

Triaging Incoming Change Requests: Bug or Commit History, or Code Authorship?

Mario Linares-Vásquez1, Kamal Hossen2, Hoang Dang2, Huzefa Kagdi2, Malcom Gethers1, Denys Poshyvanyk1

Abstract — There is a tremendous wealth of code
authorship information available in source code. Motivated
with the presence of this information, in a number of open
source projects, an approach to recommend expert developers
to assist with a software change request (e.g., a bug fixes or
feature) is presented. It employs a combination of an
information retrieval technique and processing of the source
code authorship information. The relevant source code files to
the textual description of a change request are first
located. The authors listed in the header comments in these
files are then analyzed to arrive at a ranked list of the most
suitable developers. The approach fundamentally differs from
its previously reported counterparts, as it does not require
software repository mining. Neither does it require training
from past bugs/issues, which is often done with sophisticated
techniques such as machine learning, nor mining of source
code repositories, i.e., commits.

An empirical study to evaluate the effectiveness of the
approach on three open source systems, ArgoUML, JEdit, and
MuCommander, is reported. Our approach is compared with
two representative approaches: 1) using machine learning on
past bug reports, and 2) based on commit logs. The presented
approach is found to provide recommendation accuracies that
are equivalent or better than the two compared approaches.
These findings are encouraging, as it opens up a promising and
orthogonal possibility of recommending developers without the
need of any historical change information.

Keywords - code authorship; information retrieval; change

request; triaging; expert developer recommendations

I. INTRODUCTION
Software change requests, such as bug fixes and new

features, are an integral part of software evolution and
maintenance. Effectively supporting software changes is
essential to provide a sustainable high-quality evolution of
large-scale software systems. One of the change
management issues that has gained a wide attention in the
last few years is the automatic support for recommending
expert developers to address change requests [1, 3, 18-20,
24-26, 28, 29, 34, 37]. Change requests are typically
specified in a free-form textual description using natural
language (e.g., a bug reported to the Bugzilla system of a
software project). It is not uncommon in such projects to
receive tens of change requests daily that need to be resolved
in an effective manner (e.g., within time, priority, and quality

factors). Therefore, assigning change requests to the
developers with the right implementation expertise is
challenging, but certainly a much needed activity.

A number of approaches have been proposed to help
identify developers with the software maintenance task at
hand [1, 3, 18-20, 24-26, 28, 29, 34, 37]. At the change
request, there are broadly two types of approaches to
recommend developers to handle incoming change requests:
1) building a model that trains from the past bug reports
using their descriptions and developers who were assigned to
them [1, 2], and 2) using a combination of a concept location
technique to locate relevant source code to a bug request and
then mine the source code (commit) repository to
recommend developers [19, 21]. Both these approaches
require extensive mining of software repositories.

We present a novel approach to developer
recommendation that does not require mining of either a bug
or commit repository. Central to our approach is the use of
the author information present in the source code files.
Authors are typically found in the header comments of the
source code entities (e.g., file, class, method). Figure 1
shows the author mvw is found in first line of the header
comment of the file OperationNotationUml.java. Authors
mvw@tigris.org and jaap.branderhorst@xs4all.nl are found
in the header comments of the class OperationNotation
Uml.java and its method toString(), see the highlighted red
boxes. The premise of our technique is that the authors of
source code entities are best equipped to tackle any changes
needed in them. This authorship information can be
leveraged once relevant source code, to a change request, is
located. Therefore, we first employ an Information Retrieval
(IR) based concept location technique [12] to find relevant
code entities to a given change request. The authorship
information in these source code entities is then used to
recommend a ranked list of developers.

To evaluate the accuracy of our technique, we conducted
an empirical study on three open source systems: ArgoUML,
jEdit, and MuCommander. Precision and recall values of the
developer recommendations on a number of bug reports
sampled from these systems are presented. That is, how
effective our approach is at recommending the actual
developer who ended up fixing these bugs. Additionally, our
authorship-based approach is empirically compared with two
other approaches that require mining of software
repositories. The results show that our new approach

978-1-4673-2312-3/12/$31.00 ©2012 IEEE

1Computer Science Department
 The College of William and Mary

Williamsburg, VA 23185
{mlinarev, mgethers, denys}@cs.wm.edu

2Department of Computer Science
Wichita State University
Wichita, KS 67260-0083

{mxhossen, hndang, huzefa.kagdi }@wichita.edu

performs as well as, or better than, the two other competitive
approaches in terms of recommendation accuracy.

Our paper makes the following noteworthy contributions:
• A novel developer recommendation approach for

incoming change request that is centered on the code
authorship information. Our approach is
lightweight, as it does not require software
repository mining. To the best of our knowledge,
there is no other such approach in the literature.

• A comparative study of our approach with two other
approaches that are based on mining of software
repositories. The results show that our lightweight
approach can perform equally well, or better than,
the heavy weight mining approaches.

II. CODE AUTHORSHIP BASED APPROACH TO
DEVELOPER RECOMMENDATION

Our approach to triaging incoming change requests
consists of the following two steps:

1. Given a change request description, we use Latent
Semantic Indexing (LSI) [10] to locate a ranked list of
relevant units of source code (e.g., files, classes, and
methods) that match the given description in a version
of the software system. This version is typically the
one in which an issue is reported or a snapshot of
source code before the change request is implemented
(e.g., bug is fixed).

2. The authors of the units of source code from the
above step are then analyzed to recommend a ranked
list of developers to deal with those units (e.g.,
classes). Here, authors are the developers listed in the
source code files, typically in the header comments of
entities (files, classes, and/or methods).

A. Locating Relevant Files with Information Retrieval
In our approach, in order to locate textually relevant files,

we rely on an IR-based concept location technique [31]. This
technique can be summarized in the following steps:

1. Creating a corpus from software: The source code
is parsed using a developer-defined granularity level
(i.e., files) and documents are extracted from the
source code. A corpus is created so that each file will
have a corresponding document in the resulting
corpus. Only identifiers and comments are extracted
from the source code.

2. Indexing a corpus: The corpus is indexed using LSI
and its real-valued vector subspace representation is
created. Dimensionality reduction is performed in
this step, capturing the important semantic
information about identifiers and comments and their
latent relationships. In the resulting subspace, each
document has a corresponding vector. The steps 1
and 2 are performed offline once, while 3 and 4 are
repeated for a number of open change requests.

3. Using change requests: A set of words that
describes the concept of interest constitutes the initial
query. We used long descriptions of change requests,
i.e., the long description of a bug or a feature given by
the developer or reporter in the bug tracking system.

We did not use the follow-up comments. This query
is used as an input in the step 4 to rank the
documents.

4. Rank documents: Similarities between the user
query (i.e., change request) and documents in the
corpus are computed. The similarity between a query
reflecting a concept and a set of data about the source
code indexed via LSI allows for the generation of a
ranked list of documents relevant to that concept. All
the documents are ranked by the similarity measure in
descending order (i.e., the most relevant at the top and
the least relevant at the bottom).

B. Using Authorship to Recommend Expert Developers
The basic premise of this approach is that the developers

who are listed as authors in the source code files are likely to
best assist with their current or future changes. It is not
uncommon to have such authorship information available in
the open source development paradigms. Figure 1 shows an
example of a source code file and the author information
therein from the ArgoUML project.

The specifics of our approach are as the following:
1. Obtaining source code files: The source code of the top

relevant files that are retrieved by the concept location
component of our technique is first obtained. These
files are derived from the same release used by the
concept location component of our technique.

2. Converting files to srcML representation: The source
code files in the above step are converted to the srcML-
based representation. srcML is a lightweight XML
representation for C/C++/Java source code with
selective Abstract Syntax Tree information embedded
[9]. This conversion is done for the ease of extraction of
comments from the source code. We use srcML here;
however, this element of our approach can be easily
replaced by any lightweight source code analysis
method, including regular expressions.

3. Extracting header comments: All the header
comments are extracted from all the srcML files via a
straightforward XML processing. The header comments
are generally the first comment in a source code file,
source code classes, and/or methods. The header
comments typically contain the copyright, licensing, and
authorship information. Additionally, it may also
contain information about the (last version) change,
automatically inserted with a keyword expansion
mechanism from version-control systems. Figure 1
shows that the author mvw is found in first line of the
header comment of the file OperationNotationUml.java.
Authors mvw@tigris.org and
jaap.branderhorst@xs4all.nl are found in the header
comments of the class OperationNotationUml.java and
one of its methods, see the highlighted areas in red.

4. Extracting authors from comments: The content and
format of the author listing in the header comments may
vary across systems. From a thorough manual
examination of a number of open source projects, we
devised regular expressions to extract the authors from
the header comments. Authors are extracted from each

of the relevant files produced by the concept location
component. Note that the same developer could have
multiple identities. We extracted and compiled all the
entities of each developer from the project resources,
and mapped them to a unique identifier. To match
author to change requests, we collected names, email
addresses, and user IDs from the project’s Bugzilla,
Subversion, and web site. A large percentage of
identities were matched automatically via string
matching or with heuristics (e.g., IDs were a part of
email-ids or abbreviated from names). About 15-20%
of identities required a manual mapping. For example,
the identities Michiel van der Wulp (full name),
mvw@tigris.org (email address) and mvw (user name)
represent the same developer, and this developer is
mapped to the identity mvw. Similarly, the identities
jaap.branderhorst@xs4all.nl and jaap represent the
same developer, and this developer is mapped to the
identity jaap.

5. Ranking authors: There is a one-to-many relationship
between an IR query, i.e., description of a bug bi, and
source code files. Given a user provided cutoff point of
n, we get the n top ranked source code files f1, f2, …., fn
for the bug bi. Also, there is a one-to-many relationship
between the source code file and authors. That is, each
file fi may have multiple authors; however, it is not
necessary for all the files to have the same number of

authors. For example, the file f1 could have two authors
and the file f2 could three authors. Two files may have
common authors.

Given a user provided cutoff point of m, we need to get the
top m ranked authors (developers). We use a frequency-
based approach to rank authors. The hypothesis is that the
higher the occurrence of an author in the relevant files to a
change request, the more knowledgeable that author is in
handling that particular request. We take a union of all the
authors appearing in all the n files. This union gives us a set
of cardinality d unique authors. For each author di, we count
the number of files in which he/she appears. Once a
frequency count of each author is obtained, all the authors
are sorted in descending order of their file frequency counts.
From this sorted list of authors, we recommend the top m
ranked authors that are the most likely developers to assist
with fixing the bug/change request in question. We break
ties using the information of their file ranks and lexical
positions in the source code file. That is, if two developers
d1 and d2 have the same frequency count, we rank the
developer d1 higher if it first appears in a file ranked above
the first file in which the developer d2 is found. If we cannot
break the ties with file ranks, we use the developers’ first
lexical positions in the source code file. That is, the
developer d1 will be ranked ahead of the developer d2, if both
appear in the same file; however, d1 first appears ahead of d2
in the source code text. The lexical positions in a way
correspond to the fileàclassàmethod hierarchy. At the
same level, e.g., file, they are picked in the order they appear
in the text. The entire authorship-processing step on
ArgoUML, jEdit, and MuCommander datasets (see Table)
took approximately a minute and a half on a commodity
desktop running Ubuntu.

C. An Example from ArgoUML
Here, we demonstrate the workings of the approach using

an example from ArgoUML. The change request of interest
here is the bug# 4078. The reporter described it as follows:

“Operation box in CallAction proppanel is too small”.

We consider the above textual description to be a concept
of interest. We collected the source code of ArgoUML 0.22
(the bug was not fixed as of this date). We parsed the source
code of ArgoUML using the class-level granularity (i.e., each
document is a class). After indexing with LSI, we obtained a
corpus consisting of 1,449 documents and containing 5,488
unique words. We formulated a search query using the bug’s
textual description, which was used as an input to LSI-based
concept location tool. The results of the search (i.e., a
ranked list of relevant files) are summarized in Table I.

The contents of the ten files in Table I were processed
with our authorship analysis component. Table II shows the
authors extracted from each of the ten files listed in Table I.
For example, the file OperationNotationUml.java is
collectively authored by developers mvw and jaap, and the
file OperationNotation.java is authored by mvw. The
developers in the same file are listed in the lexical order in
which they appear in the source code file. For example, the

Figure 1. A snipped of the file OperationNotationUml.java

fromArogUML. The author mvw is found in the header comment of
the file, and the authors mvw@tigris.org and jaap.branderhors

t@xs4all.nl are found in the header comment of the class
OperationNotationUml and method toString(), which are all

highlighted in red boxes.

developer mvw first appeared ahead of the developer jaap in
the file OperationNotationUml.java.

The results obtained in Table II are input to our
frequency-based ranking mechanism to arrive at a ranked list
of developers to handle the bug# 4078. Table III shows the
ranked list of developers produced after the application of
the ranking mechanism. The developer mvw ends up at the
top because it appears in five files (see Table II for the
specific files). The developers linus and euluis are tied
because both appear in one file. The first occurrence of both
of these developers in terms of the file location is also tied.
Both of them occur first in the file ModelerImpl.java.	 	 The
developer linus is given a higher rank than the developer
euluis because of their lexical orders in the file
ModelerImpl.java.

The bug# 4078 was fixed by the developer mvw, verified
with revision# 10060 in the subversion system of ArgoUML.
As it can be clearly seen, this developer was ranked first by
our approach (see Table III). The same bug report, when
operated with two other mining-software-repositories
approaches by Anvik et al. [1] and Kagdi et al. [19], did not
yield this correct developer in the top results.

III. CASE STUDY
The purpose of this empirical study was to investigate

how well our authorship-based approach recommends expert
developers to assist with incoming change requests. We also
compared our authorship-based approach (denoted here as
Authorship) with two previously published approaches. The
first approach is based on the mining of a bug report history
by Anvik et al. [1]), which we implmented (denoted here as
machine learning - ML). The second is based on mining of
source control repositories, i.e., commit logs, by Kagdi et al.
[19] (denoted here as xFinder). Therefore, we addressed the
following research questions (RQ) in our case study:

RQ1: How does the accuracy of the Authorship approach
compare to its two competitors that are based on software
repository mining, namely ML and xFinder?

RQ2: Is there any impact on the results of Authorship
when filtering of IR-based results with dynamic-analysis
information is included, i.e., an additional analysis cost
is incurred?

The rationale behind RQ1 is two-fold: 1) To assess
whether our Authorship can identify correct developers to
handle change requests in open source systems, and 2) how
well the accuracy of the authorship approach compares to the
ML and xFinder approaches.

We used LSI, an IR technique, to locate relevant files to a
given change request. Previous studies have shown that such
a technique is prone to false positives; for example, it may
recommend a file to be relevant when it is not [33]. The
purpose of RQ2 is to assess if incorporating an additional
software analysis technique to the first step of the Authorship
approach improves its accuracy results.

TABLE I. TOP TEN FILES RELEVANT TO THE BUG # 4078 IN ARGOUML
Rank Files

1 mdr/CommonBehaviorHelperMDRImpl.java
2 uml/OperationNotationUml.java
3 common_behavior/PropPanelCallAction.java
4 notation/OperationNotation.java
5 reveng/ModelerImpl
6 ui/FigClassifierBox.java
7 java/OperationNotationJava.java
8 mdr/MetaTypesMDRImpl.java
9 ui/UMLClassDiagram.java
10 mdr/CommonBehaviorFactoryMDRImpl.java

TABLE II. THE AUTHORS EXTRACTED FROM EACH OF THE TOP TEN FILES

RELEVANT TO THE BUG# 4078. THIS IS AN INTERMEDIATE RESULT
PRODUCED BY STEP 4 OF OUR RECOMMENDATION APPROACH.

Files Authors

mdr/CommonBehaviorHelperMDRImpl.java tfmorris,
rastaman

uml/OperationNotationUml.java mvw,jaap
common_behavior/PropPanelCallAction.java mvw

notation/OperationNotation.java mvw
reveng/ModelerImpl linus,euluis

ui/FigClassifierBox.java tfmorris
java/OperationNotationJava.java mvw

mdr/MetaTypesMDRImpl.java mvw

ui/UMLClassDiagram.java bobtarling,
jrobbins

mdr/CommonBehaviorFactoryMDRImpl.java tfmorris,rastaman
,thierrylach

TABLE III. THE FINAL RANKED LIST OF DEVELOPERS RECOMMENDED

Developer ID File
Freq Developer ID File Freq

mvw 5 linus 1
tfmorris 3 euluis 1

rastaman 2 bobtarling 1
jaap 1 thierrylach 1

We used a dynamic analysis technique beacause it was

found to improve the accuracy of IR-based feature location
and impact analysis approaches [16, 30]. That is, we want to
study if using the dynamic filtering of IR results within our
approach outperforms the accuracy of the ML, xFinder, and
Authorship without the dynamic filtering.

Next, we provide background information on the two
competitive approaches used in our evaluation.

A. ML on Past Bug Reports for Assigning Developers
To recommend developers, Anvik et al. [1] used a history

of previous bug reports from Eclipse, Firefox, and gcc that
had been resolved or assigned between September 1, 2004
and May 31, 2005 – training instances. The list of
developers assigned to, or resolved, each report was
considered the label (output field) for the textual documents
(input fields). The one-line summary and the full text
description of each bug report were considered a document,
and their words were considered the attributes that represent
the documents. Stops-words and non-alphabetic tokens were
removed and the vector representation was built computing
the tf-idf measure on the remaining words. Neither
stemming nor attributes selection methods were applied [1].

In order to compare our authorship approach to this
previously published technique, we reproduced the ML-
based approach of Anvik et al. [1]. We used the same
preprocessing steps (stops-words removal, no stemming, tf-
idf as a term weighting method, and no attribute selection
method). We did not find precise details on the parameters
and settings of the algorithms in [1], therefore, we only ran
experiments with two implementations of SVM provided by
Weka 1 (SMO and LibSVM) using a linear kernel. We
decided to use SVM because it was found to be a superior
classifier in several domains, such as text categorization [22],
software categorization [27, 39], and developers
recommendation [1, 3].

Recommending more than one developer requires ML
classifiers that provide more than one label for a testing
instance. It means that they should be able to deal with
multi-label classification problems. Anvik et al. [1] provide
results from recommendations with one, two, and three
developers. We used the ranking of the SVM classifiers on
the labels to build the developer recommendations from top
one to ten developers. Therefore, we ran the SVM
implementations using a one-against-all strategy to deal with
multiple developer recommendations. In this strategy, a
classifier is built for each of the developers in the dataset.
For example, for a dataset with ten developers, there should
be ten SVMs, each SVM is trained to recommend only one
developer, and the overall recommendation is built using the
recommendations of the ten classifiers. Overall, the ranking
of developers is based on the ranking provided by each
SVM. Thus, for a top-k recommendation we made the list
with the k developers with the top-k rankings.

B. xFinder Approach for Recommending Developers
xFinder approach to recommending experts to assist with

a given change request consists of the following two steps:
1. The first step is identical to the first step of the

presented authorship approach (see Section II.B).
2. The version histories of units of source code from the

above step are then analyzed to recommend a ranked
list of developers that are the most experienced and/or
have substantial contributions in dealing with those
units (e.g., classes/files).

We used the xFinder approach to recommend expert
developers by mining version archives of a software system
[20]. The basic premise of this approach is that the
developers who contributed substantial changes to a specific
part of source code in the past are likely to best assist in its
current or future changes. This approach uses the commits
in repositories that record source code changes submitted by
developers to the version-control systems (e.g., Subversion2
and CVS). xFinder considers the following factors in
deciding the expertise of the developer d for the file f:

• The number of commits, i.e., commit contributions
that include the file f and are committed by the
developer d.

1 http://www.cs.waikato.ac.nz/ml/weka/ (verified on 04/22/12)
2 http://subversion.tigris.org/ (verified on 04/22/12)

• The number of workdays, i.e., calendar days, of the
developer d with commits that include the file f.

• Most recent workday in the activity of the developer
d with a commit that includes the file f.

We used the source code commits of the three systems
from the history period before the releases that were chosen
for the LSI indexing to train xFinder.

C. Subject Software Systems
The context of our study is characterized by three open

source Java systems, namely jEdit v4.3, a popular text
editor, ArgoUML v0.22, a well-known UML editor, and
muCommander v0.8.5, a cross-platform file manager. The
sizes of these considered systems range from 75K to 150K
LOC and contain between 4K and 11K methods. The stats
of these systems are detailed inTable IV.

D. Building the benchmarks
For each of the subject systems, we created a benchmark

to evaluate our Authorship approach and compare it with
ML and xFinder. The benchmark consists of a set of change
requests that has the following information for each request:
a natural language query (request summary) and a gold set
of developers that addressed each change request.

The benchmark was established by a manual inspection
of the change requests (done by one of the authors), source
code, and their historical changes recorded in version-
control repositories. Subversion (SVN) repository commit
logs were used to aid this process. For example, keywords
such as Bug Id in the commit messages/logs were used as
starting points to examine if the commits were in fact
associated with the change request in the issue tracking
system that was indicated with these keywords. The author
and commit messages in those commits, which can be
readily obtained from SVN, were processed to identify the
developers that contributed changes to the change requests,
i.e., goldset, which forms our actual developer set for
evaluation. The details on the change requests are
summarized in Table V. Also, the minimum, mean,
maximum number of developers for the consdiered change
requests are presented. As it can be seen, a vast majority of
change requests are handled by a single developer (i.e.,
commit contributors). In some cases, we found the
commiter was different from the acutal developer who
contributed changes. The actual developer was mentioned
in the commit comments, we included that developer in our
goldset.

TABLE V. SUMMARY OF THE BENCHMARKS

System # Change
requests

Developers in gold set: descriptive stats
Min Mean Max

jEdit 143 1 1.06 2
ArgoUML 91 1 1.05 2
muCommander 92 1 1.01 2

TABLE IV. SUBJECT SOFTWARE SYSTEMS USED IN THE CASE STUDY
System Ver. LOC Files Methods Terms

jEdit 4.3 103,896 503 6,413 4,372
ArgoUML 0.22 148,892 1,439 11,000 5,488

muCommander 0.8.5 76,649 1,069 8,187 4,262

Our technique operates at the change request level, so
we also need input queries to test. These queries were
constructed by concatenating the title and the description of
the change requests referenced from the SVN logs.

E. Collecting and Using Execution Information
The idea of integrating IR with dynamic analysis was

previously defined in the context of feature location [23];
however, it was not used to improve the bug triaging before.
A single feature or bug-specific execution trace is first
collected. IR then ranks all the methods in the trace instead
of all the methods in a software release. Therefore, the run-
time information is a filter that eliminates files based on
methods that were not executed and are less likely to be
relevant to the change request. The dynamic information, if
and when available, can be used to eliminate some of the
false positives produced by IR [16, 30]. We denote a
version of our approach that uses execution information as
AuthorshipF. Similarly, the version of xFinder that uses
execution information is denoted as xFinderF. We also
included the dynamic filtering in xFinder to enable a fair
comparison. Further details on how we collected execution
information can be found elsewhere [16]..

F. Metrics and Statistical Analyses
We evaluated the accuracy of each one of the

approaches, for all the reports in our testing set, using the
same precision and recall metrics of Anvik et al. [1]. The
formulae for these metrics are listed below:
Precision = |Rec_devs ∩ Actual_devs| / |Rec_devs|
Recall = |Rec_devs ∩ Actual_devs| / |Actual_devs|
These metrics were computed for recommendation lists

of developers with different sizes (ranging from the top one
developer to ten developers). To analyze the differences
between the values reported by each approach, we computed
the average values on each dataset and compared them using
a precision-recall chart. Moreover, we applied the Mann-
Whitney test to validate whether there was a statistically
significant difference with α=0.05 between the results. We
used this non-parametric test because we did not assume
normality in the distributions of precision and recall results.
This test assesses whether all the observations in two
samples are independent of each other [17]. The other
purpose of the test is to assess whether the distribution of one
of the two samples is stochastically greater than the other.
Therefore, we defined the following null hypotheses for our
study (we do not list alternative hypotheses, but they should
be easy to derive from these null hypotheses respectively):

H0-1: There is no statistically significant difference
between the precision/recall of ML and Authorship.

H0-2: There is no statistically significant difference
between the precision/recall of xFinder and Authorship.

H0-3: There is no statistically significant difference
between the precision/recall of xFinderF and Authorship.

H0-4: There is no statistically significant difference
between the precision/recall of ML and AuthorshipF.

H0-5: There is no statistically significant difference
between the precision/recall of xFinder and AuthorshipF.

H0-6: There is no statistically significant difference
between the precision/recall of xFinderF and AuthorshipF.

H0-7: There is no statistically significant difference
between the precision/recall of AuthorshipF and
Authorship.

The hypotheses from H0-1 up to H0-6 were used to answer
RQ1, and H0-7 was used to answer RQ2.

G. Case Study Results
Figure 2 depicts the average precision and recalls for the

three systems3. For top-1 recommendations, we found that
Authorship provided the highest values of precision and
recall for ArgoUML, and xFinderF provided the highest
values of precision and recall for JEdit and MuCommander.
However, the behavior for recommendations with more
developers is different. For example, ML had the best
accuracy from top-2 to top-10 in the ArgoUML dataset;
xFinder and xFinderF had the best accuracy from top-1 to
top-10 developers in JEdit; Authorship had the best
accuracy for MuCommander from top-2 to top-10.

For top-1 recommendations in ArgoUML (Figure 2.a),
the Authorship provided the highest accuracy. However, we
did not found statistical significant difference between the
accuracies of the Authorship and the other techniques. One
possible explanation is that the acceptable precision values
for top-1 recommendations are either zero or one, and the
Authorship had a precision of one in 46 times, while ML had
a precision of one in 29 cases. Although the difference
between the precision of the Authorship and ML is 19%, the
distribution of zeros and ones in both approaches is very
similar.

For ArgoUML, from top-2 to top-10, the other
approaches outperformed the precision and recall reported
by the Authorship technique with a significant difference
from top-3 to top-10 (except for top-3 recall, top-8 recall,
and top-10 precision). The difference in precision from top-
2 to top-10 for xFinder vs. Authorship ranged from 0.8% to
4% with mean 2.5%, and for ML vs. Authorship ranged
from 0.3% to 6% with mean 3.4%; the difference in recall
from top-2 to top-10 for xFinder vs. Authorship ranged from
4.9% to 21.4% with mean 15.8%, and for ML vs.
Authorship ranged from 4.4% to 24.7% with mean 19.1%.
The reason behind this sharp decline in the Authorship
performance is due to the fact that the top-1 precision is
almost twice compared to the other techniques. Also, only a
single developer handles each of the change requests in the
benchmark. Increasing the recommendations from top-1 to
top-2 added the second recommendation as a false positive.
Therefore, adding an extra recommendation did not help
improve the precision.

3 We only report the results of SMO with parameter C = 1 and non-
standardized data because this SVM implementation in Weka is akin to the
SMV used by Anvik et al.

For JEdit (Figure 2.b), xFinder had a higher accuracy
than ML and Authorship from top-1 to top-10
recommendations with a significant difference (except for
top-5 and top-6 precision). Authorship exhibited higher
accuracy than ML from top-2 to top-10 recommendations
with a difference from top-3 to top-10; the difference in
precision from top-2 to top-10 for Authorship vs. ML ranged
from 5.9% to 7.5% with mean 6.8%, and the difference in
recall ranged from 11.9% to 30.8% with mean 23.5%.

For MuCommander (Figure 2.c), the Authorship showed
higher precision values than ML and xFinder from top-2 up
to top-10 recommendations with a statistical significant
difference (except for top-2). We found that the difference
in precision from top-2 to top-10 for Authorship vs. ML
ranged from 3.8% to 23.8% with mean 15.8%.

The Authorship outperformed precision and recall of ML
in JEdit and MuCommander. We found significant

differences between the precisions of the two approaches in
recommendations from the top-3 to top-10 developers, on
JEdit and MuCommander (Table VI). Therefore, for RQ1
we concluded that the precision of the Authorship
outperformed ML on JEdit and MuCommander datasets.

 Authorship also outperformed precision of xFinder in
MuCommander. We found significant differences between
the precisions of the two approaches in recommendations
from the top-3 to top-10 developers. Therefore, for RQ1,
we concluded that the precision of the Authorship
outperformed xFinder on MuCommander.

For RQ2, we did not find a conclusive support for a
significant difference in the accuracies of Authorship and
AuthorshipF. We could not reject H0-7 in any of the systems.
Therefore, we concluded that Authorship performs as well
as AuthorshipF in terms of accuracy. These results
suggest that the additional overhead of dynamic analysis in
the Authorship and xFinder was not justified, as there was
no statistically significant accuracy gain.

Now, we provide representative bugs from the three
systems detailing where Authorship outperformed the other
approaches. For example, Authorship achieved a precision
of 100% for the bug report# 2129419 in JEdit using the first
recommendation (top-1), while the highest precision for
xFinder (50%) was achieved with top-7, and the ML could
not predict the correct developer (kpuer) with any of the
recommendations. Other example where Authorship
provided a better accuracy without recommending a large
number of developers, compared to the other approaches, is
the bug report# 4031 in ArgoUML fixed by the developer
“mvw” (Michiel van der Wulp). For that report, Authorship
achieved a 100% precision in the very first recommendation
(top-1), while xFinder got a precision of 50% with five
recommendations, and ML was able to achieve only 33%
precision within top-3. Authorship and ML obtained 100%

Figure 2. Precision vs. recall charts for ArgoUML, JEdit, MuCommander.

These results are for four approaches (ML – SMO, xFinder, xFinderF,
Authorship, and AuthorshipF). Each curve has a point for each

recommendation from top-1 to10.

TABLE VI. HEAT-MAP SUMMARIZING RESULTS FOR TESTING
HYPOTHESES ACROSS ALL THE SYSTEMS. THE COLOR IN EACH CELL
REPRESENTS THE NUMBER OF TIMES THE MAN-WHITNEY TEST
SUGGESTED STATISTICALLY SIGNIFICANT DIFFERENCE: BLACK CELLS
MEAN THAT THE TEST FOUND SIGNIFICANT DIFFERENCE ACROSS ALL
THE THREE DATASETS; DARK-GRAY – TWO OUT OF THREE SYSTEMS;
LIGHT-GRAY – ONE SYSTEM; WHITE – NO SIGNIFICANT DIFFERENCE IN
ALL THE THREE SYSTEMS.

H 1 2 3 4 5 6 7 8 9 10

H0-1 P
H0-1 R
H0-2 P
H0-2 R
H0-3 P
H0-3 R
H0-4 P
H0-4 R
H0-5 P
H0-5 R
H0-6 P
H0-6 R
H0-7 P
H0-7 R

precision with top-1 recommendation for the bug report#
277 in MuCommander, however, the xFinderF achieved its
highest value of precision of 50% using a recommendation
with five developers.

IV. THREATS TO VALIDITY
We identify threats to validity that could influence the

results of our empirical study and our conclusions.

A. Construct Validity
We discuss threats to construct validity that concern the

means that are used in our method and its accuracy
assessment as a depiction of reality. In other words, do the
accuracy measures and their operational computation
represent correctness of developer recommendations?

Concept location may not find source code exactly
relevant to a bug or a feature: The IR-based concept location
tool did not exactly return the classes (files) that were found
in the commits related to the bug fixes or feature
implementations in all the cases. However, it is interesting
to note from the accuracy results that the classes that were
recommended were either relevant (but not involved in the
change that resolved the issue) or conceptually related (i.e.,
developers were also knowledgeable in these parts).

Accuracy measures may not precisely measure the
correctness of developer recommendations: A valid concern
could be a single measure of accuracy that was used in our
method does not provide a comprehensive picture, i.e., an
incomplete and monolithic view of accuracy from the
considered dataset. We used two widely used metrics
precision and recall in our study. We considered a gold-set
of developers who contributed source code changes to
address change requests (i.e., fixes). It is possible that there
are other developers who are equally capable of resolving
these change requests; however, such a gold-set is difficult to
ascertain (without involving the project stakeholders, for
example). Nonetheless, our undertaken benchmark provides
a careful accuracy values (perhaps conservative bounds).

B. Internal Validity
We discuss threats to internal validity that concern

factors that could have influenced our results.
Factors other than expertise are responsible for the

developers ending up resolving the change requests: In our
case study, we showed that there is a positive relationship
between the developers recommended with our approach to
work on change requests and the developers who fixed them
in the software repositories (i.e., considered baseline). It is
possible that other factors, such as schedule, work habits,
technology fade or expertise, and project policy/roles are
equally effective or better. A definitive answer in this
regard would require another set of studies.

C. External Validity
We discuss threats to external validity that concern

factors that are associated with generalizing the validity of
our results to datasets other than considered in our study.

Assessed systems are not representative: The accuracy
was assessed on three open source systems, which we

believe are good representatives of large-scale,
collaboratively developed software systems. However, we
cannot claim that the results presented here would equally
hold on other systems (e.g., closed source). If the authorship
information is not present in the source code files, our
approach may not applicable.

Sampled sets of change requests are not sufficient: The
size of the evaluation sample and the number of systems
remains a difficult issue, as there is no accepted “gold
standard” for developer recommendation problem. The
approach of “more, the better” may not necessarily yield a
rigorous evaluation, as there are known issues of bug
duplication [35, 40] and other noisy information in bug/issue
databases [4, 5]. Not accounting for such issues may lead to
biased results positively or negatively or both. The
considered sample sizes in our evaluation, however, is not
uncommon, for example, Anvik et al. [1] also considered 22
bug reports from Firefox in their evaluation. Nonetheless,
this topic remains an important part of our future work.

Accuracy offered by our method may not be practical:
We compared the accuracy results of our approach with two
other approaches. Our approach is competitive with these
approaches or better. We plan to pursue avenues such as a
case study on the use of our approach in the actual triage
process of the considered open source projects and the actual
developers’ feedback (on arguably non-trivial tasks).

Our approach may not be universally applicable:	 We do
not claim that our approach is universal. It might be possible
that there are some commercial or legacy projects that lack
the author information; however, we cannot categorically
assert it. Our work shows that there are many open source
projects with this information. An equivalent threat for such
projects with the history-history based approaches is that the
source code and/or bug history may not be available.

D. Reliability
Dataset not available: One of the main difficulties in

conducting empirical studies is the access (or lack of it) to
the dataset of interest. In our study, we used open source
datasets that are publicly available. Also, we detailed the
specifics of change requests that we used. The details of the
bug and accuracy data for ArgoUML, jEdit, and
MuComamnder are available at our online appendix
(http://www.cs.wm.edu/semeru/data/icsm2012-authorship/).

Evaluation protocol not available: A concern could be
that the lack of sufficient information on the evaluation
procedure and protocol may limit the reproducibility of the
study. We believe that our accuracy measures along with the
evaluation procedure are sufficiently documented to enable
replication on the same or even different datasets.

V. RELATED WORK
McDonald and Ackerman [26] designed a tool coined as

Expertise Recommender (ER) to locate developers with the
desired expertise. The tool uses a heuristic that considers
the most recent modification date when developers modified
a specific module. In the case that multiple modules are
considered, the developers that modified all the modules are

considered. ER uses vector based similarity to identify
technical support. Three query vectors (symptoms,
customers, and modules) are constructed for each request.
Subsequently, the vectors are compared to developer
profiles. This approach has been designed for specific
organizations and not tested on open source projects.

Minto and Murphy [28] developed a tool called Emergent
Expertise Locator (EEL), which is based on the framework
to compute coordination requirements between documents
that was presented by Cataldo et al. [8]. EEL mines the
history to determine how files were changed together and
who committed those changes. Using this data, EEL
suggests developers who can assist with a given problem.
Another tool to identify developers with the desired
expertise is Expertise Browser (ExB) [29]. The
fundamental unit of experience is the Experience Atom
(EA). The number of these EAs in a specific domain
measures the developer experience. A code change that has
been made on a specific file is the smallest EA.

Anvik and Murphy [2] conducted an empirical evaluation
of two techniques for identifying expert developers.
Developers acquire expertise as they work on specific parts
of a system. They term this expertise as implementation
expertise. Both techniques considered in the empirical
evaluation are based on mining code and bug repositories.
The first technique analyzes the check-in logs for modules
that contain fixed source files. Developers who recently
performed a change are selected and filtered. In the second
technique, the bug reports from bug repositories are
analyzed. The developers are identified from the CC lists,
comments, and who fixed the bug. Their study concludes
that both techniques have relative strengths in different
ways. In the first technique, the most recent activity date is
used to select developers.

Tamrawi et al. [38] used fuzzy-sets to the model bug-
fixing expertise of developers based on the hypothesis that
developers who recently fixed bugs are likely to fix them in
the near future. Hence, only recent reports were considered
to build the fuzzy-sets representing the membership of
developers to technical terms in the reports. For incoming
reports, developers are recommend by comparing their
membership to the terms included in the new report.

A text based approach uses machine learning technique to
automatically assign a bug report to a developer [1]. The
resulting classifier analyzes the textual contents of a given
report and recommends a list of developers with relevant
expertise. ExpertiseNet also uses a text-based approach to
build a graph model for expertise modeling [36]. Another
recent approach to facilitate bug triaging uses graph based
model based on Markov chains, which capture bug
reassignment history [18]. Matter et al. [25] used the
similarity of textual terms between a given bug report of
interest and source code changes (i.e., word frequencies of
the diff given changes from source code repositories). A
collection of past bug reports is not required by their
approach. Likewise, our approach does not require the

indexing of past bug reports.
There are a number of works on using MSR techniques to

study and analyze developer contributions. Rahman and
Devanbu [32] study the impact of authorship on code
quality. They conclude that authors with specialized
experience for a file is more important than general
expertise. Bird et al. [7] perform a study on large
commercial software systems to examine the relationship
between code ownership and software quality. Their
findings indicate that high levels of ownership are
associated with less defects. A description of characteristics
of the development team of PostgreSQL appears in a report
by German [15]. His findings indicated that in the last years
of PostgreSQL only two persons were responsible for most
of the source code. Working time of open source software
developers, based on email sent time, was analyzed by
Tsunoda et al. [39]. Bird et al. [6] analyzed the
communication and co-ordination activities of the
participants by mining email archives. Del Rosso [11] built
a social network of knowledge-intensive software
developers based on collaborations and interaction. Ma et
al. [24] proposed a technique that uses implementation
expertise (i.e., developers usage of API methods) to identify
developers. Weissgerber et al. [41] depicts the relationship
between the lifetime of the project and the number of files
and the number of files each author updates by analyzing
and visualizing the check-in information for open source
projects. German [14] provided a visualization to show
which developers tend to modify certain files by studying
the modification records (MRs) of CVS logs. Fischer et al.
[13] analyzed and related bug report data for tracking
features in software.

VI. CONCLUSIONS
To the best of our knowledge, our approach is the only

one to use a combination of a concept location technique and
the source code authorship for assigning expert developers to
change requests. It does not need to mine past change
requests (e.g., history of similar bug reports to resolve the
bug request in question) or source code change repositories
(e.g., commits to relevant source code to a change request).
A single-version source code analysis of a system is only
required. It expands the realm of available techniques to
developer recommendation to include non-mining domains.

Our approach is perhaps simple and lightweight.
Nonetheless, our empirical evaluation shows that it can be
quite effective and competitive with the other approaches.
For example, it is about 20% more accurate than an approach
that uses machine learning on past bug reports in one system.
Our empirical study did not show one technique
outperforming the others across the board (not even the two
previous techniques did so when compared with each other);
however, we believe that our work could open up an interes-
ting set of topics for future investigation. For example,
triaging incoming change requests: bug or commit history, or
code authorship, or all. When to use which approach and

why? Further investigation would enable us to determine the
exclusive and mutual benefits of these approaches.

ACKNOWLEDGMENT
We thank Bogdan Dit for collecting the execution

information that was used in this paper to evaluate xFinderF
and AuthorshipF. We also thank Boyang Li for this help in
the preliminary evaluation of a ML approach as a part of a
CSci 635 project. This work is supported in part by NSF
CCF-1156401, NSF CCF-1016868, NSF CCF- 1218129, and
NSF CCF-0916260 grants. Any opinions, findings and
conclusions expressed herein are those of the authors and do
not necessarily reflect those of the sponsors.

REFERENCES
[1] Anvik, J., Hiew, L., and Murphy, G. C., "Who should fix this bug?"

in Proceedings of 28th ICSE'06, pp. 361-370.
[2] Anvik, J. and Murphy, G., "Determining Implementation Expertise

from Bug Reports", in Proceedings of MSR'07, Minneapolis, MN.
[3] Anvik, J. and Murphy, G. C., "Reducing the effort of bug report

triage: Recommenders for development-oriented decisions",
TOSEM'11, 20/3.

[4] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and
Zimmermann, T., "What Makes a Good Bug Report?" in FSE'08.

[5] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S.,
"Extracting Structural Information from Bug Reports", in Proc. of 5th
MSR'08.

[6] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A.,
"Mining Email Social Networks", in Proc. of MSR'06, pp. 137-143.

[7] Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P.,
"Don’t Touch My Code! Examining the Effects of Ownership on
Software Quality", in Proc. of ACM SIGSOFT ESEC/FSE'11.

[8] Cataldo, M., Wagstrom, P., Herbsleb, J., and Carley, K. M.,
"Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools", CSCW'06, pp.353-
362.

[9] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-Based
Lightweight C++ Fact Extractor", in Proc. of IWPC'03, pp. 134-143.

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., "Indexing by Latent Semantic Analysis", Journal of
the American Society for Info Science, vol. 41, no. 6, 1990, pp. 391-
407.

[11] Del Rosso, C., "Comprehend and analyze knowledge networks to
improve software evolution", JSM), vol. 21, no. 3, 2009, pp. 189-215.

[12] Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D., "Feature
Location in Source Code: A Taxonomy and Survey", JSME, vol. doi:
10.1002/smr.567, 2012.

[13] Fischer, M., Pinzger, M., and Gall, H., "Populating a Release History
Database from Version Control and Bug Tracking Systems", in Proc.
of 19th ICSM'03, pp. 23-32.

[14] German, D. M., "An Empirical Study of Fine-grained Software
Modifications", EMSE, vol. 11, no. 3, September 2006, pp. 369-393.

[15] German, D. M., "A Study of the Contributors of PostgreSQL", in
Proc. of MSR '06, pp. 163 - 164.

[16] Gethers, M., Dit, B., Kagdi, H., and Poshyvanyk, D., "Integrated
Impact Analysis for Managing Software Changes", in Proc. of
ICSE'12.

[17] Hettmansperger, T. P., Statistical Inference Based on Ranks, 1st ed.,
John Wiley and Sons, 1984.

[18] Jeong, G., Kim, S., and Zimmermann, T., "Improving Bug Triage
with Bug Tossing Graphs", in Proc. of 7th ESEC/FSE 2009.

[19] Kagdi, H., Gethers, M., Poshyvanyk, D., and Hammad, M.,
"Assigning Change Requests to Software Developers", JSME, vol.
24, no. 1, January 2012, pp. 3–33.

[20] Kagdi, H., Hammad, M., and Maletic, J. I., "Who Can Help Me with
this Source Code Change?" in Proc. ICSM'08.

[21] Kagdi, H. and Poshyvanyk, D., "Who Can Help Me with this Change
Request?" in Proc. ICPC'09, pp. 273-277.

[22] Leopold, E. and Kindermann, J., "Text Categorization with Support
Vector Machines. How to Represent Texts in Input Space?" Machine
Learning, vol. 46, no. 1, January 2002, pp. 423-444.

[23] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature
Location via Information Retrieval based Filtering of a Single
Scenario Execution Trace", in Proc. of 22nd IEEE/ACMASE'07, pp.
234-243.

[24] Ma, D., Schuler, D., Zimmermann, T., and Sillito, J., "Expertise
Recommendation with Usage Expertise", in Proc. of 25th ICSM'09.

[25] Matter, D., Kuhn, A., and Nierstrasz, O., "Assigning Bug Reports
using a Vocabulary-Based Expertise Model of Developers", MSR'09.

[26] McDonald, D., Ackerman, M., "Expertise Recommender: A Flexible
Recommendation System and Architecture", in CSCW'00, pp. 231-
240.

[27] McMillan, C., Linares-Vásquez, M., Poshyvanyk, D., Grechanik, M.,
"Categorizing Software Applications for Maintenance", in ICSM'11.

[28] Minto, S., Murphy, G., "Recommending Emergent Teams", MSR '07.
[29] Mockus, A. and Herbsleb, J., "Expertise Browser: a Quantitative

Approach to Identifying Expertise", in Proc. 24th ICSE '02, pp. 503-
512.

[30] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., "Feature Location using Probabilistic Ranking of
Methods based on Execution Scenarios and Information Retrieval",
IEEE TSE, vol. 33, no. 6, June 2007, pp. 420-432.

[31] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept
Analysis with Information Retrieval for Concept Location in Source
Code", in Proc. of 15th IEEE ICPC'07, pp. 37-48.

[32] Rahman, F. and Devanbu, P., "Ownership, Experience and Defects: a
Fine-Grained Study of Authorship", in ICSE'11, pp. 491-500.

[33] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on
Assessing Feature Location Techniques", in Proc. of 17th ICPC'09,
pp. 218-222.

[34] Robles, G., González-Barahona, J., "Developer Identification
Methods for Integrated Data from Various Sources", MSR'05,
pp.106-110

[35] Runeson, P., Alexandersson, M., and Nyholm, O., "Detection of
Duplicate Defect Reports Using Natural Language Processing", in
Proc. of 29th IEEE/ACM ICSE'07, pp. 499-510.

[36] Song, X., Tseng, B., Lin, C., and Sun, M., "ExpertiseNet: Relational
and Evolutionary Expert Modeling", in Proc. of UM'5.

[37] Surian, D., Liu, N., Lo, D., Tong, H., Lim, E. P., and Faloutsos, C.,
"Recommending People in Developers' Collaboration Network", in
Proc. of 18th WCRE'11, pp. 379-388.

[38] Tamrawi, A., T. T. Nguyen, et al. (2011). Fuzzy Set and Cache-based
Approach for Bug Triaging. 13th European conference on
Foundations of software engineering (FSE'11), Szeged, Hungary.

[39] Tsunoda, M., Monden, A., Kakimoto, T., Kamei, Y., and Matsumoto,
K.-i., "Analyzing OSS Developers' Working Time Using Mailing
Lists Archives", in Proc. of MSR '06, pp. 181 - 182.

[40] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An Approach to
Detecting Duplicate Bug Reports using Natural Language and
Execution Information", in Proc. of 30th ICSE’08, pp. 461-470.

[41] Weissgerber, P., Pohl, M., and Burch, M., "Visual Data Mining in
Software Archives to Detect How Developers Work Together",
MSR'07.

