• RQ2: Does LDA-GA, our proposed GA-based approach,
enable effective use of LDA in software engineering
tasks? This research question is the main focus of our
study, and it is aimed at analyzing the ability of LDA-
GA to find an appropriate configuration for LDA, which
is able to produce good results for specific software
engineering tasks.

We address both research questions in three different sce-
narios, representative of SE tasks that can be supported by
LDA: traceability link recovery, feature location, and software
artifact labeling. LDA was previously used in some of these
tasks [9], [28], [13]. For our data and results please visit our
online appendix.

A. Scenario I: Traceability Links Recovery

In this scenario, we used LDA to recover links between
documentation artifacts (e.g., use cases) and code classes. The
experiment has been conducted on software repositories from
two projects, EasyClinic and eTour. EasyClinic is a system

TABLE I
CHARACTERISTICS OF THE SYSTEMS USED IN THE THREE SCENARIOS.

Scenario I - Traceability Link Recovery

System KLOC Source Target Correct
Artifacts (#) Artifacts (#) links

EasyClinic 20 UC (30) CC (47) 93
eTour 45 UC (58) CC (174) 366

UC: Use case, CC: Code class

Scenario II - Feature Location
System KLOC Classes Methods Features
jEdit 104 503 6,413 150
ArgoUML 149 1,439 11,000 91

Scenario III - Software Artifact Labeling
System KLOC Classes Sampled classes
JHotDraw 29 275 10
eXVantage 28 348 10

used to manage a doctor’s office, while eTour is an electronic
touristic guide. Both systems were developed by the final year
Master’s students at the University of Salerno (Italy). The
documentation, source code identifiers, and comments for both
systems are written in Italian. The top part of Table I reports
the characteristics of the considered software systems in terms
of type, number of source and target artifacts, as well as Kilo
Lines of Code (KLOC). The table also reports the number of
correct links between the source and target artifacts. These
correct links, which are derived from the traceability matrix
provided by the original developers, are used as an oracle
to evaluate the accuracy of the proposed traceability recovery
method.

To address RQ1, we compared the accuracy of recover-
ing traceability links using different configurations for LDA.
Specifically, we varied the number of topics from 10 to 100
with step 10 on EasyClinic, and from 10 to 200 with step
10 on eTour. We varied α and β from 0 to 1 with 0.1
increments, and we exercised all possible combinations of
such values. We fixed the number of iterations to 500, which
resulted to be a sufficient number of iterations for the model
to converge. Thus, the total number of trials performed on
EasyClinic and eTour were 1,000 and 2,000, respectively.
Clearly, although combinatorial, such an analysis is not ex-
haustive, as it considers a discrete set of parameter values and
combinations. For RQ2, we compared the accuracy achieved
by LDA when the configuration is determined using LDA-
GA with (i) the best accuracy achieved by LDA (determined
when answering RQ1) and (ii) the accuracy achieved by LDA
on the same system in the previously published studies where
an “ad-hoc” configuration was used [26]. While the former
comparison is more of a sanity check aimed at analyzing the
effectiveness of the GA in finding a near-optimal solution,
the latter comparison was aimed at analyzing to what extent
LDA-GA is able to enrich the effectiveness and usefulness of
LDA in the context of traceability link recovery when properly
calibrated.

When addressing RQ1, we evaluated LDA’s recovery ac-
curacy using the average precision metric [22], which re-



turns a single value for each ranked list of candidate links
provided. For RQ2, we used two well-known IR metrics:
precision and recall [22]. The precision values achieved for
different configurations (over different levels of recall) are
then pairwise-compared using the Wilcoxon rank sum test.
Since this requires performing three tests for each system, we
adjusted the p-values using Holm’s correction procedure [34].
This procedure sorts the p-values resulting from n tests in
ascending order, multiplying the smallest by n, the next by
n− 1, and so on.

B. Scenario II: Feature Location

In this scenario, we used LDA to locate features within the
textual corpus of source code. The context of this scenario is
represented by two software systems, jEdit v4.3 and ArgoUML
v0.22. jEdit is an open-source text editor for programmers,
while ArgoUML is a well known UML editor. Table I reports
the characteristics of the considered software systems in terms
of number of classes, number of methods, as well as KLOC
and the number of features to be located. These software
systems have been used in previous studies on feature location
[23], [35]. For more information about the datasets refer to [4].

To answer RQ1, we compared the effectiveness measure
of LDA using different configurations. Specifically, we varied
the number of topics from 50 to 500 with step 50 for both
ArgoUML and jEdit. We varied α and β from 0 to 1 with
0.1 increments. Similarly to the traceability task, we fixed
the number of iterations to 500. We exercised all possible
combinations of such values. Thus, the total number of trials
performed on both software systems consisted of 1,000 dif-
ferent LDA combinations. For RQ2, similarly to the previous
scenario, we compared the performance achieved by LDA-
GA with (i) the best performance achieved by LDA when
answering RQ1 and (ii) the performance obtained by LDA
using the source locality heuristic proposed by Grant and
Cordy for the feature location task [29]. The performance
of LDA in this scenario was analyzed using the effectiveness
measure (EM) [36]. Given a feature of interest, this measure
estimates the number of methods a developer needs to inspect
before finding a method relevant to that feature (the list of
methods are ranked by their similarity to the description of the
feature). A lower value for the EM indicates less effort (i.e.,
fewer methods to analyze before finding a relevant one). The
EM computed for different configurations on different queries
(i.e., feature descriptions) were then pairwise-compared using
a Wilcoxon rank sum test, similarly to the evaluation from
Scenario I and, also in this case, the p-values were adjusted
using Holm’s procedure.

C. Scenario III: Software Artifact Labeling

In this scenario, we used LDA to automatically “label”
source code classes using representative words. Specifically,
we extracted topics from a single class (using LDA), and then
we ranked all the words characterizing the extracted topics
according to their probability in the obtained topic distribution.
The top 10 words belonging to the topic with the highest

probability in the obtained topic distribution were then used
to label the class [13].

The study was conducted on 10 classes from JHotDraw
and 10 classes from eXVantage. The former is an open-
source drawing tool, and the latter is a novel testing and
generation tool. Their characteristics are summarized in the
bottom part of Table I. For the sampled classes, we had
user-generated labels from a previously published work [13],
and these represented our “ideal” labels. After obtaining the
LDA labels we compared them to the user-generated ones and
computed the overlap between them. The overlap was mea-
sured using the asymmetric Jaccard measure [22]. Formally, let
K(Ci) = {t1, . . . , tm} and Kmi(Ci) = {t1, . . . , th} be the
sets of keywords identified by subjects and the technique mi,
respectively, to label the class Ci. The overlap was computed
as follows:

overlapmi
(Ci) =

|K(Ci) ∩Kmi(Ci)|
Kmi

(Ci)

Note that the size of K(Ci) might be different from the size
of Kmi(Ci). In particular, while the number of keywords
identified by LDA is always 10 (by construction we set
h = 10), the number of keywords identified by subjects could
be more or less than 10 (generally it is 10, but there are
few cases where the number is different). For this reason, we
decided to use the asymmetric Jaccard to avoid penalizing too
much the automatic method when the size of K(Ci) is less
than 10.

Also in this scenario, in order to address RQ1 we com-
pared the recovery accuracy of LDA using different settings.
Specifically, we varied the number of topics from 10 to 50
with step 10 for both JHotDraw and eXVantage. As for α and
β, we varied them between 0 and 1 by increments of 0.1. We
fixed the number of iterations to 500 as in the previous two
tasks. We exercised all possible combinations of such values.
Thus, the total number of trials performed on JHotDraw and
eXVantage was 500 on both systems. For RQ2, we compared
the accuracy achieved by LDA-GA with (i) the best accuracy
achieved by LDA while iterating through the parameters and
(ii) the accuracy achieved by LDA reported by De Lucia et
al. [13].

D. LDA-GA Settings and Implementation

The LDA-GA has been implemented in R [37] using the
topicmodels and GA libraries. The former library provides
a set of routines for computing the fast collapsed Gibbs
sampling generative model for LDA, while the latter is a
collection of general purpose functions that provide a flexible
set of tools for applying a wide range of GA methods. For
GA, we used the following settings: a crossover probability
of 0.6, a mutation probability of 0.01, a population of 100
individuals, and an elitism of 2 individuals. As a stopping
criterion for the GA, we terminated the evolution if the best
results achieved did not improve for 10 generations; otherwise
we stopped after 100 generations. All the settings have been
calibrated using a trial-and-error procedure, and some of them
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Fig. 2. Variability of performance achieved by LDA configurations for (a) traceability link recovery, (b) feature location, and (c) labeling.

(i.e., elitism size, crossover and mutation probabilities) were
the values commonly used in the community. To account
for GA’s randomness, for each experiment we performed 30
GA runs, and then we took the configuration achieving the
median final value of the fitness function (i.e., of the Silhouette
coefficient).

V. EMPIRICAL STUDY RESULTS

This section discusses the results of our experiments con-
ducted in order to answer the research questions stated in
Section IV. We report the results for each LDA application
scenario.

A. Scenario I: Traceability Link Recovery

As for RQ1, Fig. 2-a shows boxplots summarizing the
average precision values obtained using the 1,000 and 2,000
different LDA configurations (described in Section IV) on
EasyClinic and eTour, respectively. We used these boxplots
to highlight the variability of the average precision values
across different configurations. As shown, the variability of
LDA’s performance is relatively high: the average precision
ranges between 11% and 55% on EasyClinic and between 7%
and 43% on eTour. For EasyClinic, more than 75% of the
different LDA configurations obtained an average precision
lower than 45% (see first three quartiles in Fig. 2-a). Moreover,
only a small percentage of the configurations executed in
the combinatorial search (about 3.6%) obtained an average
precision greater than 50%. In the end, only one of them
achieved the highest value, 52%. Similarly for eTour, the
configurations placed in the first three quartiles (about 75% of
the set) obtained an average precision lower than 40%, while
less than 1% of the total amount of executed configurations
in the combinatorial search (2,000 configurations) achieved an
average precision greater than the 40%. Only one configuration
achieved the highest average precision (47%).

In summary, for RQ1 we can assert that for traceability
recovery, LDA shows high variability. Thus, LDA’s efficiency
for establishing links between software artifacts depends on
the particular configuration P = [n, k, α, β] used to derive
latent topics. Indeed, “bad” configurations can produce poor
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Fig. 3. Traceability recovery: precision/recall graphs.

results while “optimal” configurations (which represent a small
portion of all possible LDA configurations) can lead to very
good results.

Regarding RQ2, Fig. 3 reports the precision/recall graphs
obtained by LDA using (i) the best configuration across 1,000
and 2,000 different configurations executed in the combina-
torial search; (ii) the configuration identified by LDA-GA;
and (iii) an “ad-hoc” configuration used in a previous study
where LDA was used on the same repositories [18]. For both
EasyClinic and eTour, LDA-GA was able to obtain a recov-
ery accuracy close to the accuracy achieved by the optimal



TABLE II
RESULTS OF THE WILCOXON TEST FOR TRACEABILITY RECOVERY.

EasyClinic eTour
LDA-GA < Combinatorial 1 1
LDA-GA < Oliveto et al. [18] < 0.01 < 0.01
Combinatorial < Oliveto et al. [18] < 0.01 < 0.01
Combinatorial < LDA-GA 1 < 0.01

configuration across 1,000 and 2,000 different configurations
executed in the combinatorial search. In particular, for Easy-
Clinic LDA-GA returned exactly the configuration identified
by the combinatorial search (i.e., the two curves are perfectly
overlapped) while on eTour the two curves are comparable.
Moreover, the average precision achieved by the configuration
provided by LDA-GA is about 41%, which is comparable
with the average precision achieved with the the optimal
configuration, which is about 43% (only a small difference
of 2%). Among 2,000 different configurations tried for the
combinatorial search, only five configurations obtained an
average precision comparable or greater than the one achieved
by LDA-GA, i.e., the configurations obtained by LDA-GA
belong to the 99% percentile for the distribution reported
in Fig. 2-a. Finally, comparing the performance achieved
by LDA-GA with the performance reached by other LDA
configurations used in previous work [18], we can observe that
the improvement is very substantial for both software systems.

Table II reports the results of the Wilcoxon test (i.e., the
adjusted p-values) for all combinations of the techniques (sta-
tistically significant results are highlighted in bold face). As we
can see, there is no statistically significant difference between
the performance obtained by LDA-GA and the combinatorial
search for EasyClinic. However, for eTour the combinatorial
search performs significantly better than LDA-GA. However,
considering the precision/recall graph reported in Fig. 3, we
can observe that the difference is relatively small.

B. Scenario II: Feature Location

Fig. 2-b shows the boxplots summarizing the variability of
the average effectiveness measure (EM) values obtained using
1,000 different LDA configurations, as explained in Section
IV. As in the previous task, the feature location results show
high variability in their EM, which ranges between 472 and
1,416 for ArgoUML and between 145 and 600 for jEdit. For
ArgoUML, we observed that more than 90% of different con-
figurations produced an average EM ranging between 600 and
1,200, while only a small percentage (about 3%) produced an
optimal average EM lower than 600. Within this small number
of optimal configurations only one configuration obtains the
lowest (i.e., the best) EM of 472. Similarly, for jEdit, 95% of
different configurations produced an average EM that ranges
between 200 and 1,600, while only one achieved the smallest
average EM of 145. These results for RQ1 suggest that without
a proper calibration, the performance of LDA risks of being
unsatisfactory.

For RQ2, Fig. 4-a shows boxplots for ArgoUML of the
EM values achieved by three different configurations: (i) the

(a) ArgoUML (b) jEdit

Fig. 4. Box plots of the effectiveness measure for feature location for
ArgoUML and jEdit.

TABLE III
RESULTS OF THE WILCOXON TEST ON FEATURE LOCATION

PERFORMANCES.

jEdit ArgoUML
LDA-GA < Combinatorial 0.09 1
LDA-GA < Source Locality Heuristic [29] 0.02 0.02
Combinatorial < Source Locality Heuristic [29] 0.02 0.02

best configuration obtained by a combinatorial search across
1,000 different LDA configurations (combinatorial search);
(ii) the configuration obtained using LDA-GA; and (iii) the
best configuration obtained using the source locality heuristic
[29]. First, we can note that the configuration obtained via
LDA-GA is exactly the same as the one obtained from the
combinatorial search, thus LDA-GA was able to find the best
configuration (i.e., with the lowest average EM). Comparing
the performance of LDA-GA with the source locality heuristic,
we can observe that for the first two quartiles, there is no
clear difference (the median values are 107 and 108 for LDA-
GA and source locality heuristic respectively). Considering the
third and fourth quartiles, the difference becomes substantial:
the third quartile is 467 for LDA-GA and 689 for the previous
heuristic, while for the fourth quartiles we obtained 4,603
for LDA-GA and 7,697 for source locality heuristic. Overall,
LDA-GA reached an average EM equal to 473, as opposed to
EM equal to 707 obtained using the source locality heuristic.

Table III reports the results of the Wilcoxon test (i.e., the
adjusted p-values) for all combinations of the techniques (sta-
tistically significant results are shown in bold face). As we can
see, there is no statistical difference between the performance
obtained by LDA-GA and the combinatorial search. Based on
the results of the statistical tests, we can assert that LDA-GA
is able to find the optimal or the near-optimal configurations.
Moreover, LDA-GA significantly outperforms the previously
published source locality heuristic (p-value< 0.02).

C. Scenario III: Software Artifact Labeling

For RQ1, Fig. 2-c shows boxplots for the average percent-
age overlap (AO) values obtained using 500 different LDA
configurations, as explained in Section IV. Even if in this
case the corpus of documents (the total number of classes
and the vocabulary size) is really small, as compared to the



TABLE IV
AVERAGE OVERLAP BETWEEN AUTOMATIC AND MANUAL LABELING.

exVantage
LDA De Lucia et al. [13]

LDA-GA Combinatorial n = M n = M/2 n = 2
Max 100% 100% 100% 100% 100%
3rd Quartile 95% 95% 71% 70% 69%
Median 67% 70% 59% 60% 54%
2nd Quartile 60% 67% 34% 50% 41%
Min 50% 50% 0% 0% 40%
Mean 74% 77% 52% 56% 60%
St. Deviation 19% 17% 31% 34% 23%

JHotDraw
LDA De Lucia et al. [13]

LDA-GA Combinatorial n = M n = M/2 n = 2
Max 100% 100% 100% 100% 100%
3 Quartile 81% 82% 73% 70% 66%
Median 71% 75% 65% 61% 56%
2 Quartile 47% 50% 46% 45% 41%
Min 14% 14% 0% 38% 29%
Mean 65% 66% 59% 60% 59%
St. Deviation 28% 26% 28% 20% 24%

size of the repository considered for the other tasks, LDA
also shows a high variability of performances, ranging between
18% and 66% on JHotDraw, and between 13% and 77% on
ExVantage. For JHotDraw, it can be noted how, more than 72%
of the different configurations obtained an AO value ranging
between 25% and 55%, while only a small percentage (about
1%) obtains an optimal AO greater than 60%. Within this
small number of optimal configurations, only one achieves
the highest AO of 64%. Similarly, for ExVantage the majority
(about 79%) of the different configurations obtained an AO
ranging between 10% and 70%, while only one configuration
achieved the highest AO of 77%.

For RQ2, Table IV reports the statistics of the overlap
between the user-based labeling and the automatic label-
ing obtained using (i) LDA-GA; (ii) the best configuration
achieved using the combinatorial search, i.e., the configuration
which has the higher percentage overlap among 500 different
configurations; and (iii) the LDA configuration used in the
previous work [13] for the same task. For both systems, LDA-
GA obtains a percentage overlap with the user labeling that
is close to the combinatorial search, with a difference from
the best LDA configuration (obtained by the combinatorial
search) of about 3% for ExVantage and 1% for JHotDraw.
For ExVantage, among the 500 different LDA configurations
computed in the combinatorial search, only 12 configurations
have an average overlap greater or equal to 74.33%. We can
also observe that there are only small differences for the
median and second quartile between LDA-GA and the global
optimum, while for the other quartiles there is no difference.
Similarly, among 500 different configurations evaluated for
JHotDraw, only one configuration is comparable with LDA-
GA. By comparing the quartile values obtained for JHotDraw,
we can note that the difference between LDA-GA and the
combinatorial search optimum is about 2%-3% on average.
Finally, we can observe how the performances of LDA config-
ured using LDA-GA are significantly better than those reported
in the previous work [13] (where α and β were set to default

of 50/k and 0.1 respectively). For ExVantage we obtain an
improvement in terms of mean overlap of about 14-20%, while
for JHotDraw we get an improvement of about 5-6%.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. For tasks such as traceability
link recovery and feature location, we used well-established
metrics (i.e., precision, recall and effectiveness) and oracles
used in previous studies [23], [35], [38], [26], thereby ensuring
that the error-proneness is limited. For the labeling task, we
compared LDA-based labeling with a user-generated labeling,
using, again, the dataset previously verified and published [13].

Threats to internal validity can be related to co-factors that
could have influenced our results. We limited the influence of
GA randomness by performing 30 GA runs and considering
the configuration achieving the median performance. We also
observed that the configuration that we obtained did not
substantially vary across GA runs.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. Wherever appropriate, we used
non-parametric statistical tests (the Wilcoxon test rank sum
test in particular) to support our claims.

Threats to external validity concern the generalization of our
results. Firstly, it is highly desirable to replicate the studies
carried out on three scenarios on other datasets. Secondly,
although the proposed approach can be applied in principle to
other LDA-based solutions to support SE tasks, specific studies
are needed to evaluate their feasibility and performances.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed LDA-GA, an approach based on
Genetic Algorithms that determines the near-optimal config-
uration for LDA in the context of three important software
engineering tasks, namely (1) traceability link recovery, (2)
feature location, and (3) software artifact labeling. We also
conducted several experiments to study the performance of
LDA configurations based on LDA-GA with those previously
reported in the literature (i.e., existing heuristics for calibrat-
ing LDA) and a combinatorial search. The results obtained
indicate that (i) applying LDA to software engineering tasks
requires a careful calibration due to its high sensitivity to
different parameter settings, that (ii) LDA-GA is able to
identify LDA configurations that lead to higher accuracy as
compared to alternative heuristics, and that (iii) its results are
comparable to the best results obtained from the combinatorial
search.

Overall, our empirical results warn the researchers about the
dangers of ad-hoc calibration of LDA on software corpora,
as was predominantly done in the SE research community,
or using the same settings and parameters applicable only to
natural language texts. Without a sound calibration mecha-
nism for LDA on software data, which might require using
approaches such as the one proposed in this paper, the potential
of such a rigorous statistical method as LDA can be seriously
undermined, as shown in our empirical study.



Future work will be devoted to corroborating the results
reported in this paper on other datasets. We also plan to apply
LDA-GA on other SE tasks that rely on text analysis using
topic models.
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