
Software Engineering in the Age of Data Privacy:
What and How the Global IT Community Can Share

and Learn
Mark Grechanik

The University of Illinois at
Chicago

Chicago, Illinois, USA
drmark@uic.edu

Fayola Peters
Department of CSEE,

West Virginia University,
West Virginia, USA
fpeters@gmail.com

Denys Poshyvanyk
Dept. of Computer Science
College of William & Mary

Williamsburg, VA, USA
denys@cs.wm.edu

Tim Menzies
Department of CSEE,

West Virginia University,
West Virginia, USA

tim@menzies.us

Abstract— It is notoriously difficult to both protect the
confidentiality of private data and make the data available for
different software engineering and maintenance tasks. While
there are often several options that achieve an equivalent level
of data protection, each option may have a unique impact on
software engineering tasks. The goal of this technical briefing
is to provide state-of-the-art overview of the research agenda,
solutions, and questions related to data privacy issues in
software engineering. One example of such a fundamental
question of software engineering is how can a data owner
protect private information so that the data subjects (e.g.,
persons, equipment) cannot be re-identified while the data
retains their efficacy for software engineering tasks?

Index Terms—Privacy, obfuscation, software engineering.

I. I. TUTORIAL STRUCTURE AND CONTENT

Target audience: This tutorial is for software developers and
managers who wish to learn how to build effective data
sharing mechanisms for their organizations.
Content: In the age of the Internet and Big Data, it is often
assumed that the data we need to solve any problem is
readily available. However, this is often not the case. While
there is much that we can learn from each other, there is
often little we dare to share. There are many reasons why
data is in short supply including issues of confidentiality and
a very real desire not to compromise an organization’s
competitive advantage. For these reasons, it is standard
practice to privatize data prior to its release. Until very
recently, the usual effect of such privatization was to damage
the data in such a way as to make data mining more difficult.
However, recent results show that it is possible to anonymize
the data without damaging the usefulness of this data [2-4].
This tutorial will present solutions and algorithms to a
number of software engineering problems. Also we will
present examples of real-world applications of these
techniques to tasks such as defect prediction, cross-company
repository mining and learning, software testing and program
comprehension.
Pre-requisites: Since this tutorial does not present complex
mathematical details or data structures, it has no
prerequisites and would be suitable for non-technical
managers and developers alike.
Proposed time: 3.5 hours.

II. TUTORIAL DETAILS

Creating and maintaining software is beset by many
challenges, which include protecting sensitive information.
Not only do recent data protection laws and regulations
around the world prohibit organizations from disclosing
confidential data, but they also impose stiff consequences
for these organizations should they accidentally release
sensitive information in software artifacts. Also, extracting
project data from organizations is often very difficult due to
business sensitivity associated with the data. Because of this
sensitivity, data owners who want to share limited amounts
of useful data (say, to advance scientific research leading to
improved software) need to do so without breaching any
data privacy laws or company privacy policies. Unless we
can address these concerns, continued progress in Big Data
field will be stalled. For these reasons, many researchers
question the practicality of sharing the data for different
research purposes. In a personal communication, Barry
Boehm reports he can release none of the data that his
COCOMO team collected after 1981. Similarly, at a recent
keynote address at ESEM’11, Elaine Weyuker doubted that
she will ever be able to release the AT&T data she used to
build defect predictors.

For this reason, many researchers explore methods to
anonymize the data. Unfortunately, a repeated result is that
the more we anonymize the data, the more useless it
becomes for certain utilities of certain tasks, for example,
classification. Grechanik et al. [2] and Brickell et al. [1]
report that the application of standard privacy methods such
as k-anonymity or l-diversity or t-closeness damages
inference power and offers little overall improvements in
privacy.

Two presenters of this tutorial (Grechanik and Peters) are
the authors of the two known algorithms that support
privacy while preserving our ability to mine that data for
different software engineering tasks. This tutorial will
present those algorithms, after a careful review of the
privacy literature. That is, this tutorial will give attendees a
summary of the state of the art as well as insight and
implementation details needed to deploy those methods
within their organization or apply them in their research.

In particular, the tutorial will cover the background
material and start with the business case for sharing the data
(e.g., cross-company results where we can learn effectively
from other organizations). Then the tutorial will overview
the theory of privacy: types of privacy (re-identification,
sensitive attribute disclosure) and measures (entropy,
increased privacy ratio, sensitive attribute disclosure). Then,
we will cover well-known algorithms such as k-anonymity,
t-closeness, feature and instance selection, classification
boundaries, suppressing and swapping. Finally, we will
present concrete applications of data privacy algorithms for
specific software engineering tasks such as bug prediction,
program comprehension, mining software repositories.

III. DETAILS FOR THE SAMPLE TASK -

OBFUSCATING SENSITIVE INFORMATION IN

SOFTWARE

In the past decade, there have been many publicized cases
of leaked source code that contained sensitive information
from well-known companies. Clearly, sensitive information
should be redacted in source code and other software
artifacts; however, doing this manually is difficult and time-
consuming. More importantly, blindly removing sensitive
information from software artifacts may severely reduce
program comprehension, thereby thwarting different
software maintenance and evolution tasks. Finding a
solution that balances the goals of privacy and program
comprehension in the context of software maintenance tasks
is one of the modern challenges of global software
development theory and practice.

Also, software engineers often do not even get access to
confidential data because of internal security rules that are
put in place by organizations that own these data and because
of different laws that regulate data protection and privacy.
This situation complicates basic software engineering tasks
such as testing. To give access to required data, data owners
typically use commercial tools to anonymize or “sanitize”
the data. Unfortunately, none of the existing tools takes into
account basic software engineering tasks such as testing,
which leads to situations where the anonymized data is of
little to no value for software engineers. Currently, software
engineers operate with little or no meaningful data, and it is a
great obstacle to creating good quality software. The goal of
this tutorial is to provide state-of-the art overview of the
research agenda and solutions to redact sensitive information
while preserving program comprehension and testing
coverage [2, 4] during vital software development and
maintenance tasks.

Moreover, we will discuss our vision of the future
development at the intersection of data privacy and different
software engineering tasks, for example, performance
management and secure code search engines that enable
developers to share and reuse source code without exposing
sensitive information. We will present multiple examples
and show possible solutions for these problems.

IV. DETAILS FOR THE SAMPLE TASK - MINING

SOFTWARE REPOSITORIES

Different software repositories mushroomed in the past
decade, many of which are closed and owned by large
organizations and companies. Stakeholders who are
engaged in maintaining software benefit from mining
software repositories for two main reasons. First, mining
software applications allows stakeholders to decide what
features (i.e., units of functionality) they should
implement in their new applications that are similar to the
applications from software repositories. Second,
stakeholders can determine what problems or bugs are
common to many applications, and in turn predict what
problems or bugs other applications are likely to
encounter. A common key assumption for all existing
mining approaches is that the source code of open-source
applications is always available. Unfortunately, it is often
not true in case of commercial software development.
Many organizations cannot release the source code of
their applications for various legal and organizational
reasons. Furthermore, consulting companies such as
Accenture, IBM, and HP Global Services do not own the
source code that they produce – their clients do.
Unauthorized disclosure of source code is embarrassing,
and the damage is multiplied when sensitive information
is revealed in software artifacts. In the past decade, there
have been many well-publicized cases of disclosing
sensitive information in software artifacts from different
well-known companies including Cisco, Facebook, and
Microsoft, Symantec. Moreover, even within the same
company or organization source code cannot be easily
shared – it is reported that NASA contractors are reluctant
to share data about mission critical errors, lest that data is
used against them during the bidding process. Therefore,
many external service providers use only aggregated
software metrics in the approaches for mining software
repositories. A fundamental problem of mining software
repositories is how to release different software metrics
that are obtained from the source code of applications to
external service providers for different SE tasks (e.g.,
defect and resource prediction) without revealing sensitive
information about software projects that these software
metrics describe. This is a new problem, an instance of
which for cross-company defect prediction was recently
addressed by Peters and Menzies [3]. However, many
other instances of this big and important problem have not
been addressed or even precisely formulated.

V. BIOS OF THE PRESENTERS

Mark Grechanik is an Assistant Professor at the
department of Computer Science of the University of
Illinois at Chicago. He earned his Ph.D. in Computer
Science from the department of Computer Sciences of the
University of Texas at Austin. In parallel with his academic

activities, Mark worked for over 20 years as a software
consultant for startups and Fortune 500 companies. Mark’s
research produces new algorithms and techniques with
which data owners can share sensitive data with external
testing organizations while protecting data privacy and
preserving testing efficacy. Some of his new approaches are
described in his paper that won the Best Paper Award at the
IEEE International Symposium on Software Reliability
Engineering (ISSRE’10).

Tim Menzies is a Professor of AI and SE at the Lane
Department of Computer Science and Electrical
Engineering, West Virginia University. He is the author of
over 200 refereed publications and one of the co-founders
for the PROMISE repository for repeatable SE experiments.
He serves on the steering committees of IEEE ASE and on
the editorial boards of IEEE TSE, the Empirical Software
Engineering journal, and the Automated Software
Engineering Journal. He was PC co-chair for IEEE ASE
2012.

Denys Poshyvanyk is an Assistant Professor at the
College of William and Mary in Virginia. He received his
Ph.D. degree in Computer Science from Wayne State
University in 2008. Since 2010, he has been serving on the
steering committee of the International Conference on
Program Comprehension (ICPC), chair elect in 2012. He
serves as a program co-chair for the 18th and 19th
International Working Conference on Reverse Engineering
(WCRE 2011 and WCRE 2012). He also serves as a
program co-chair for the 21st International Conference on
Program Comprehension (ICPC 2013).

Fayola Peters is a Ph.D. candidate at the Lane
Department of Computer Science and Electrical Engineering,
West Virginia University. Along with Grechanik, she is the
author of one of the two known algorithms (presented at
ICSE’12 [3]) that can privatize algorithms while still
preserving the data mining properties of that data.

REFERENCES

[1] Brickell, J. and Shmatikov, V., "The cost of privacy:
destruction of data-mining utility in anonymized data
publishing", in Proceedings of 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining (KDD'08), 2008, pp. 70-78.

[2] Grechanik, M., Csallner, C., Fu, C., and Xie, Q., "Is
Data Privacy Always Good For Software Testing?" in
Proceedings of 21st IEEE International Symposium on
Software Reliability Engineering (ISSRE'10), San Jose,
California, USA, November 1-4 2010, pp. 368-377.

[3] Peters, F. and Menzies, T., "Privacy and Utility for
Defect Prediction: Experiments with MORPH", in
Proceedings of 34th IEEE/ACM International
Conference on Software Engineering (ICSE'12),
Zurich, Switzerland, June 2-9 2012, pp. 189-199.

[4] Taneja, K., Grechanik, M., Ghani, R., and Xie, T.,
"Testing Software In Age Of Data Privacy: A
Balancing Act", in 8th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'11). Szeged, Hungary, 2011,
pp. 201-211.

