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Abstract—Coupling is a fundamental property of software
systems, and numerous coupling measures have been proposed
to support various development and maintenance activities.
However, little is known about how developers actually perceive
coupling, what mechanisms constitute coupling, and if existing
measures align with this perception. In this paper we bridge
this gap, by empirically investigating how class coupling—as
captured by structural, dynamic, semantic, and logical coupling
measures—aligns with developers’ perception of coupling. The
study has been conducted on three Java open-source systems—
namely ArgoUML, JHotDraw and jEdit—and involved 64 stu-
dents, academics, and industrial practitioners from around the
world, as well as 12 active developers of these three systems.
We asked participants to assess the coupling between the given
pairs of classes and provide their ratings and some rationale.
The results indicate that the peculiarity of the semantic coupling
measure allows it to better estimate the mental model of develop-
ers than the other coupling measures. This is because, in several
cases, the interactions between classes are encapsulated in the
source code vocabulary, and cannot be easily derived by only
looking at structural relationships, such as method calls.

Index Terms—Software Coupling; Empirical Studies

I. INTRODUCTION

Coupling has been defined by Stevens et al. [1] as “the
measure of the strength of association established by a con-
nection from one module to another”. It is considered as one
of the fundamental principles of software engineering, with a
strong influence on comprehension and maintenance of large
software systems. Understanding the coupling between entities
is useful for a variety of software development or maintenance
activities, such as assessing software quality [2], [3], predicting
fault-proneness [4], [5], [6], supporting change impact analysis
[7], [8], [9], [10], re-engineering [11], reuse [12], change
propagation [13], and clone management [14].

The importance of coupling has motivated researchers to de-
fine different types of measures that capture various aspects of
software quality. Most of the coupling measures are structural
and they statically analyze the source code to capture different
relations between entities (e.g., classes), such as the number
of calls between two entities, variable accesses, or inheri-
tance relations. Over the years, several alternative measures
of coupling have been proposed, such as dynamic coupling,
which takes into account call relationships occurring during
program execution [15], semantic coupling, which exploits

relations captured from the source code lexicon using Infor-
mation Retrieval techniques [8], or logical coupling, which
uses historical data to identify co-changing artifacts [16].
The rationale behind these three coupling measures—dynamic,
semantic, and logical—is to capture relations between software
artifacts, which are not captured by structural coupling.

Some empirical studies evaluated the potential use of many
existing coupling measures and how these measures could be
used in a complementary manner [17], [8]. However, despite
these attempts to characterize different coupling measures, it
is still unclear to what extent such coupling measures reflect
developers’ perception of coupling between classes, and what
sources of information align better with their perception. In
essence, the following issue still remains completely unad-
dressed in the literature after several decades of research:

To what extent does the coupling level captured by
measures reflects the strength of coupling perceived
by developers?

To answer this question, we conducted an empirical study
aimed at investigating how different kinds of coupling mea-
sures reflect developers’ perception of coupling. The study
has been conducted on three open source systems, namely
ArgoUML1, JHotDraw2, and jEdit3, and involved 64 students,
academics and practitioners, as well as 12 professional soft-
ware developers that have been active contributors to these
open-source systems. Firstly, we analyzed the extent to which
these coupling measures overlap. Secondly, we selected a
number of class pairs from each system—having both high
and low coupling according to the studied measures—and
asked participants to assess the strength of those couplings.
Thirdly, we analyzed if the perceived coupling aligned with the
one captured by the structural, dynamic, semantic, and logical
coupling. In order to enrich the generalizability of the results
achieved and gain a better understanding of these results, we
also analyzed to what extent the experimented measures reflect
the mental model of the developers grouping together (i.e., in
the same package) classes that were originally grouped by
the original developers. Specifically, we used these coupling

1http://argouml.tigris.org/
2http://www.jhotdraw.org/
3http://www.jedit.org/



measures to reconstruct the original modularization of the
software systems using a state-of-the-art tool, Bunch [18], and
using the Move Join eFfectiveness Measure (MoJoFM) [19]
to evaluate the resulting decomposition.

The contribution of our paper is threefold. First, our study
and the results provide important insights into better under-
standing how developers perceive coupling among classes
and which measures align with programmers’ opinions. It is
an important step in understanding the practical implications
of software measurement theory and identifying important
future directions. Second, we provide concrete results on
how different coupling measures can be used for software
modularization, and which measures agree with the original
software designers. Finally, the study design, the materials, and
the data are made publicly available in our online appendix4

for replication purposes or to support future studies aiming
at evaluating other coupling measures. We believe that the
results of this work are a stepping stone for current and future
approaches on coupling measures, as well as new studies of
software metrics that put developers in the loop.

Structure of the paper. Section II discusses the related
literature. Sections III and IV describe the design of our
empirical study and present the analysis of the achieved
results, respectively. Section V discusses the threats to validity
that could affected our study, while Section VI concludes the
paper and presents the agenda for future work.

II. RELATED WORK

There are many existing coupling metrics that employ
different types of information such as structural, dynamic,
semantic, or logical. Most of these metrics define coupling
at the class-level granularity by determining the degree to
which two classes in an object-oriented system depend on one
another. On the one hand, the majority of existing coupling
metrics capture coupling between classes structurally. Cou-
pling Between Objects (CBO), Response for a Class (RFC)
[20] and Information flow-based coupling (ICP) [21] are
among the representative structural coupling metrics. Due to
space limitations we refer the interested reader to the unified
framework for coupling measurement by Briand et al. [17],
which provides an overview of the structural metrics.

Furthermore, semantic metrics define a coupling for classes
based on textual information extracted from source code iden-
tifiers and comments [22]. One such semantic metric, CCBC
(Conceptual Coupling Between Classes) [22], captures a new
dimension of coupling not addressed by structural or dynamic
measures. Logical (or evolutionary) coupling [23], [24], [25]
utilizes information from repositories to capture the strength
of relations among the artifacts (including source code) that
are frequently co-changed. Such logical coupling metrics have
been used for impact analysis [26], much like structural
coupling metrics. Finally, Arisholm et al. [15] introduced
dynamic import (i.e., object calls) and export (i.e., called by)

4http://www.distat.unimol.it/reports/coupling

metrics to capture the coupling between classes and objects at
runtime.

While there have been a number of research papers defining
and using coupling metrics for various tasks, there has been
only one study [10] that investigated if (any) coupling metrics
align with developers’ opinions. However, the study by Revelle
et al. [10] defined and evaluated only structural and semantic
coupling metrics. Moreover, those metrics were defined at
feature level only. Our study aims at bridging this gap and
studying which metrics (and sources of information) are useful
from a software developer’s perspective. Beck and Diehl [27]
measured the congruence between different types of coupling
(e.g., structural, semantic, evolutionary, fan-out similarities,
code clones and code ownership) and the modularity of a
system. Their study on 16 Java systems revealed that (i)
low coupling and high cohesion and (ii) information hiding
are the two of the modularity principles that are used in
practice. Our study complements Beck and Diehl’s study, by
identifying which types of coupling are perceived as more
useful by developers. Moreover, in [28], [29] they showed
that evolutionary coupling can be successfully used when
performing software clustering if substantially evolutionary
data is available.

The study by Counsell et al. [30] approached the issue
of investigating the developers’ perception of cohesion, sim-
ilarly to what we have done for coupling, i.e., by asking
24 experienced and novice IT professionals to evaluate the
cohesion of 10 classes from a Java system. They found that
the perceived cohesion (i) is not correlated with the class size,
(ii) is correlated to comments density, and (iii) does not depend
on the developers’ experience. The correlation they found
with comments somehow reflect the findings of our paper
concerning the capability of coupling to capture developers’
perception.

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of this study is to analyze different types of
coupling measures— structural, dynamic, semantic, and logi-
cal coupling— and investigate to what extent these measures
reflect developers’ perception of coupling.

The context consists of (i) objects, i.e., source code, exe-
cution traces, and change history of three Java open-source
systems, namely ArgoUML, JHotDraw, and jEdit; and (ii)
subjects providing their perception of the strength of coupling
between entities, identified by the different coupling mea-
sures. We recruited both original developers working on these
projects, as well as external developers: students, faculty mem-
bers, and industrial programmers. As for the subject software
systems, ArgoUML is an open-source UML modeling tool
with advanced features, such as reverse engineering and code
generation. JHotDraw is a Java framework for drawing 2D
graphics, initially developed to illustrate the applicability of
object-oriented design patterns. jEdit is an open-source textual
editor developed in Java and supports source code editing. The
choice of these three systems is motivated by the need to have:
(i) systems of different sizes that are not too small nor too



TABLE I
CHARACTERISTICS OF THE COUPLING MEASURES OF THE THREE OBJECT

SYSTEMS AND ANALYZED DATA

Measure Characteristic ArgoUML 0.34 JHotDraw 6.0b1 jEdit 2.4.1

Structural
KLOC 280 29 28
# of classes 1,889 289 245
Exploited metric Information-flow-based Coupling (ICP)

Dynamic Stmt. coverage reached 66% 67% 86%
Exploited metric Import Coupling Class Dynamic Message (IC CD)

Semantic Vocabulary Size 7,961 2,834 2,418
Exploited metric Conceptual Coupling Between Classes (CCBC)

Logical Period of analysis 1998-2006 2000-2005 2000-2012
Exploited metric Association rule-based Change Coupling

large, to allow developers to assess coupling among classes
in the context of an entire system; (ii) systems belonging
to different problem domains, (iii) availability of sufficient
historical data and (iv) the possibility to collect execution
traces by manually invoking specific features, which capture
the functionality that is exposed to the user through GUI. In
addition, in this way we avoid the need to have an accurate
test suite to derive execution scenarios. Table I presents the
characteristics of three systems involved in our study, relevant
for the four sources of information we used to obtain the
coupling measures.

A. Research Questions

The study answers the following research questions:
• RQ1: To what extent are the sources of information

for coupling measures complementary? This research
question is preliminary to the other two, and aims at
determining whether the four coupling measures capture
the same relations or whether, instead, there are links
captured by some measures and not by others.

• RQ2: To what extent are the sources of information
for coupling measures useful for capturing the strength
of coupling as perceived by developers? This research
question is the core of our study, and aims at investigat-
ing how developers of these three projects and external
ones, perceive the strength of coupling among classes as
identified by our four measures.

• RQ3: To what extent do coupling measures reflect the
mental model of developers when grouping together
classes? Finally, this research question considers the orig-
inal system modularization as an “oracle” for assessing
the coupling measures and determines to what extent a
state-of-the-art modularization tool, Bunch [18], is able to
produce—using the four measures—class clusters similar
to the original ones.

B. Variables and Procedure

Independent Variables. The independent variables of our
study are four representative and commonly used coupling
measures, each one exploiting a different source of informa-
tion. The first measure, the structural coupling is quantified
through the information-flow-based coupling (ICP) [21], by

statically analyzing the software source code5. ICP measures
the amount of information flowing into and out of a class via
parameters through method invocation (i.e., the measure sums
the number of parameters passed at each method invocation).
Like the majority of coupling measures in literature, this
measure is defined at the system level (i.e., for a given class c
all method calls between c and all other classes in the system
are taken into account). For our study we need to redefine ICP
to take into account the coupling between a pair of classes.
We used the pairwise ICP metric as redefined in [8], i.e., the
ICP between a pair of classes ci and cj is measured as the
number of method invocations in the class ci to methods in the
class cj , weighted by the number of parameters of the invoked
methods. Then, the overall information-flow-based coupling
between the classes ci and cj is computed as the maximum
between ICP (ci, cj) and ICP (cj , ci).

We collected execution traces by running the software on an
instrumented Java Virtual Machine6. For each software system
we collected a set of execution traces T = {t1, t2, . . . , tN}.
Each trace ti was collected by manually exercising a subset
of features of the system. For example, one feature associated
with ti was opening, saving, exporting and closing a file, or
creating a UML diagram (for ArgoUML), drawing a shape
(for JHotDraw) or editing some text (for jEdit). The dynamic
coupling between two classes ci and cj was computed by
slightly adapting the formula Import Coupling Class Dynamic
Message (IC CD) introduced by Arisholm et al. [15]. In its
original form, the IC CD(c) metric counts the total number
of distinct messages (i.e., method calls) sent from class c to all
the other classes in the system. However, similarly to the ICP
metric, for our purpose, we adapted the metric to quantify the
dynamic coupling between pairs of classes. In other words, the
adapted metric IC CD(ci, cj) counts all the distinct method
calls from objects of type ci to objects of type cj . Due to space
limitations, we refer the reader to the original formula defined
by Arisholm et al. [15] in Table 2. The only difference is that
our formula replaces IC CD(c1) with IC CD(c1, c2).

The third measure, the semantic coupling, is represented
by the Conceptual Coupling Between Classes (CCBC) metric
[8]. The CCBC is based on the lexical information derived
from comments and identifiers. Two classes are semantically
related if the terms present in their comments and identifiers
are similar. The conjecture is that if two classes contain
similar terms, it is likely that developers used them to describe
similar responsibilities. The CCBC between two classes ci
and cj is computed as the average textual similarity between
all unordered pairs of methods from class ci and class cj .
The textual similarity is computed using Latent Semantic
Indexing (LSI) [31]. The CCBC values are in [0 . . . 1], where 0
represents two classes having a totally different lexicon, while
1 represents two classes containing exactly the same text.

The fourth and last measure is the logical coupling. To
compute it we first extract change sets from the version control

5Static analysis is performed by using Eclipse’s AST parser.
6We used Eclipse’s TPTP (http://www.eclipse.org/tptp/)



system. For ArgoUML and jEdit we rely on SVN change
sets. JHotDraw uses CVS, therefore, we grouped together file
changes if the commit note and the committer name matched,
and if the time interval between them was less than 200
seconds [32]. Then, we applied association rule discovery,
similarly to the work by Ying et al. [24] and by Zimmermann
et al. [32] (using the R package arule and, specifically, the
Apriori [33] algorithm) to detect frequent itemsets in co-
changes (i.e., groups of files frequently changing together).
The rules are ranked in terms of (i) support of each itemset
X , supp(X) (i.e., the proportion of change sets that contain
the learned itemset), and (ii) confidence of a rule X → Y ,
defined as supp(X → Y )/supp(X) (i.e., the fraction of
change sets containing X where Y also appears). We set the
confidence threshold to 0.8 and the support threshold to 0.02.
The rationale was that (i) the learned rules must be precise
enough (hence, the high confidence threshold) and (ii) the
itemsets may appear in a limited percentage of the change sets
(hence, the low support threshold). Using these thresholds, we
assumed that there is a logical coupling between two files if
they appeared in a frequent itemset. Finally, we mapped files
to classes by analyzing each file’s source code.

Dependent Variables. To address these three research
questions, we relied on different dependent variables collected
through the procedures described below.

For RQ1, given a pair of measures Mi and Mj , we
compared the overlap between coupling links (i.e., pairs of
coupled classes) by computing the intersection of the sets
of coupling links identified by the two metrics. Note that in
this research question we were not interested in analyzing the
“value” of the identified coupling links (true or false), but only
in estimating the complementarity of these four measures.

For RQ2, we asked software developers to look into pairs of
classes and determine the extent to which they were coupled.
We selected a sample of 16 class pairs for each subject system
adhering to the following process:

1) we computed the coupling metrics (structural, dynamic,
semantic, and logical) between all pairs of classes in the
system;

2) for each coupling measure Mi, we selected (i) two pairs
of classes having the highest coupling (as stated by Mi)
and (ii) two pairs of classes having the lowest coupling
(as stated by Mi).

Thus, for each of the four coupling measures we selected
four pairs of classes from each system (hence the total of 16
pairs of classes per system). Using this sample we wanted to
investigate if the developers perception of high (low) coupling
aligns with the values of our underlying software metrics.

We used the following procedure to recruit participants for
our study:

1) Developers working on the three open-source systems.
We sent an invitation only to the topmost committers
for all the investigated classes7. In total, we invited 19
developers from ArgoUML, 7 from JHotDraw, and 15

7To identify such developers, we analyzed the history of software changes.

from jEdit. We received responses from 6, 3, and 3
developers, respectively. In the following, we will refer
to them as original developers.

2) Undergraduate and graduate students, academics, and
practitioners from around the world. Note that while the
original developers of the three systems were invited
to evaluate only the pairs of classes extracted from the
system that they were working on, academics and prac-
titioners were invited to evaluate pairs of classes on all
the three systems. Of the 96 invited, 64 (3 undergraduate
students, 33 MS students, 16 PhD students, 7 faculty,
and 5 people with industrial experience) participated in
our study, evaluating the strength of coupling between
the pairs of classes from all the systems. In the following
discussion, we will refer to them as external developers.

Each developer received an email (available in our replica-
tion package) with instructions on how to perform the task
and a link to the website where each developer could log
in to visualize and rate the class pairs. More specifically,
for each system, each of the 16 webpages provided to the
developers contained (i) a class pair to analyze (class names
only), (ii) hyper-links to the source code of these classes, (iii)
a hyper-link to the source code of the complete project, (iv) an
input form containing five radio buttons representing a Likert
scale [34] ranging from 1 (two classes are not coupled) to 5
(two classes are strongly coupled), and (v) a text field where
the participant could add explanations for their assessment.
Developers were allowed up to four weeks to complete this
survey. The study was designed to last no more than 2 hours.

The results of RQ2 were analyzed through box-plots and
statistical analysis using the Mann-Whitney test [35] (the
test was performed only on data collected from the external
developers, due to the limited number of original developers).
We grouped the pairs of classes evaluated by the develop-
ers into eight different groups: pairs having {low, high} ×
{semantic, structural, logical, dynamic} coupling. Then,
considering two groups at a time (e.g., high semantic coupling
vs. high structural coupling), we used the Mann-Whitney test
to analyze the statistical significance of the difference between
the coupling perceived by the developers in pairs of classes
classified as high or low coupled by the two different coupling
measures. The results were intended as statistically significant
at α = 0.05. However, since we performed multiple tests, we
adjusted our p-values using the Holm’s correction procedure
[36]. This procedure sorts the p-values resulting from n tests
in ascending order, multiplying the smallest by n, the next
by n − 1, and so on. We also estimated the magnitude of
the difference between the employed metrics. We used Cliff’s
Delta (or d), a non-parametric effect size measure [37] for
ordinal data. The effect size is small for d < 0.33 (positive as
well as negative values), medium for 0.33 ≤ d < 0.474 and
large for d ≥ 0.474 [37]. Clearly, our statistical analysis was
applicable only to the data provided by external developers,
since the number of data points obtained from the original
developers was too few to run statistical tests. However, we



TABLE II
OVERLAP BETWEEN THE COUPLING LINKS IDENTIFIED BY THE FOUR

MEASURES.
Project Measure #Links #Exclusive Links ∩ Str. ∩ Sem. ∩ Log. ∩ Dyn.

ArgoUML

Structural 124,346 48,471 – 61% <1% 2%
Semantic 1,078,663 1,002,358 7% – <1% <1%
Logical 180 0 24% 88% – 13%
Dynamic 3,138 89 89% 81% 1% –

JHotDraw

Structural 5,029 3,042 – 37% <1% 5%
Semantic 9,613 7,665 20% – <1% 2%
Logical 52 6 37% 39% – 29%
Dynamic 358 31 85% 64% 4% –

jEdit

Structural 1,924 822 - 54% <1% 13%
Semantic 21,152 19,953 5% – <1% 2%
Logical 87 5 52% 40% – 14%
Dynamic 453 50 84% 75% 2% –

used the data from the original developers to corroborate the
findings and analyze the results qualitatively.

Finally, for RQ3, we used each of the coupling measures to
reconstruct the modularization of the software systems. More
specifically, we simulated the original developers’ perception
of coupling, by assuming that they decomposed the system
trying to group together classes having similar responsibilities
(and thus, coupled). As starting point for the modularization
algorithm, we flattened the software structure, by putting all
the classes in the same package; then, we used the coupling
information to re-modularize the software. To this aim, we
relied on Bunch [18], which uses a hill-climbing search-based
optimization procedure to find a (near) optimal modularization,
which minimizes inter-module dependencies (i.e., coupling)
and maximizes intra-module dependencies (i.e., cohesion). In
our case, the dependencies between classes were provided
using the four studied coupling measures, one at a time.
The hill-climbing algorithm has been executed 30 times with
each measure and on each system to account for its inherent
randomness.

To assess the quality of the resulting re-modularization,
we compared it to the original decomposition, by computing
the MoJoFM [19] between the original modularization of the
subject systems (authoritative partitions, considered as oracle)
and the one proposed by Bunch. The MoJoFM is computed
as follows:

MoJoFM(A,B) = 1−
(

mno(A,B)

max(mno(∀A,B))

)
where mno(A,B) is the minimum number of Move or Join
operations one needs to perform in order to transform the
partition A into B, and max(mno(∀ A,B)) is the maximum
possible distance of any partition A from the partition B of
the oracle. Thus, MoJoFM returns 0 if a clustering algorithm
produces the farthest partition away from the oracle and it
returns 1 if a clustering algorithm produces exactly the oracle.

IV. ANALYSIS OF THE RESULTS

In this section we report the results aiming at answering the
three research questions formulated in Section III-A.

A. To what extent are the sources of information for coupling
measures complementary?

Table II shows for each system (i) the number of coupling
links (i.e., pairs of coupled classes) identified by each coupling

measure, (ii) the number of coupling links identified by each
measure but not by the other three (column #Exclusive Links),
and (iii) the percentage of links that overlap with each measure
(on the rows) and the other measures (on the column). For
example, for JHotDraw the semantic measure captures 37%
of the links identified by the structural measure, which in
turns captures the 20% of links identified by the semantic
measure. From Table II we can easily observe that the number
of links captured by four measures differ by an order of
magnitude. As expected, the semantic measure is the one
capturing more coupling relationships between pairs of classes.
This happens because semantic coupling is based on LSI (see
Section III), and thus, due to the clustering effect of LSI,
captures the degree of textual similarity between all class
pairs for each system. To alleviate this effect, we filtered out
spurious relationships using a threshold (i.e., we discarded
class pairs that had textual similarity lower than 0.1, similarly
to our previous work on exploiting semantic measures [38]).
Despite such a pruning, semantic measure still captures a high
number of coupling links, as shown in Table II. However, a
large subset of these coupled pairs of classes exhibit only low
semantic coupling (e.g., for ArgoUML, out of the 1,078,663
coupled pairs of classes identified, ∼ 350, 000 have a CCBC
value higher than 0.5 and only ∼ 2, 000 higher than 0.9).

The structural measure generally captures more coupling
links than the dynamic one, for two reasons. First, dynamic
coupling depends on achieved coverage (which in our case
is below 100% because we exercised features from the per-
spective of a developer, hence we did not cover everything).
Second, structural measures computed statically tend to over-
estimate the relations (i.e., method calls) between classes. In
other words, while the dynamic measure captures coupling
between two classes only if one class effectively invokes the
other at runtime, the structural one captures coupling between
two classes when there is a call between them in the source
code, which may or may not be triggered at run-time. Finally,
the relatively low number of logical dependencies identified
between classes is mostly due to the fact that change sets
generally included a limited number of classes. The mean
(median) size of a change set is 5 (1) for ArgoUML, 2 (1)
for JHotDraw, and 3 (2) for jEdit.

Concerning the complementarity of our four coupling mea-
sures, Table II shows how logical coupling captures very
few links that are not identified by at least one of the other
three measures (see column #Exclusive Links). Conversely,
both structural and semantic measures exclusively identify a
high number of coupling links and, as expected, the semantic
measure captures a high percentage of the links identified
by the other measures (due to the high number of links
identified by it). For example, for ArgoUML the semantic
measure captures 61%, 88% and 81% of the links identified
by the structural, logical, and dynamic measures respectively.
A strong overlap is also observed between the structural
and dynamic measures: for the three systems, the structural
measure captures on average 86% of the links identified by
the dynamic measure.



On the complementarity of coupling measures. The
semantic and structural measures identify a high number
of coupling links that other measures do not capture,
also partially complementing each other. Links identi-
fied by the logical and dynamic measures are, for the
most part, captured by the other two measures.

The results indicate that logical and dynamic coupling
measures may not be very useful. However, until now we
only analyzed the complementarity of these four measures,
without looking how such coupling links are perceived by the
developers. For example, it might be possible that the only
semantic coupling links recognized by developers are those
that were also identified by the logical measure. This analysis
is the core of our work and is investigated in the next two
research questions.

B. To what extent are the sources of information for coupling
measures useful for capturing the strength of coupling as
perceived by developers?

Figs. 1, 2, and 3 show boxplots of the Likert values which
represent the coupling perceived by the (original and external)
developers for ArgoUML, JHotDraw, and jEdit respectively,
while Table III shows the results of the Mann-Whitney test (p-
value) together with the descriptive statistics of the differences,
and Cliff’s d effect size (i.e., positive if the left-hand side
(lhs) measure is higher than the right-hand side (rhs)). Due
to the small number of original developers that responded
to our survey, the statistical analysis was performed only
considering external developers. Note that the results for high
coupling should be interpreted in favor of the lhs if the
mean/median/Cliff’s d are positive (because the higher the
score attributed by developers, the better), whereas for low
coupling they should be interpreted in favor of the lhs if
mean/median/Cliff’s d are negative (because the lower the
score attributed by developers, the better).

Concerning ArgoUML (see Fig. 1), both original and ex-
ternal developers perceived a strong coupling between pairs of
classes, indicated by the semantic measure as highly coupled
(median 5). Also note that for external developers, the seman-
tic measure appears to be the one that better aligns with their
perceived coupling, since it is the only one achieving a median
of 5 for the pairs with “highly coupled classes”. Moreover, the
Mann-Whitney test highlights a statistically significant differ-
ence between the coupling perceived by external developers
when looking at pairs of classes having high semantic coupling
and pairs of classes identified as highly coupled using the
remaining three measures (p-values are always < 0.01 - see
Table III, with a medium/high effect size). In addition, the
structural and dynamic measures are able to capture the high
coupling perceived by developers (both original and external)
relatively well, with a median ≥ 4. However, the logical
measure does not seem to align well with developers’ opinions
on this system.

To understand the reasons why the semantic measure
aligns better with developers’ opinions in this context,

TABLE III
PERCEIVED COUPLING OF EXTERNAL DEVELOPERS: MANN-WHITNEY

TEST (P-VALUE), DESCRIPTIVE STATISTICS OF DIFFERENCES, AND CLIFF’S
EFFECT SIZE (d). THE MEASURE THAT BETTER REFLECTS THE DEVELOPER

PERCEPTION IN EACH COMPARISON IS HIGHLIGHT IN BOLD FACE.

Test ArgoUML
p-value mean median st. dev. d

semantic high vs structural high <0.01 0.56 1.00 1.81 0.26
semantic high vs dynamic high <0.01 0.50 0.00 1.65 0.26
semantic high vs logical high <0.01 1.05 1.00 1.43 0.47
structural high vs dynamic high 0.74 -0.06 0.00 1.48 -0.02
structural high vs logical high 0.01 0.48 1.00 1.80 0.21
dynamic high vs logical high <0.01 0.55 0.00 1.59 0.24

semantic low vs structural low <0.01 -0.17 0.00 0.59 -0.10
semantic low vs dynamic low <0.01 -0.28 0.00 0.66 -0.16
semantic low vs logical low 0.03 -0.10 0.00 0.43 -0.07
structural low vs dynamic low 0.11 -0.11 0.00 0.74 -0.06
structural low vs logical low 0.25 0.07 0.00 0.63 0.03
dynamic low vs logical low 0.02 0.18 0.00 0.68 0.08

Test JHotDraw
p-value mean median st. dev. d

semantic high vs structural high <0.01 1.10 1.00 1.65 0.45
semantic high vs dynamic high <0.01 0.94 1.00 1.79 0.37
semantic high vs logical high <0.01 0.70 1.00 1.88 0.25
structural high vs dynamic high 0.45 -0.16 0.00 1.64 -0.05
structural high vs logical high 0.06 -0.40 0.00 2.04 -0.14
dynamic high vs logical high 0.45 -0.24 0.00 2.31 -0.09

semantic low vs structural low 0.08 -0.24 0.00 1.18 -0.08
semantic low vs dynamic low 0.08 0.21 0.00 0.98 0.14
semantic low vs logical low 0.42 0.07 0.00 1.18 0.09
structural low vs dynamic low <0.01 0.45 0.00 1.29 0.21
structural low vs logical low 0.06 0.31 0.00 1.41 0.16
dynamic low vs logical low 0.23 -0.14 0.00 1.09 -0.04

Test jEdit
p-value mean median st. dev. d

semantic high vs structural high <0.01 1.53 1.00 1.49 0.52
semantic high vs dynamic high <0.01 0.93 1.00 1.85 0.33
semantic high vs logical high <0.01 0.78 1.00 1.60 0.30
structural high vs dynamic high <0.01 -0.60 0.00 1.51 -0.21
structural high vs logical high <0.01 -0.75 -0.50 1.16 -0.33
dynamic high vs logical high 0.22 -0.15 0.00 1.35 -0.08

semantic low vs structural low <0.01 -0.60 0.00 1.16 -0.31
semantic low vs dynamic low <0.01 -1.14 -1.00 1.40 -0.56
semantic low vs logical low <0.01 -0.60 0.00 1.08 -0.32
structural low vs dynamic low <0.01 -0.54 0.00 1.28 -0.26
structural low vs logical low 0.97 0.00 0.00 0.71 -0.01
dynamic low vs logical low <0.01 0.54 0.00 1.28 0.26

we analyzed the feedback provided by six original de-
velopers of ArgoUML. One developer, when evaluating a
pair of classes (i.e., ActionVisibilityPrivate and
ActionVisibilityProtected) with high semantic cou-
pling stated: “these classes have a very high coupling even
if there is no cooperation between them”. This comment
highlights one important peculiarity of the semantic measure
(which is shared by the logical one): it does not require explicit
relations between two classes (e.g., method calls or inheritance
relations) to capture coupling between them. Indeed, the two
classes mentioned above implement very similar responsibili-
ties. Moreover, the semantic measure is the only one capturing
coupling between them.

Regarding the pairs of classes exhibiting low coupling, de-
velopers showed a coupling perception inline with the coupling
measures, except for the dynamic coupling, where even if the
median is 1, there is a wider distribution of values as compared
to the other measures (see Fig. 1).
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Fig. 1. Boxplots of developers’ evaluation on pairs of ArgoUML classes.

High
Sem.

High
Str.

High
Dyn.

High
Log.

Low
Sem.

Low
Str.

Low
Dyn.

Low
Log.

High
Sem.

High
Str.

High
Dyn.

High
Log.

Low
Sem.

Low
Str.

Low
Dyn.

Low
Log.

Original Developers External Developers

Fig. 2. Boxplots of developers’ evaluation on pairs of JHotDraw classes.
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Fig. 3. Boxplots of developers’ evaluation on pairs of jEdit classes.

However, there is a statistically significant difference be-
tween the coupling perceived by external developers on classes
having a low semantic coupling with those having low struc-
tural, dynamic, and logical coupling (p-value < 0.05 - see
Table III, although the effect size is low). This confirms that
the semantic measure provides a better approximation of the
coupling perceived by the developers. Also, logical coupling
exhibits good results in approximating coupling as perceived
by developers for low coupled classes, achieving significantly
better results than dynamic coupling (p-value 0.02).

We also analyzed the feedback from the original developers
to understand the limitations of the dynamic coupling. The
problem was mainly due to a pair of classes exhibiting low
dynamic coupling, but evaluated by almost all (original and ex-
ternal) developers as relatively strongly coupled (median is 3).
The two classes are AboutBox and FigCompartmentBox,

and an ArgoUML developer mentioned that “even if indirectly,
the two classes exhibit some form of coupling since they
implement similar jobs and changes to the GUI are likely
to involve both classes”. For these two classes, the only
measure capturing some coupling is the semantic one, with
CCBC=0.48. This further confirms the quality of the semantic
coupling.

ArgoUML findings. For pairs of classes exhibiting high
coupling, the scores for both original and external develop-
ers highlight the semantic measure as the one providing a
better approximation of their perceived coupling. However,
also structural and dynamic measures achieve good results.
Similar results are obtained for pairs of classes exhibiting low
coupling, but here the dynamic measure has been highlighted
as the least suitable one.

For JHotDraw (see Fig. 2) it can be noticed how, similarly



to ArgoUML, the semantic measure is the one that better
approximates (for highly coupled classes) the coupling per-
ceived by both original and external developers (median=5
for original developers, and median=4 for the external ones).
Indeed, the Mann-Whitney test reports a statistically signif-
icant difference between the coupling perceived by external
developers on pairs of classes having high semantic coupling
and the pairs of classes reported as highly coupled by the other
three measures (p-value always < 0.01, medium/high effect
size). As for the other three measures, the structural measure
is the most unsuited for capturing coupling between highly
coupled classes, even if there is no statistically significant
difference between structural, dynamic, and logical coupling.
The dynamic and the semantic coupling are the only ones that
properly capture low coupling, having median=1 for both orig-
inal and external developers (see Fig. 2). On the other hand,
the structural measure seems to be completely out of sync with
developers’ perception of low coupling. This is also confirmed
by the original developers’ feedback, which perceived the
pair of classes (ZoomTool, ZoomUpdateStrategy) as
coupled (median=3) and one of them explained that “these
classes are peer features participating in the same context”.
Also in this case, the semantic measure is the only one
capturing some form of coupling between these two classes
(i.e., CCBC=0.52). Nevertheless, we need to point out that the
semantic measure does not represent a silver bullet. We also
observed cases like the one for the class pair (AWTCursor,
Locator) classified as not coupled by the logical measure,
and confirmed as such by developers (median=1), where the
semantic measure reports a coupling of 0.41 (not very high,
nor as low as perceived by developers).

JHotDraw findings. The results confirm our previous find-
ings obtained for ArgoUML: the semantic measure is the one
that better approximates the coupling perceived by developers
on pairs of highly coupled classes, while there is no big
difference in performances of the other three measures. The
structural measure is the least suited for approximating the
perceived coupling for low coupled classes.

Finally, for jEdit most of the results observed on the other
two systems are confirmed (see Figure 3). In particular, the
semantic measure is still the one that better aligns with de-
velopers’ perceptions for highly-coupled classes (median=4.5
for original developers and 4 for external), achieving also
statistically significant differences when compared to the other
three measures (p-value always < 0.01, medium/high effect
size). The logical coupling is the second best measure for this
system, with statistically significant differences with respect
to the structural one (p-value < 0.01, with a medium effect
size), which turned out to be the most inefficient for capturing
high coupling. On this system, the semantic measure also
works particularly well for capturing low coupling, as its
performances are significantly better than the other measures
(p-value < 0.01 in all cases, with a medium effect size).

jEdit findings. The semantic measure is, by far, the most
aligned with developers’ perception of coupling. The struc-
tural measure, as observed on JHotDraw, does not properly

capture cases of highly perceived coupling, while the logical
coupling achieves good results.

Coupling captured by the experimented measures
and perceived by developers. The semantic measure
is the closest measure to the developers’ perception of
coupling. This result can be explained by the fact that
developers embed their knowledge and design rationale
in the comments and identifiers in code, information that
is captured by the semantic measure. Surprisingly, the
structural coupling is the one exhibiting more inconsis-
tencies, especially when capturing low coupling, even
more than the semantic measure.

C. To what extent do coupling measures reflect the mental
model of developers when grouping together classes?

Table IV reports the descriptive statistics for the MoJoFM
achieved by each of the four coupling measures when re-
constructing the original software modularization of the three
software systems. The semantic measure is the one achieving
better reconstruction accuracy with respect to the original
design (average MoJoFM=0.60), followed by structural (0.53),
dynamic (0.43), and logical (0.04) measures. These results
confirm what we observed in RQ2: the semantic measure is the
best one in capturing the developers’ perceived coupling even
if, overall, none of the measures achieve very good results
in this evaluation. In addition, they suggest that semantic
coupling should be considered as a useful source of informa-
tion when performing modularization, although the research
performed in the past mainly used static [18] or dynamic [39]
information. It is also important to highlight the relatively low
performance achieved by the logical measure, which may be
not due to the low quality of coupling relationships, but rather
to the incomplete information (i.e., coupling links) provided
by this measure to the clustering algorithm. For example,
for the 1,782,272 possible pairs of classes in ArgoUML,
the logical coupling only provides information for about 180
pairs, making it impossible for the clustering algorithm to
even approximate the original decomposition. In essence, this
indicates that logical coupling could be used for some purpose
(e.g., to identify change impacts [24], [32]), but may not be
suitable for modularization purposes.

Ability to reconstruct the original modularization.
The semantic measure is confirmed as the most suitable
for capturing the coupling perceived by developers—in
terms of the original modularization—followed by the
structural and the dynamic measures.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. They are primarily related to the
way we measured structural, dynamic, logical and semantic
coupling. For structural [21] and conceptual [8] coupling, we
used measures that are available in literature. For dynamic
coupling, we used a measure derived by the one defined by
Arisholm et al. [15] that we adapted to capture the coupling



TABLE IV
MOJOFM ACHIEVED WITH BUNCH PROVIDING AS INPUT THE FOUR

EXPERIMENTED COUPLING MEASURES.

Project Measure MoJo FM
Mean Median St. Dev.

ArgoUML

Structural 0.57 0.62 0.11
Semantic 0.65 0.69 0.12
Logical 0.03 0.03 0.01
Dynamic 0.26 0.29 0.10

JHotDraw

Structural 0.42 0.43 0.16
Semantic 0.46 0.49 0.10
Logical 0.03 0.03 0.00
Dynamic 0.25 0.26 0.08

jEdit

Structural 0.59 0.59 0.09
Semantic 0.68 0.73 0.11
Logical 0.05 0.06 0.02
Dynamic 0.58 0.59 0.16

between pairs of classes, as opposed to capturing the coupling
between a class and all the other classes of a system. We
are aware they are based on a incomplete (66%-86%) code
coverage, however we preferred to use scenarios reflecting
users’ interaction rather than targeting full coverage. For
logical coupling, we relied on the approach by Zimmermann et
al. [32]. Concerning structural coupling, due to polymorphism
is possible that some call relationships were lost. However, this
does not invalidate the results of our study.

For RQ2 we only sampled 16 class pairs for each system
(eight having low cohesion and eight having high cohesion).
We are aware that these classes may not be fully representative
of the whole system, however we opted for such a choice to
allow developers enough time to assess each pair.

Another construct threat is that, for RQ3, we assumed that
the original modularization reflects the developers’ perception
of coupling. We understand that this may not be fully accurate
because developers could have decided to group classes based
on other reasons than coupling level. Nevertheless, the use of
original modularization as an oracle for clustering approaches
is a well-established practice [40], [18].

Threats to internal validity concern co-factors that could
influence our results, and they are mainly related to various
measurement settings used in our study. For RQ3, we choose
the Bunch settings used by other approaches in the literature
[18], although we are aware that our results for RQ3 could
have changed if we used different settings. Also, to limit
variability of the results due to randomness, we iterated the
hill-climbing based modularization 30 times.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. Where appropriate we used
non-parametric statistical tests (Mann-Whitney) and effect size
measures (Cliff’s delta) to show statistical significance for the
obtained results. Clearly, we could perform statistical tests
only on the results collected from external developers. Due
to the limited size of the sample, for the original developers
we discussed results from a qualitative standpoint.

Threats to external validity concern generalization of the
obtained results. The main threat could be related to re-
cruiting students and professional—in addition to original

developers—to assess the coupling between classes. All par-
ticipants had previous experience in developing complex Java
systems, and in performing program comprehension tasks;
however we are aware that knowledge and perception about
the systems could not be compared to those of the original
developers. Nevertheless, their indications are pretty consistent
with the ones provided by the original developers.

Another threat to external validity concerns the choice of
coupling measures. Although we used measures available in
the literature, we are aware that other kinds of measures—
based on the same sources of information—could have ex-
hibited different results. However, our aim was to investigate
the coupling contribution provided by the different sources of
information, rather than by the specific measure.

Last, but not the least, we limited this study to three Java
open source systems. This was mainly due to the fact that
we could provide only a limited number of class pairs to be
evaluated in a reasonable amount of time.

VI. CONCLUSION AND FUTURE WORK

This paper reported an empirical study aimed at investi-
gating to what extent coupling measures based on structural,
dynamic, semantic and logical information capture the devel-
opers’ perception of coupling. The study has been conducted
on three Java open-source projects, ArgoUML, JHotDraw, and
jEdit, and consisted of (i) analyzing the complementarity of
coupling measures using four sources of information; (ii) in-
vestigating how developers of these three projects, as well as a
larger population of students, academics, and industry profes-
sionals rate the coupling links identified by the measures, and
(iii) investigating if these four measures are able to reproduce a
modularization close to that one of the original system, which
indirectly reflects the coupling perception among the classes
by original developers.

The results indicate that a large percentage of the links is
captured by semantic and structural measures, which seems
to complement each other. In addition, the semantic measure
aligns well with developers’ perceptions of coupling between
classes, better than other measures and seems to be the
most suitable to reconstruct the original modularization of a
software system.

In summary, our results suggest that coupling is not a
trivial quality attribute of a software system that could be
captured and measured using only structural information,
such as method calls. More sophisticated approaches, and
different source of information, need to be analyzed in order
to provide a better evaluation of the coupling perceived by
developers. To this end, the semantic coupling seems to reflect
the developers’ mental model when identifying interaction
between entities. This is because, in some cases, there are
latent coupling relationships—that do not manifest in terms
of structural dependencies—that could be identified only by
analyzing source code lexicon and comments.

Future work will aim at extending the study using different
kinds of metrics and sources of information. Also, we would
like to thoroughly investigate how different coupling measures



can be combined to provide better support for software engi-
neering tasks. Finally, we are planning to replicate this study
on other software projects.

ACKNOWLEDGMENT

The authors would like to thank the developers of Ar-
goUML, JHotDraw and jEdit systems, as well as the other de-
velopers that participated in our study. This work is supported
in part by NSF CCF-1016868 and NSF CCF-1218129 awards.
Any opinions, findings and conclusions expressed here are the
authors and do not necessarily reflect those of the sponsors.

REFERENCES

[1] W. Stevens, G. Myers, and L. Constantine, “Structured design,” IBM
Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.
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