
Detecting Similar Software Applications

Collin McMillan
College of William and Mary

Williamsburg, VA 23185
cmc@cs.wm.edu

Mark Grechanik
Accenture Technology Labs and U. of Illinois

Chicago, IL 60601
drmark@uic.edu

Denys Poshyvanyk
College of William and Mary

Williamsburg, VA 23185
denys@cs.wm.edu

Abstract—Although popular text search engines allow users
to retrieve similar web pages, source code search engines
do not have this feature. Detecting similar applications isa
notoriously difficult problem, since it implies that similar high-
level requirements and their low-level implementations can be
detected and matched automatically for different applications.

We created a novel approach for automatically detecting
Closely reLated ApplicatioNs (CLAN) that helps users detect
similar applications for a given Java application. Our main
contributions are an extension to a framework of relevance and
a novel algorithm that computes a similarity index between
Java applications using the notion of semantic layers that
correspond to packages and class hierarchies. We have built
CLAN and we conducted an experiment with 33 participants
to evaluate CLAN and compare it with the closest competitive
approach, MUDABlue. The results show with strong statistical
significance that CLAN automatically detects similar applica-
tions from a large repository of 8,310 Java applications with a
higher precision than MUDABlue.

I. I NTRODUCTION

Retrieving similar or related web pages is a feature of
popular search engines (e.g., Google, Ask.com, HotBot).
After users submit search queries, Google displays links
to relevant web pages along with a link labeledSimilar
next to each result. TheseSimilar links point to web
pages that the Google similarity algorithm computes by
aggregating many factors that include, but are not limited to,
the popularity scores of the retrieved pages, links among the
pages, and the links’ positions and sizes [11]. For example,
for the main ACM SigSoft page, Google returns three
top similar web sites: IEEE Computer Society, Software
Engineering Institute, and ESEC/FSE 20091.

Detecting similar applications is a notoriously difficult
problem, since it means automatically detecting that high-
level requirements for these applications match semantically
[19, pages 74,80] [26]. This situation is aggravated by the
fact that many application repositories are polluted with
poorly functioning projects [17]; a match between words in
requirement documents with words in the descriptions or in
the source code of applications does not guarantee that these
applications are relevant to the requirements. Applications
may be highly-similar to one another at a low-level of
the implementations of some functions even if they do not

1Last time checked: September 20, 2011.

perform the same high-level functionality [10]. Rarely do
programmers record any traceability links between software
artifacts, which belong to different applications, to establish
their functional similarity.

Knowing similarity between applications plays an im-
portant role in assessing reusability of these applications,
improving understanding of source code, rapid prototyping,
and discovering code theft and plagiarism [23], [25], [31],
[39], [42]. Enabling programmers to compare automatically
how different applications implement the same requirements
greatly contributes to knowledge acquisition about these
requirements and subsequently to decisions that these de-
velopers make about code reuse. Retrieving a list of similar
applications provides a faster way for programmers to con-
centrate on relevant aspects of functionality, thus savingtime
and resources for programmers. Programmers can spend
this time understanding specific aspects of functionality in
similar applications, and see the complete context in which
the functionality is used.

A fundamental problem of detecting closely related ap-
plications is in the mismatch between the high-level intent
reflected in the descriptions of these applications and low-
level implementation details. This problem is known as the
concept assignment problem[4]. For any two applications
it is too imprecise to establish their similarity by simply
matching words in the descriptions of these applications,
comments in their source code, and the names of program
variables and types. Since programmers typically invest a
significant intellectual effort (i.e., they need to overcome a
high cognitive distance [24]) to understand whether retrieved
applications are similar, existing code search engines do not
alleviate the task of detecting similar applications because
they return only a large number of different code snippets.

We created a novel approach for detectingClosely reLated
ApplicatioNs (CLAN). This paper makes the following con-
tributions:

• A major contribution of our approach is that CLAN
uses complete software applications as input, not only
natural language queries. This feature is useful when a
developer needs to find similar applications to a known
software application.

• We introduce a new abstraction that is relevant to
semantic spaces[18] that are modeled as existing

inheritance hierarchies ofApplication Programming
Interface (API)classes and packages.

• We extended a well-established conceptual framework
of relevance with our new abstraction. The intuition
behind our approach is that if two applications contain
functional abstractions in a form of inheritance hier-
archies and packages that contain API calls whose se-
mantics are defined precisely, and these calls implement
the same requirement (e.g., different API calls from a
data compression library), then these applications have
a higher degree of similarity than those that do not have
API calls that are related to some requirement. The idea
of using API calls to improve code search was proposed
and implemented elsewhere [5], [12], [13]; however,
this idea has never been used to compute similarities
between software applications.

• Based on this extension, we designed a novel algorithm
that computes a similarity index between Java applica-
tions, and we implemented this algorithm in CLAN and
applied to 8,310 Java applications that we downloaded
from Sourceforge. CLAN is available for public use2.

• We conducted an experiment with 33 Java programmers
to evaluate CLAN. The results show with strong statis-
tical significance that users find more relevant applica-
tions with higher precision with CLAN than those based
on the closest competitive approach MUDABlue3 [22]
and a system that combines CLAN and MUDABlue
that we implemented4.

II. OUR HYPOTHESISAND THE PROBLEM

In this section we use a conceptual framework for rele-
vance to define the concept of similarity between applica-
tions, formulate a hypothesis, and describe problems that we
should solve to test this hypothesis.

A. A Motivating Scenario

A motivating scenario for detecting similar application is
based on a typical project lifecycle in Accenture, a global
software consulting company with over 250,000 employees
as of February, 2012. At any given time, company consul-
tants are engaged in over 3,000 software projects. Since its
first project in 1953, Accenture’s consultants delivered tens
of thousand of projects, and many of these projects are sim-
ilar in requirements and their implementations. Knowing the
similarity of these applications is important for preserving
knowledge, experience, winning bids on future projects, and
successfully building new applications.

A typical lifecycle of a large-scale project involves many
stages that start with writing a proposal in response to a bid
from a company that needs an application. A major part of
writing a proposal and developing a prototype is to elicit

2http://www.javaclan.net
3http://www.mudablue.net
4http://www.clancombined.net

requirements from different stakeholders. There are quitea
few competing companies for each bid: IBM Corp, HP Corp,
Tata Consultancy Services to name a few. A winning bid
proposal has many components: well-elicited requirements,
preliminary models and design documents, proof of experi-
ence of building and delivering similar applications in the
past. Clearly, a company that submits a bid proposal that
contains these components as closely matching a desired
application as possible, will win the bid.

It is important to reuse these components from success-
fully delivered applications in the past - doing so will
save time and resources and increase chances of winning
the bid. It is shown that over a dozen different artifacts
can be successfully reused from software applications [21,
pages 3–5]. The process of finding similar applications starts
with code search engines that return code fragments and
documents in response to queries that contain key words
from elicited requirements. However, returned code frag-
ments are of little help when many other non-code artifacts
are required (e.g., different (non)functional requirements
documents, UML models, design documents).

Matching words in queries against words in documents
and source code is a good starting point, however, it does
not help stakeholders to establish how applications are
similar at a bigger scale. In this paper, we referapplication
as a collection of all source code modules, libraries, and
programs that, when compiled, result in the final deliverable
that customers install and use to accomplish certain business
functions. Applications are usually accompanied by non-
code artifacts, which are important for the bidding process.
Establishing their similarity at large from different similar
components of the source code is a goal of this paper.

The concept of similarity between applications is inte-
grated in the software lifecycle process as follows. After
obtaining the initial set of requirements, the user enters
keywords that represent these requirements into a search
engine that returns relevant applications that contain these
keywords. In practice, it is unlikely that the user finds an
application that perfectly matches all the requirements - if
it happens, then the rapid prototyping process is finished.
Otherwise, the user takes the returned applications and
studies them to determine how relevant they are to the
requirements.

After examining some returned application, the user de-
termines what artifacts are relevant to requirements, and
which ones are missing. At this point the user wants to
find similar applications that contain the missing artifacts
while retaining similarity to the application that the userhas
found. That is, using the previously found application, the
initial query is further expanded to include artifacts fromthis
application that matched some of requirements as the user
determined, and similar applications would contain artifacts
that are similar to the ones in the found application.

B. Similarity Between Applications

We define the meaning of similarity between applications
by using Mizzaro’s well-established conceptual framework
for relevance [32], [33]. In Mizzaro’s framework, similar
documents are relevant to one another if they share some
common concepts. Once these concepts are known, a corpus
of documents can be clustered by how documents are
relevant to these concepts. Subsequently all documents in
each cluster will be more relevant to one another when
compared to documents that belong to different clusters.
This is the essence of the cluster hypothesis that specifies
that documents that cluster together tend to be relevant to
the same concept [46].

Two applications are similar to each other if they imple-
ment some features that are described by the same abstrac-
tion. For example, if some applications use cryptographic
services to protect information then these applications are
similar to a certain degree, even though they may have
other different functionalities for different domains. Another
example is text editors that are implemented by different
programmers, but share many features: copy and paste, undo
and redo, saving data in files using standard formats. A
straightforward approach for measuring similarity between
applications is to match the names of their program variables
and types. The precision of this approach depends highly
on programmers choosing meaningful names that reflect
correctly the concepts or abstractions that they implement,
but this compliance is generally difficult to enforce [1].

C. Our Hypothesis

In Mizzaro’s framework, a key characteristic of rele-
vance is how information is represented in documents. We
concentrate onsemantic anchors, which are elements of
documents that precisely define the documents’ semantic
characteristics. Semantic anchors may take many forms. For
example, they can be expressed as links to web sites that
have high integrity and well-known semantics (e.g., cnn.com
or whitehouse.gov) or they can refer to elements of semantic
ontologies that are precisely defined and agreed upon by
different stakeholders.

This is the essence ofparadigmatic associationswhere
documents are considered similar if they contain terms with
high semantic similarities [36]. Our hypothesis is that by
using semantic anchors and dependencies among them it is
possible to compute similarities between documents with a
higher degree of accuracy when compared to documents that
have no commonly defined semantic anchors in them.

Without semantic anchors, documents are considered as
bags of words with no semantics, then the relevance of
these documents to user queries and to one another can be
determined by matches between these words. This is the
essence ofsyntagmatic associationswhere documents are
considered similar when terms (i.e., words) in these docu-
ments occur together [36]. For example, the similarity engine

MUDABlue uses syntagmatic associations for computing
similarities among applications [22]. The problem with this
approach is that computed relevance is relatively imprecise
when compared with CLAN as we show in Section V.

D. Semantic Anchors in Software

Since programs contain API calls with precisely defined
semantics, these API calls can serve as semantic anchors
to compute the degree of similarity between applications
by matching the semantics of these applications that is ex-
pressed with these API calls. Programmers routinely use API
calls from third-party packages (e.g., theJava Development
Kit (JDK)) to implement various requirements [5], [8], [12],
[13], [43]. API calls from well-known and widely used
libraries have precisely defined semantics unlike names of
program variables and types and words that programmers
use in comments. In this paper, we use API calls as semantic
anchors to compute similarities among applications.

E. Challenges

Our hypothesis is based on our idea that it is better
to compute similarity between programs by utilizing API
calls as semantic anchors that come from JDK and that
programmers use to implement various requirements. This
idea has advantages over usingVector Space Model (VSM)
where documents are represented as vectors of words and
a similarity measure is computed as the cosine between
these vectors [41]. One main problem with VSM is that
different programmers can use the same words to describe
different requirements (i.e., the synonymy problem) and they
can use different words to describe the same requirements
(i.e., the polysemy problem). This problem is a variation
of the vocabulary problem, which states that “no single
word can be chosen to describe a programming concept in
the best way” [9]. This problem is general toInformation
Retrieval (IR), but somewhat mitigated by the fact that
different programmers who participate in the projects use
coherent vocabularies to write code and documentation, thus
increasing the chance that two words in different applica-
tions may describe the same requirement.

The sheer number of API calls suggests that many of these
calls are likely to be shared by different programs that imple-
ment completely different requirements leading to significant
imprecision in calculating similarities. Our study shows that
out of 2,080 randomly chosen Java programs in Sourceforge,
over 60% of these programs useString objects and over
80% contain collection objects; these programs invoke API
calls that these string and collection classes exports [14].
If similarity scores are computed based on these common
API calls, most Java programs would be similar to one
another. On top of that, it is not computationally feasible to
compute similarity scores with high precision for hundreds
of thousands of API calls. It is an instance of a problem
known asthe curse of dimensionality, which is a problem

caused by the exponential increase in processing by adding
extra dimensions to a representational space [35].

Graphically, programs are represented as dots in a mul-
tidimensional space where dimensions are API calls and
coordinates in this space reflect the numbers of API calls
in programs. The JDK contains close to 115,000 API calls
that are exported by a little more than 13,000 classes and
interfaces that are contained in 721 packages. Computing
similarity scores between programs using VSM in a space
with hundreds of thousands of dimensions is not always
computationally feasible, it is imprecise, and difficult to
interpret. We need to reduce the dimensionality of this
space while simultaneously revealing similarities between
implemented latent high-level requirements.

III. O UR APPROACH

In this section we describe our key idea, provide back-
ground material on LSI that we use in CLAN, and explain
its architecture.

A. Key Idea

Our key idea is threefold. First, if two applications share
some semantic anchors (e.g., API calls), then their similarity
index should be higher than for applications that do not share
any semantic anchors. Sharing semantic anchors means more
than the exact syntactic match between the same two API
calls; it also means that two different API calls will match
semantically if they come from the same class or package.
This idea is rooted in the fact that classes and packages in
JDK contain semantically related API calls; for example,
the packagejava.security contains classes and API
calls that enable programmers to implement security-related
requirements, and the packagejava.util.zip exports
classes that contain API calls for reading and writing the
standardZIP and GZIP file formats. Thus we exploit
relationships between inheritance hierarchies in the JDK to
improve the precision of computing similarity. This idea is
related to semantic spaces where concepts are organized in
structured layers and similarity scores between documents
are computed using relations between layers [18]. Moreover,
recent work has shown that API classes and packages can be
used to categorize software applications using those classes
and packages [30].

Second, different API calls have different weights. Recall
that many applications have many API calls that deal with
collections and string manipulations. Our idea is to automat-
ically assign higher weights to API calls that are encountered
in fewer applications and, conversely to assign lower weights
to API calls that are encountered in a majority of applica-
tions. There is no need to know what API calls are used in
applications – this task should be done automatically. Doing
it will improve the precision of our approach since API calls
that come from common packages likejava.lang will
have less impact to skew the similarity index.

Finally, we observed that a requirement is often imple-
mented using combinations of different API calls rather
than a single API call. It means that co-occurrences of
API calls in different applications form patterns of imple-
menting different requirements. For example, a requirement
of efficiently and securely exchanging XML data is often
implemented using API calls that read XML data from a
file, compress and encrypt it, and then send this data over
the network. Even though different ways of implementing
this requirement are possible, detecting patterns in co-
occurrences of API calls and using these patterns to compute
the similarity index may lead to higher precision when
compared with competitive approaches.

B. Latent Semantic Indexing (LSI)

To implement our key idea we rely an IR technique called
Latent Semantic Indexing (LSI)that reduces the dimension-
ality of the similarity space while simultaneously revealing
latent concepts that are implemented in the underlying
corpus of documents [7]. In LSI, terms are elevated to an
abstract space, and terms that are used in similar contexts
are considered similar even if they are spelled differently.
LSI automatically makes embedded concepts explicit using
Singular Value Decomposition (SVD), which is a form of
factor analysis used to reduce dimensionality of the space
to capture most essential semantic information.

The input to SVD is anm× n term document matrix
(TDM). Each ofm rows corresponds to a unique term, which
in our case is either a class or a package name that contains
a corresponding API call that is invoked in a corresponding
application (i.e., document). Columns correspond to unique
documents, which in our case are Java applications. Each
element of the TDM contains the weight that shows how
frequently this API call is used in this application when
compared to its usage in other applications5. We cannot use
a simple metric such as the API call count since it is biased
– it shows the number of times a given API call appears
in applications, thus skewing the distribution of these calls
toward large applications, which may have a higher API call
count regardless of the actual importance of that API call.

SVD decomposes TDM into three matrices using a re-
duced number of dimensions,r, whose value is chosen
experimentally. The number of dimensions for LSI is com-
monly chosenr = 300 [7], [34]. One of these matrices
contains document vectors that describe weights that docu-
ments (i.e., applications) have for different dimensions.Each
column in this matrix is a vector whose elements specify
coordinates for a given application in ther–dimensional
space. Computing similarities between applications means
computing the cosines between vectors (i.e., rows) of this
matrix.

5Note that we do not consider the number of times each API call is
executed, e.g., in a loop. Instead, we count occurrences of API calls in
source code.

C. CLAN Architecture and Workflow

The architecture for CLAN is shown in Figure 1. The
main elements of the CLAN architecture are the Java Ap-
plications (Apps Archive) and the API call Archive, the
Metadata Extractor, the Search Engine, the LSI Algorithm,
and the Term Document Matrix (TDM) Builder. In TDM,
rows represent packages or classes that contain JDK API
calls that are invoked in Java applications and columns
represent Java applications. Applications metadata describes
different API calls that are invoked in the applications and
their classes and packages. The input to CLAN (i.e., a user
query) is shown in Figure 1 with a thick solid arrow labeled
(9). The output is shown with the thick dashed arrow
labeled(12).

CLAN works as follows. The Metadata Processor takes as
its inputs(1) the Apps Archive with Java applications and
API archive that contains descriptions of JDK API calls. The
Metadata Processor outputs(2) the Application Metadata,
which is the set of tuples<<<package, class>, API
call>,A > linking API calls and their packages and
classes to Java applicationsA that use these API calls.

Term-Document Matrix (TDM) Builder takes(3) Ap-
plication Metadata as its input, and it uses this metadata
(4) to produce two TDMs: Package-Application Matrix
(TDMP) and Class-Application Matrix (TDMC) that contain
TFIDFs for JDK packages and classes whose API calls
are invoked in respective applications. The LSI Algorithm
is applied(5) separately toTDMP and TDMC to compute
(6) class and package matrices‖C‖ and‖P‖. That is, each
row in these matrices contain coordinates that represent its
corresponding application in a multidimensional space with
respect to either classes or packages of API calls that are
invoked in this application.

Class-level and package-level similarities are different
since applications are often more similar on the package
level than on the class level because there are fewer packages
than classes in the JDK. Therefore, there is the higher
probability that two applications may have API calls that
are located in the same package but not in the same class.

Matrices‖C‖ and‖P‖ are combined(7) into the Simi-
larity Matrix using the following formula‖S‖= λC · ‖S‖C+

λP · ‖S‖P, where λ is the interpolation weight for each
similarity matrix, and matrices‖S‖C and‖S‖P are similarity
matrices for ‖C‖ and ‖P‖ respectively. These similarity
matrices are obtained by computing the cosine between the
vector for each application (i.e., a corresponding row in
the matrix) and vectors for all other applications. Weights
λP and λC are determined independently of applications.
Adjusting these weights enables experimentation with how
underlying structural and textual information in application
affects resulting similarity scores. In this paper we selected
λC = λP = 0.5, thus stating that class and package-level
scores contribute equally(8) to the Similarity Matrix.

2

11

109

Metadata
Extractor1

API
Archive

Apps
Archive

3Applications
Metadata

4

TDM Builder

TDMP TDMC

5||P||

LSI
Algorithm

7

6

8

Search
Engine

Similarity
Matrix

||C||

12

Figure 1. CLAN architecture and workflow.

The Similarity Matrix,‖S‖ is a square matrix whose rows
and columns designate applications. For any two applica-
tions Ai and A j , each element of‖S‖, Si j is the similarity
score between these applications that is defined as follows:

Si j =

{

0≤ s≤ 1, if i 6= j,

1, if i = j
.

It took us close to three hours to construct the TDM for
MUDABlue using Intel Xeon CPU W3540, 2.93GHz with
2GB RAM, less than one hour for TDM for the package- and
class-level TDMs for CLAN. Running SVD on these TDMs
took less than three hours for MUDABlue, and less than 30
minutes for the package- and class-level TDMs for CLAN.
For all three TDMs, we used the same corpus of 8,310 Java
projects from SourceForge with 114,146 API calls.

When the user enters a query(9), it is passed to the
Search Engine that retrieves relevant applications(10) with
ranks in the descending order using the Similarity Matrix. In
addition, the Search Engine uses the Application Metadata
(11) to extract a map of API calls for each pair of similar
applications. This map shows API calls along with their
classes and packages that are shared by similar applications,
and this map is given to the user(12).

IV. EXPERIMENTAL DESIGN

Typically, search and retrieval engines are evaluated using
manual relevance judgments by experts [28, pages 151-153].
To determine how effective CLAN is, we conducted an
experiment with 33 participants who are Java programmers.
Our goal is to evaluate how well these participants can
find similar applications to the ones that are considered
highly relevant to given tasks using three different similarity
engines: MUDABlue, CLAN, and an integrated similarity
engine that combines MUDABlue and CLAN.

A. Background on MUDABlue and Combined

MUDAblue is the closest relevant work to CLAN since
it provides automatic categorization for applications [22].
The cluster hypothesisspecifies that documents that cluster
together tend to be relevant to the same concept [46]. To
the best of our knowledge, there is no other system that is
competitive to CLAN in that it finds similar applications. We

faithfully reimplemented MUDABlue for our experiment as
it is described in the original paper [22].

The original MUDABlue was implemented and evaluated
on a small repository of 41 C applications that were selected
from five different categories from Sourceforge. Comparing
two similarity search engines that do not work with the same
code base or different granularity levels (i.e., applications
vs. code fragments) might introduce considerable threats
to validity. Sourceforge has a popular search engine and
contains a large Java repository online; Apps Archive is
populated with all Java projects from this repository, and
we applied MUDABlue as baseline approach to this archive
thus making its set of applications comparable with those of
CLAN.

Since Similarity Matrices of MUDABlue and CLAN
have the same dimensions, it is possible to construct a
combined matrix whose values are the average of the val-
ues of the MUDABlue and CLAN matrix elements at the
corresponding position. The intuition behind this combined
approach lies in integrating two approaches: MUDABlue
where every word in the source code of applications is taken
into consideration versus the CLAN approach where only
API calls with precisely defined semantics are considered.
A research question is whether this integration produces a
superior result when compared to each of the constituent
approaches. Experimenting with this combined Similarity
Matrix allows us to seek an answer to this question about
the benefit of the combined approach.

B. Methodology

We used a cross validation study design in a cohort of 33
participants who were randomly divided into three groups.
The study was sectioned in three experiments in which
each group was given a different engine to find similar
applications to the ones that we provided for given tasks.
Each participant used a different task in each experiment.
Participants translated tasks into key words, searched forrel-
evant applications using a code search engine, and selected
an application that matched their key words the best. We
call this applicationthe source application. Then a similarity
engine returned a list of top tentarget applicationsthat were
most similar to the source application. Thus each participant
used each subject engine on different tasks and different
applications in this experiment. Before the experiment we
gave a one-hour tutorial on using these engines to find
similar applications.

The next step was to examine the retrieved applications
and to determine if they are relevant to the tasks and
the source application. Each participant accomplished this
step individually, assigning a confidence level,C, to the
examined applications using a four-level Likert scale. Since
this examination is time consuming, manual and laborious
we asked participants to examine only top ten applications
that resulted from searches.

The guidelines for assigning confidence levels are the
following.

1) Completely dissimilar - there is absolutely nothing in
the target application that the participant finds similar
to the source application, nothing in it is related to the
task and the functionality of the subject application.

2) Mostly dissimilar - only few remotely related require-
ments are located in source and target application.

3) Mostly similar - a somewhat large number of imple-
mented requirements are located in the target applica-
tion that are similar to ones in the source application.

4) Highly similar - the participant is confident that the
source and the target applications share the same
semantic concepts expressed in the task.

All participants were computer science students from
the University of Illinois at Chicago who had at least six
months of Java experience. Twelve participants were upper-
level undergraduate students, and the other 21 participants
were graduate students. Out of 33 participants, 15 had
programming experience with Java ranging from one to three
years, and 11 participants reported more than three years
of experience writing programs in Java. Sixteen participants
reported prior experience with search engines, and eight said
that they never used code search engines before.

C. Precision

Two main measures for evaluating the effectiveness of re-
trieval are precision and recall [49, page 188-191]. The pre-
cision,Pr =

of retrieved applications that are similar
total # of retrieved applications ,

i.e., the precision of a ranking method is the fraction of
the topr ranked target applications that are relevant to the
source application, wherer = 10 in this experiment, which
means that each similarity engine returned top ten similarity
matches. Relevant or similar applications are counted only
if they are ranked with the confidence levels4 or 3. The
precision metrics reflects the accuracy of the similarity
search. Since we limit the investigation of the retrieved
applications to top ten, the recall is not measured in this
study.

We created the variable precision,P as a categorization
of the response variable confidence,C. We did it for two
reasons: improve discrimination of subjects in the result-
ing data and additionally validate statistical evaluationof
results. Precision,P imposes a stricter boundary on what is
considered reusable code. For example, consider a situation
where one participant assigns the level two to all returned
applications, and another participant assigns level threeto
half of these applications and level one to the other half.
Even though the average ofC = 2 in both cases, the
second participant reports much higher precision,P = 0.5
while the precision that is reported by the first participant
is zero. Achieving statistical significance with a stricter
discriminative response variable will give assurance thatthe
result is not accidental.

D. Hypotheses

We introduce the following null and alternative hypothe-
ses to evaluate how close the means are for theCs andPs
for control and treatment groups, whereC and P are the
confidence level and the precision respectively. Unless we
specify otherwise, participants of the treatment group useei-
ther MUDABlue or Combined approaches, and participants
of the control group use CLAN. We evaluate the following
hypotheses at a 0.05 level of significance.

H0 The primary null hypothesis is that there is no
difference in the values of confidence level and
precision per task between participants who use
MUDABlue, Combined, and CLAN.

H1 An alternative hypothesis toH0 is that there is
statistically significant difference in the values of
confidence level and precision between participants
who use MUDABlue, Combined, and CLAN.

Once we test the null hypothesisH0, we are interested
in the directionality of means,µ, of the results of control
and treatment groups. We are interested to compare the
effectiveness of CLAN (CN) versus the MUDABlue (MB)
and Combined (MC) with respect to the values of confidence
level, C, and precision,P.

H1: C of CLAN versus MUDABlue.
H2: P of CLAN versus MUDABlue.
H3: C of CLAN versus Combined.
H4: P of CLAN versus Combined.
H5: C of MUDABlue versus Combined.
H6: P of MUDABlue versus Combined.

The rationale behind the alternative hypotheses toH1 and
H2 is that CLAN allows users to quickly understand why
applications are similar by reviewing visual maps of their
common API calls, classes, and packages. The alternative
hypotheses to H3 and H4 are motivated by the fact that
if all words from source code are used in the analysis in
addition to API calls, it will worsen the precision with which
users evaluate retrieved similar applications. Finally, having
the alternative hypotheses toH5 and H6 ensures that the
Combined approach still allows users to quickly understand
how similar applications share the same semantic concepts
using their common API calls, classes, and packages.

E. Task Design

We designed 36 tasks that participants work on during
experiments in a way that these tasks belong to domains that
are easy to understand, and they have similar complexity.
The authors of this paper visited various programming
forums and internet groups to extract descriptions of tasks
from the questions that programmers asked. In addition,
we interviewed a dozen programmers at Accenture who
explained what tasks they worked on in the past year.

Additional criterion for these tasks is that they should
represent real-world programming tasks and should not be

biased towards any of the similarity search engines that are
used in this experiment. Descriptions of these tasks should
be flexible enough to allow participants to find different
matching applications for similarity search. This criterion
significantly reduces any bias towards evaluated similarity
search engines. These tasks and the results of the experiment
are available for download6.

F. Tasks

The following two tasks are examples from the set of 36
tasks we used in our experiment.

• Create an application for sharing, viewing, and explor-
ing large data sets that are encoded using MIME. The
data sets may represents blogs or genom sequences.
The data can be stored using key value pairs. The
application should support retrieving data items by
mapping keys to values.

• Implement a library for checking XPath expressions.
The checker should support compiling XPath expres-
sions, evaluating XPath expressions in the context of
the specified XML document and returning the results
as the specified type.

G. Threats to Validity

In this section, we discuss threats to the validity of this
experimental design and how we address and minimize these
threats.

1) Internal Validity: Participants. Since evaluating hy-
potheses is based on the data collected from participants,
we identify three threats to internal validity: Java proficiency,
motivation, and the uniformity among participants.

Even though we selected participants who had working
knowledge of Java, we did not conduct an independent
assessment of how proficient these participants were in Java.
The danger of having poor Java programmers as participants
of our experiment is that they can make poor choices of
which retrieved applications have higher similarity to the
source application. This threat is mitigated by the fact that all
participants from UIC have documented experience working
on course projects that required writing Java code, taking
classes on programming with Java, and having experience
working as Java programmers for commercial companies.

Tasks.Improper tasks pose a big threat to validity. If tasks
are too general or trivial (e.g., open a file and read its data
into memory), then every application that has file-related
API calls will be retrieved, thus inundating participants with
results that are hard to evaluate. On the other hand, if
application and domain-specific keywords describe a task
(e.g., astronomy and cosmic vacuum), only a few
applications will be retrieved that contain these keywords,
thus creating a bias towards MUDABlue. To avoid this
threat, we based the task descriptions on 12 specifications

6http://www.javaclan.net, follow the Experiment link.

(a) Confidence level,C. (b) Precision,P.

Figure 2. Statistical summary of the results of the experiment for C andP.The central box represents the values from the lower to upperquartile
(25 to 75 percentile). The middle line represents the median. The thicker vertical line extends from the minimum to the maximum value.
The filled-out box represents the values from the minimum to the mean, and the thinner vertical line extends from the quarter below the
mean to the quarter above the mean.

of different software systems that were written by different
people including professional programmers at Accenture.
While this diversification of tasks does not completely
eliminate this threat to validity, it reduces it significantly.

2) External Validity: To make results of this experi-
ment generalizable, we must address threats to external
validity, which refer to the generalizability of a casual
relationship beyond the circumstances of our experiment.
The fact that supports the validity of this experimental design
is that the participants are representative of professional
Java programmers since some of them have already joined
workforce and others will do soon. A threat to external
validity concerns the usage of search tools in the industrial
settings, where applications may not use third-party API
call libraries. However, it is highly unlikely that modern
large-scale software projects can be effectively developed,
maintained, and evolved without this reuse.

V. RESULTS

In this section, we report the results of the experiment and
evaluate the null hypotheses.

A. Results of Hypotheses Testing

We use one-way ANOVA and t-tests for paired two sample
for means to evaluate the hypotheses that we stated in
Section IV-D.

1) Variables: A main independent variable is the similar-
ity engine (MUDABlue, CLAN, Combined) that participants
use to find similar Java applications. Dependent variables are
the values of confidence level,C, and precision,P.

2) Testing the Null Hypothesis:We used ANOVA to
evaluate the null hypothesisH0 that the variation in an
experiment is no greater than that due to normal variation of
individuals’ characteristics and error in their measurement.
The results of ANOVA confirm that there are large differ-
ences between the groups forC with F = 11.7> Fcrit = 3
with p≈ 9.7·10−6 which is strongly statistically significant.
The meanC for the MUDABlue approach is 2.03 with
the variance 1.12, which is smaller than the meanC for
Combined, 2.3 with the variance 1.13, and it is smaller than
the meanC for CLAN, 2.42 with the variance 1.08. Based
on these results we can reject the null hypothesis and we
accept the alternative hypothesisH1.

However, the results of ANOVA confirm that there are
insignificant differences between the groups forP with F =

3.04< Fcrit = 3.09 with p = 0.052. The meanP for the
MUDABlue approach is 0.33 with the variance 0.06, which
is smaller than the meanP for Combined, 0.45 with the
variance 0.06, and it is smaller than the meanP for CLAN,
0.47 with the variance 0.057. Aggregating the values ofC
into P changes the results of the statistical test making it
difficult to reach a conclusion, and it requires more precise
statistical tests, specifically, t-tests for paired two sample for
means, which we describe below.

A statistical summary of the results of the experiment
for C and T (median, quartiles, range and extreme values)
are shown as box-and-whisker plots in Figure 2(a) and
Figure 2(b) correspondingly with 95% confidence interval
for the mean.

Table I
RESULTS OF T-TESTS OF HYPOTHESES, H, FOR PAIRED TWO SAMPLE FOR MEANS FOR TWO-TAIL DISTRIBUTION , FOR DEPENDENT

VARIABLE SPECIFIED IN THE COLUMN VAR (EITHERC OR P) WHOSE MEASUREMENTS ARE REPORTED IN THE FOLLOWING
COLUMNS. EXTREMAL VALUES , MEDIAN , MEANS (µ), VARIANCE (σ2), DEGREES OF FREEDOM(DF), AND THE PEARSON

CORRELATION COEFFICIENT(PC),ARE REPORTED ALONG WITH THE RESULTS OF THE EVALUATION OF THE HYPOTHESES, I .E.,
STATISTICAL SIGNIFICANCE, p, AND THE T STATISTICS. A DECISION TO ACCEPT OR REJECT THE NULL HYPOTHESIS IS SHOWN IN

THE LAST COLUMN DECISION.

H Var Approach Samples Min Max Median µ σ2 DF PC p T Tcrit Decision

H1 C
CLAN 304 1 4 2 2.42 1.14 321 0.1 4.4·10−7 5.02 1.97 RejectMUDABlue 322 1 4 1 2.03 1.13

H2 P
CLAN 33 0 0.8 0.5 0.47 0.24

32 0.1 0.02 2.43 2.04 RejectMUDABlue 33 0 0.9 0.3 0.33 0.24

H3 C
CLAN 304 1 4 2 2.42 1.14

321 0.1 0.11 1.6 1.96 AcceptCombined 322 1 4 2 2.3 1.06

H4 P
CLAN 33 0 0.8 0.5 0.47 0.24 32 0.16 0.68 0.41 2.04 Accept

Combined 33 0 1 0.5 0.45 0.24

H5 C
MUDABlue 322 1 4 1 2.03 1.13 321 -0.02 0.002 -3.16 1.97 RejectCombined 322 1 4 2 2.3 1.06

H6 P
MUDABlue 33 0 0.9 0.3 0.33 0.24 32 0.21 0.04 -2.15 2.04 RejectCombined 33 0 1 0.5 0.45 0.24

3) Comparing MUDABlue with CLAN:To test the null
hypothesis H1 and H2 we applied two t-tests for paired two
sample for means, forC and P for participants who used
MUDABlue and CLAN. The results of this test forC and
for P are shown in Table I. The columnSamples shows
that the number of samples for CLAN is smaller than the
obtained number of samples for MUDABlue because three
participants missed one experiment. We replaced missing
values with the average value forC for CLAN for this exper-
iment. Based on these results we reject the null hypotheses
H1 and H2, and we accept the alternative hypotheses that
states thatparticipants who use CLAN report higher
relevance and precision on finding similar applications
than those who use MUDABlue.

4) Comparing MUDABlue with Combined:To test the
null hypotheses H5 and H6, we applied two t-tests for paired
two sample for means, forC andP for participants who used
the baseline MUDABlue and Combined. The results of this
test forC and for P are shown in Table I. Based on these
results we accept the alternative hypotheses H5 and H6 that
say thatparticipants who use Combined report higher
relevance and precision on finding similar applications
than those who use MUDABlue.

5) Comparing CLAN with Combined:To test the null
hypotheses H3 and H4, we applied two t-tests for paired
two sample for means, forC and P for participants who
used the baseline CLAN and Combined. The results of this
test forC and for P are shown in Table I. Based on these
results we accept the null hypotheses H3 and H4 that say
that participants who use CLAN do not report higher
relevance and precision on finding similar applications
than those who use Combined.

The result of comparing CLAN with Combined is some-
what surprising. We expected that combining two different

methods of computing similarities would yield a better result
than each of these methods alone. We have a possible
explanation based on debriefing of the participants. After
the experiment a few participants expressed confusion about
using the Combined engine, which reported similar applica-
tions even though these applications had no common API
calls, classes, or packages. Naturally, this phenomenon is
a result of the MUDABlue’s component of Combined that
computes a high similarity score based on word occurrences
while the CLAN’s component provides a low score because
of the absence of semantic anchors. At this point it is a
subject of our future work to investigate this phenomenon
in more detail. While combining CLAN and MUDABlue
did not produce noticeable improvements, combining textual
and structural information was successful for tasks of feature
location [34] and detecting duplicate bug reports [48].

VI. D ISCUSSION

During the experiment, programmers identified more rele-
vant applications using CLAN than when using MUDABlue
(see Section V). This result points to a key advantage
of CLAN: we help programmers effectively compare two
applications by elevating highly-relevant details of these
applications. Without CLAN, programmers must examine
the whole source code of different applications in order to
compare them. Consider the example in Figure 3. CLAN
returned the applicationmbox as the most-similar applica-
tion to MidiQuickFix for the task of recording music
data into a MIDI file. CLAN marked these applications
as similar because they share important elements of the
API (e.g.,com.sun.media.sound). For the same task,
MUDABlue did not placembox even in the top ten similar
applications toMidiQuickFix. This example illustrates
how CLAN improves over the state-of-the-art.

Figure 3. Part of the CLAN interface, showing the API calls common to
two applications. CLAN shows these calls in order to help programmers
concentrate on highly-relevant details when comparing applications.

VII. R ELATED WORK

The five most related tools to our work are those based
on CodeWeb by Michail and Notkin [31], MUDABlue by
Kawaguchi et al. [22], Hipikat by Cubranic and Murphy
[47] and CodeBroker by Ye and Fischer [50] and SSI
by Bajracharya, Ossher, and Lopez [2]. CodeWeb is an
automated approach for comparing and contrasting software
libraries based on matching similar classes and functions
cross libraries (via name and similarity matching) [31]. This
work was inspirational for us in extending the relevance
framework with semantic anchors. In contrast to CodeWeb,
CLAN also uses advanced dimensionality reduction tech-
niques based on LSI and SVD and computes similarities
among applications in the context of the complete soft-
ware repository. SSI creates an index of code based on
the keywords extracted from that code, and then expands
that index with keywords from other code that uses the
same API calls [2]. CLAN is different from SSI for three
reasons: 1) CLAN locates the applications similar to a given
application, and does not require a natural-language query,
2) CLAN is independent of the keywords chosen in the
code, and 3) CLAN has been evaluated using a standard
methodology with programmers against a state-of-the-art
approach (MUDABlue).

Source code search engines have become an active re-
search area in the recent years. While these approaches
are different from CLAN we believe that majority of these
approaches may benefit from the ideas implemented in
CLAN. Among these source code engines are CodeFinder
[15], Mica [43], Exemplar [13], SNIFF [5], Prospector [27],
Suade [38], Starthcona [16], XSnippet [40], ParseWeb [44],
SPARS-J [20], Portfolio [29], Sourcerer [3], S6 [37] and
SpotWeb [45]. While none of these approaches retrieve sim-
ilar applications to a given candidate software application,
these approaches are effective in retrieving relevant software
components from open source repositories.

Our previous work successfully uses the idea of functional
abstraction in a search engine called Exemplar to find highly
relevant applications. However, this idea has never been used
to compute similarities between software applications. Un-
like Exemplar, CLAN uses a novel combination of semantic
layers that correspond to packages and class hierarchies, and
based on our extension to Mizzaro’s relevance framework we
designed a novel algorithm based on LSI that computes a
similarity index between Java applications.

Other related approaches identify programs that are likely
to share the same origin rely on dynamic analysis and known
as API Birthmarks [42]. However, our approach uses static
information and assumes that similar applications may have
been implemented by different software developer teams.
Likewise, software bertillonage is a technique for comparing
software components based on the dependencies of those
components [6]. Bertillonage is designed to locate duplicate
code, however, and does not compute the similarity of
software which may be related, but is not duplicated.

VIII. C ONCLUSION

We created a novel search system for findingClosely
reLated ApplicatioNs (CLAN)that helps users find similar
or related applications. Our main contribution is in using
a framework for relevance to design a novel approach that
computes similarity scores between Java applications. We
have built CLAN and we conducted an experiment with
33 participants to evaluate CLAN and compare it with the
closest competitive approach, MUDABlue, and a system
that combines CLAN and MUDABlue. The results show
with strong statistical significance that CLAN finds similar
applications with a higher precision than MUDABlue.

ACKNOWLEDGMENTS

This work is supported by NSF CCF-0916139, NSF CCF-
0916260, and NSF CCF-1016868. Any opinions, findings
and conclusions expressed herein are the authors’ and do
not necessarily reflect those of the sponsors.

REFERENCES

[1] N. Anquetil and T. C. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. InCASCON,
page 4, 1998.

[2] S. K. Bajracharya, J. Ossher, and C. V. Lopes. Leveraging
usage similarity for effective retrieval of examples in code
repositories. InFSE, pages 157–166, 2010.

[3] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya.
A theory of aspects as latent topics. InOOPSLA ’08, pages
543–562, New York, NY, USA, 2008. ACM.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster.
Program understanding and the concept assigment problem.
Commun. ACM, 37(5):72–82, 1994.

[5] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine
using free-form queries. InFASE, pages 385–400, 2009.

[6] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle.
Software bertillonage: finding the provenance of an entity.In
MSR’11, pages 183–192, New York, NY, USA, 2011. ACM.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman. Indexing by latent semantic analysis.
JASIS, 41(6):391–407, 1990.

[8] U. Dekel and J. D. Herbsleb. Improving api documentation
usability with knowledge pushing. InICSE, 2009.

[9] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. The vocabulary problem in human-system commu-
nication. Commun. ACM, 30(11):964–971, 1987.

[10] M. Gabel and Z. Su. A study of the uniqueness of source
code. InProceedings of the eighteenth ACM SIGSOFT inter-
national symposium on Foundations of software engineering,
FSE ’10, pages 147–156, New York, NY, USA, 2010. ACM.

[11] GoogleGuide. Google similar pages: Finding similar pages.
http://www.googleguide.com/similarpages.html, 2010.

[12] M. Grechanik, K. M. Conroy, and K. Probst. Finding relevant
applications for prototyping. InMSR, page 12, 2007.

[13] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,
and C. M. Cumby. A search engine for finding highly relevant
applications. InICSE (1), pages 475–484, 2010.

[14] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi,
S. Crespi-Reghizzi, D. Poshyvanyk, C. Fu, Q. Xie, and
C. Ghezzi. An empirical investigation into a large-scale java
open source code repository. InESEM, 2010.

[15] S. Henninger. Supporting the construction and evolution
of component repositories. InICSE ’96, pages 279–288,
Washington, DC, USA, 1996. IEEE Computer Society.

[16] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. InICSE, 2005.

[17] J. Howison and K. Crowston. The perils and pitfalls of mining
Sourceforge. InMSR, 2004.

[18] X. Hu, Z. Cai, A. C. Graesser, and M. Ventura. Similarity
between semantic spaces. InCogSci’05, 2005.

[19] E. Hull, K. Jackson, and J. Dick.Requirements Engineering.
SpringerVerlag, 2004.

[20] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component rank: relative signif-
icance rank for software component search. InICSE ’03,
pages 14–24. IEEE Computer Society, 2003.

[21] C. Jones.Applied software measurement: assuring produc-
tivity and quality. McGraw-Hill, Inc., 3rd edition, 2008.

[22] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Mud-
ablue: an automatic categorization system for open source
repositories.J. Syst. Softw., 79(7):939–953, 2006.

[23] K. Kontogiannis. Program representation and behavioural
matching for localizing similar code fragments. InCASCON
’93, pages 194–205. IBM Press, 1993.

[24] C. W. Krueger. Software reuse.ACM Comput. Surv.,
24(2):131–183, 1992.

[25] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: Detection of
software plagiarism by program dependence graph analysis.
In KDD’06, pages 872–881. ACM Press, 2006.

[26] W. Liu, K.-Q. He, J. Wang, and R. Peng. Heavyweight
semantic inducement for requirement elicitation and analysis.
Semantics, Knowledge and Grid, 0:206–211, 2007.

[27] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. InPLDI ’05, 2005.

[28] C. D. Manning, P. Raghavan, and H. Schtze.Introduction to
Information Retrieval. Cambridge University Press, 2008.

[29] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and
C. Fu. Portfolio: Finding relevant functions and their usages.
In ICSE’11, 2011.

[30] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and
M. Grechanik. Categorizing software applications for main-
tenance. InICSM’11, 2011.

[31] A. Michail and D. Notkin. Assessing software librariesby
browsing similar classes, functions and relationships. InICSE
’99, pages 463–472, New York, NY, USA, 1999. ACM.

[32] S. Mizzaro. Relevance: The whole history.JASIS, 48(9):810–
832, 1997.

[33] S. Mizzaro. How many relevances in information retrieval?
Interacting with Computers, 10(3):303–320, 1998.

[34] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval. IEEE Trans. Software Eng., 33(6):420–432, 2007.

[35] W. B. Powell. Approximate Dynamic Programming: Solving
the Curses of Dimensionality (Wiley Series in Probability and
Statistics). Wiley-Interscience, 2007.

[36] R. Rapp. The computation of word associations: comparing
syntagmatic and paradigmatic approaches. In19th ICCL,
pages 1–7, Morristown, NJ, USA, 2002.

[37] S. P. Reiss. Semantics-based code search. InICSE ’09, pages
243–253, Washington, DC, USA, 2009.

[38] M. P. Robillard. Automatic generation of suggestions for
program investigation. InESEC/FSE-13, pages 11–20, New
York, NY, USA, 2005. ACM.

[39] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer. Detecting
similar java classes using tree algorithms. InMSR ’06, pages
65–71, New York, NY, USA, 2006. ACM.

[40] N. Sahavechaphan and K. Claypool. Xsnippet: mining for
sample code. InOOPSLA ’06, pages 413–430, New York,
NY, USA, 2006. ACM.

[41] G. Salton and M. J. McGill.Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., 1986.

[42] D. Schuler, V. Dallmeier, and C. Lindig. A dynamic birthmark
for java. In ASE ’07, pages 274–283.

[43] J. Stylos and B. A. Myers. A web-search tool for finding
API components and examples. InIEEE Symposium on VL
and HCC, pages 195–202, 2006.

[44] S. Thummalapenta and T. Xie. Parseweb: a programmer
assistant for reusing open source code on the web. InASE
’07, pages 204–213, New York, NY, USA, 2007. ACM.

[45] S. Thummalapenta and T. Xie. Spotweb: Detecting frame-
work hotspots and coldspots via mining open source code on
the web. InASE ’08, pages 327–336, 2008.

[46] C. J. van Rijsbergen.Information Retrieval. Butterworth,
1979.

[47] D. Čubranić and G. C. Murphy. Hipikat: recommending
pertinent software development artifacts. InICSE ’03, pages
408–418, 2003.

[48] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. InICSE, pages 461–470, 2008.

[49] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes:
Compressing and Indexing Documents and Images, Second
Edition. Morgan Kaufmann, 1999.

[50] Y. Ye and G. Fischer. Supporting reuse by delivering task-
relevant and personalized information. InICSE ’02, pages
513–523, New York, NY, USA, 2002. ACM.

