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Abstract—Software traceability is the ability to describe and
follow the life of a requirement in both a forward and backward
direction by defining relationships to related development arti-
facts. A plethora of different traceability recovery approaches use
information retrieval techniques, which depend on the quality of
the textual information in requirements and software artifacts.
Not only is it important that stakeholders use meaningful names
in these artifacts, but also it is crucial that the same names
are used to specify the same concepts in different artifacts.
Unfortunately, the latter is difficult to enforce and as a result,
software traceability approaches are not as efficient and effective
as they could be – to the point where it is questionable whether the
anticipated economic and quality benefits were indeed achieved.

We propose a novel and automatic approach for expanding
corpora with relevant documentation that is obtained using
external function call documentation and sets of relevant words,
which we implemented in TraceLab. We experimented with three
Java applications and we show that using our approach the
precision of recovering traceability links was increased by up
to 31% in the best case and by approximately 9% on average.
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I. INTRODUCTION

Software traceability is the ability to describe and follow
the life of a requirement in both a forward and backward
direction by defining relationships to related development
artifacts [29]. Recovering traceability links (TLs) (or traces)
between requirements and software artifacts automatically and
with high precision has a significant economic impact, since
TLs improve the quality of different software maintenance
tasks by enabling stakeholders to reveal errors and ambigu-
ities in requirements and to ensure that all requirements are
implemented and tested. Software traceability is especially
useful when it connects concepts from the problem domain
(where requirements are expressed using vague objectives or
wish lists) to the solution domain (i.e., the domain in which
engineers use their ingenuity to solve problems [33, pages
87,109]), e.g., the source code is a solution domain. When
creating TLs, stakeholders map high-level intent reflected
in the problem domain to low-level implementation details
in the solution domain thereby solving an instance of the
concept assignment problem [6]. It is highly desirable that
programmers who implement specific requirements work with
other stakeholders to record traces between requirements and
their implementations using traceability matrices. While this
is an ideal method, which likely leads to higher precision,
it contributes to the high cost of software [25]. In addition,

TLs are often recorded after software is implemented to avoid
interruption of software development, which makes the task of
recovering TLs approximate and error-prone.

Automating software traceability is a big and important
problem. Delegating the task of computing traces between
different artifacts to an automated tool saves cost and im-
proves various software maintenance efforts. Even with manual
traceability, some traces are erroneous, and validating these
traces also requires a large investment. It is reported that
less than 47% of Fortune 500 companies made their business
requirements traceable and well integrated into testing, making
software traceability as one of the biggest problems of software
engineering [15].

A plethora of different information retrieval (IR) ap-
proaches for recovering TLs automatically depend on the
quality of textual information in requirements and software
artifacts. Not only is it important that stakeholders use mean-
ingful names in these requirements and artifacts, but it is also
equally important that the same names are used to specify
the same concepts in different requirements documents and
artifacts. Unfortunately, the latter is difficult to enforce, and as
a result, software traceability approaches are not as efficient
and effective as they could be – to the point where it was
questionable whether the anticipated economic and quality
benefits were indeed achieved from traceability approaches.

A fundamental problem of using IR approaches for soft-
ware traceability is the mismatch in words that are used
in requirements and software artifacts to describe high-level
concepts. Words are fundamental blocks for existing trace-
ability approaches to compute similarities between artifacts,
and subsequently TLs, by matching words in these artifacts
(e.g., words in requirements documents, comments in the
source code, or the names of program variables and types).
If no match is found, then potentially correct TLs are never
recovered. This situation is aggravated by the fact that many
applications are developed by large teams where different
artifacts are created and maintained by different stakeholders;
matches between words that designate the same concepts are
not guaranteed.

Moreover, programmers routinely use Application Pro-
gramming Interface (API) calls from third-party vendors to
encode specific implementations of high-level concepts. For
example, encountering an instance of the class DESKeySpec
in the source code will undoubtedly lead a stakeholder to infer
that a requirement for encrypting sensitive data is implemented



in the fragment of the code that uses this instance, even though
the class name does not match any words in the requirements
documentation. Of course, the stakeholder uses the information
that comes from the descriptions of the API calls to obtain
a high-level concept and match it to requirements. This is
where our intuition lies: using relevant external documentation
to expand the corpora of different artifacts may lead to
uncovering more TLs with a higher degree of precision.

We observed that in industry many computer professionals
intuitively attempted to implement this approach in ad-hoc
ways. Some tried to merge corpora that they obtained from
different applications that belong to the same domain; others
mixed different related corpora to increase the probability of
retrieving correct TLs using different IR approaches [5]. Even
though stories that describe successful results are disseminated
about the effectiveness of these approaches, it is not clear how
scientifically valid these results are. In addition, expanding
corpora manually is an unsystematic and laborious effort
whose precision depends on how similar merged corpora are
perceived by stakeholders.

We propose an automatic approach for ENhancing TRAce-
ability usiNg API Calls and rElevant woRds (ENTRANCER).
The input to ENTRANCER is program source code, require-
ments documents, and other artifacts, which we collectively
call the base corpora, and the external information sources
from which we enhance the corpora. These sources consist
of documentation for third-party API calls (e.g., the Java
Development Kit (JDK)1) and external lexical databases with
sets of cognitive synonyms (e.g., Wordnet2 synsets), which we
call the enhancing corpora. The core idea of ENTRANCER
is to automatically expand words in the base corpora with
semantically related words from the enhancing corpora to
recover TLs or traces among requirements documents and
other artifacts with a high degree of precision. To the best
of our knowledge, this is the first comprehensive study of
an automated approach that expands the base multilingual
corpora, i.e., Italian and English.

We evaluated ENTRANCER on three open-source Java
applications using the TraceLab experimental framework and
obtained results that suggest our approach is effective. We
showed that ENTRANCER can increase the precision of the
recovering TLs by up to 31% in the best case. All data files
and subject applications are available from the project website
http://www.cs.uic.edu/∼drmark/entrancer.htm.

II. OUR APPROACH

In this section, we explain the theory of relevance behind
our approach, formulate our hypotheses, and describe the
experimental framework TraceLab.

A. Software Traceability Is A Similarity Measure

Suppose that a user is given two photographs and asked
to establish traces between different features on these images.
Naturally, a user looks for similarities among different features,
and depending on the resolution of the image, some features
may be blurry or collapsed into just a few pixels. By increasing

1http://docs.oracle.com/javase/6/docs/api/index-files/index-1.html
2http://wordnet.princeton.edu

the resolution and adding more pixels to features, the user can
find similarities among these features much faster.

Finding similar features on two images is analogous to
finding TLs by measuring similarities between components in
the source code and requirements. Many automated traceabil-
ity approaches imitate stakeholders by measuring similarities
between elements in the problem and solution domains (e.g.,
how closely words in a requirement paragraph match words
in comments and identifier names of the source code). When
similarity between artifacts is computed using an IR approach,
and this similarity is above a user-defined threshold, a TL is
recorded between these artifacts. A straightforward approach
for measuring similarities between requirements and software
artifacts is to count matches among words from requirements
to source code identifiers (e.g., names of variables, types,
etc.). Computing traces with high precision depends on the
quality of information in artifacts, specifically, on programmers
choosing meaningful names that reflect correctly the concepts
or abstractions that they implement, but this compliance is
generally difficult to enforce [2][39].

We define software traceability as the similarity between
artifacts by using Mizzaro’s well-established conceptual frame-
work for relevance [40, 41]. In Mizzaro’s framework, similar
artifacts are relevant to one another if they share some common
concepts. Once these concepts are known, a corpus of artifacts
can be clustered by how they are relevant to these concepts.
Subsequently all artifacts in each cluster will be more relevant
to one another when compared to artifacts that belong to differ-
ent clusters. This is the essence of the cluster hypothesis that
specifies that artifacts that cluster together tend to be relevant
to the same concept [48][39], and consequently traceability
links are established between these artifacts.

B. Our Hypotheses

A requirement is relevant to some software artifact if this
artifact implements the same abstraction that is specified in this
requirement [39]. For example, if a requirement specifies that
cryptographic services should be used to protect information,
and a module in an application uses encryption, then these
requirement and software artifacts are relevant to a certain
degree. Currently, most IR approaches use artifacts as “bags
of words” with no semantics, and the relevancy or similarity
of these artifacts to one another can be determined by matches
between these words. This is the essence of syntagmatic asso-
ciations, where artifacts are considered similar (i.e., traced to
each other) when terms (i.e., words) in these documents occur
together [45]. The problem with this approach is that computed
traceability links are relatively imprecise when compared with
ENTRANCER (as we show in Section IV).

Syntagmatic associations are used in a variety of techniques
for computing TLs, such as Vector Space Model (VSM), where
artifacts are represented as vectors of words and a similarity
measure is computed as the cosine between these vectors [46].
One main problem with VSM is that different programmers
can use the same words to describe different requirements (i.e.,
the synonymy problem) and they can use different words to
describe the same requirements (i.e., the polysemy problem).
This problem is a variation of the vocabulary problem, which
states that “no single word can be chosen to describe a



programming concept in the best way” [26]. This problem
is general to IR, but somewhat mitigated by the fact that
different programmers who participate in the projects use
coherent vocabularies to write code and documentation, thus
increasing the chance that two words in different applications
may describe the same requirement.

Our first hypothesis is that it is possible to increase the
precision of IR approaches that are based on syntagmatic asso-
ciations by expanding the vocabulary of artifacts using related
words. Consider the requirement that information should be
protected from unauthorized use. Suppose that a software arti-
fact contains the variable “encrypt”, which is syntactically
different from the word “protect”, which makes it difficult
to establish the match. However, since these words co-occur
in many documents, we can enhance the vocabularies of both
requirements document and software artifacts by appending
both words to the corpora obtained from these requirements
documents and software artifacts. As a result, a match will be
found and a TL will be established.

In Mizzaro’s framework, a key characteristic of relevance
is how information is represented in artifacts. We concentrate
on semantic anchors, which are elements of artifacts that
precisely define the artifacts’ semantic characteristics [39].
Semantic anchors may take many forms (e.g., they can refer to
elements of semantic ontologies that are precisely defined and
agreed upon by different stakeholders). This is the essence
of paradigmatic associations where artifacts are considered
similar if they contain terms with high semantic similarities
[45]. While paradigmatic associations are considered more
reliable than syntagmatic ones, both can be useful when
computing TLs between requirements and software artifacts.

Our second hypothesis is that by using semantic anchors
it is possible to compute similarities between requirements and
software artifacts with a higher degree of accuracy. Our idea is
based on the observation that in the solution domain engineers
go into implementation details to realize requirements (i.e.,
engineers look for reusable abstractions that are often imple-
mented using third-party API calls). Since programs contain
API calls with precisely defined semantics, these API calls can
serve as semantic anchors to compute the degree of similarity
between requirements and artifacts by matching the semantics
of these applications that are expressed with these API calls.
Programmers routinely use third-party API calls (e.g., the Java
Development Kit (JDK)) to implement various requirements
[10, 21, 30, 31, 47]. API calls from well-known and widely
used libraries have precisely defined semantics–unlike names
of program variables, types, and words that programmers
use in comments. Since these documentations are written by
different people who have different vocabularies, appending
words from these documentations to the corpora makes a richer
vocabulary. In this paper, we use the JDK API calls as semantic
anchors to compute similarities among applications by expand-
ing these API calls with words from their documentations,
thereby partially addressing the vocabulary problem.

Finally, our third hypothesis is that by using the hybrid of
syntagmatic and paradigmatic vocabulary expansion we can
increase the precision of computing TLs. Our rationale for
this hypothesis is that combining both approaches expands the
vocabulary and increases the precision of IR approaches for
traceability.

C. Experimental Testbed – TraceLab

TraceLab [12, 35, 14] is a software infrastructure designed
to address the issue related to the reproducibility of exper-
iments (i.e., lack of implementation, implementation details,
datasets, etc.) in software engineering (SE) research.

TraceLab provides (i) a set of predefined components (i.e.,
tools that are commonly used in SE techniques and approaches,
such as data importers, preprocessors, IR approaches, state
of the art TL recovery techniques, etc.), as well as (ii) a
development kit which includes the guidelines and support for
creating custom components. These components can be assem-
bled to create experiments, which can be executed alongside
other SE techniques, on the same datasets, and their results
can be compared to determine which technique produces the
best results using standard metrics (e.g., precision, recall, etc.),
as well as statistical tests. In addition, the newly created
experiments, which are fully reproducible, are shared with
the community in order to facilitate the creation of new
techniques (based on the existing one) and the comparison
of new techniques against existing ones.

TraceLab was funded by the National Science Foundation
and was developed at DePaul University in collaboration
with Kent State University, University of Kentucky, and the
College of William and Mary. Since its introduction, Trace-
Lab has already been successfully used in several projects
[43, 23, 24, 16].

III. EXPERIMENTAL DESIGN

In this section, we describe the experimental design for
evaluating ENTRANCER.

A. Research Questions

In this paper, we claim that we can improve the preci-
sion of computing software traceability using similarity-based
methods by expanding the corpus obtained from application’s
artifacts with relevant documentation. We seek to answer the
following Research Questions (RQs).

RQ1 Does using expansion of the corpus with docu-
mentation from JDK API calls result in a higher
precision of recovering TLs?

RQ2 Does using expansion of the corpus with a com-
bined documentation from JDK API calls and
Wordnet result in a higher precision of recovering
TLs?

RQ3 Does including words from comments result in a
higher precision of recovering TLs when expand-
ing the corpus with a combined documentation
from the JDK API calls and Wordnet?

RQ4 How does the size of the corpus affect the preci-
sion of recovering TLs?

RQ5 Is ENTRANCER equally effective using different
IR approaches for recovering software TLs?

With these RQs, we decompose our experimental results
to evaluate the effectiveness of ENTRANCER for different
components of software traceability. In all cases, we start
with the initial corpus that contains words from requirements
documents on one side and words from the source code of a
subject application on the other side.



With RQ1, we investigate a claim that replacing JDK
method occurrences in initial source code corpus with words
that appear in the method description in Java API Specification,
increases correct TL recovery. Our rationale is the following:
API calls allow programmers to express abstraction of high-
level concepts from requirement documentation thus reducing
the chance of IR methods matching relevant words in the
source code corpus. Hence, if every method invocations is
replaced with its description, it introduces more relevant words
in the corpus which in turn should lead to more recovered
correct TLs. The rationale for RQ2 is similar. We use the Ital-
ian WordNet called MultiWordnet 3, to include more relevant
words by including synsets of dictionary words existing in the
corpus, since the subject applications are written by Italian
programmers who wrote comments and identifier names in
Italian.

Unlike rest of the source code, comments are written in
natural language by the programmers and as such should
contain relevant dictionary words and phrases expressing high-
level intents. So in RQ3, we inspect how significant is the
impact of source code comments on traceability.

To answer RQ4, we will consider a correlation between
the size of the corpus and the precision of computing TLs
when applying different IR methods that we describe in
Section III-D1. Since having more words in corpus increases
the probability that more correct matches may be obtained
between these words and words in requirements documents,
the rationale for RQ4 is to establish if the size of the corpus
alone may be indicative of the future quality of obtained TLs.

Finally, our claim is that we designed and implemented
a methodology as part of ENTRANCER for achieving a
higher precision for software traceability by expanding the
corpora of software applications with relevant documentation.
The rationale for RQ5 is to evaluate results to determine if
ENTRANCER is effective when compared across different IR-
based traceability approaches.

B. Subject Software Applications

The subject Java applications that we used to evaluate
different traceability approaches are publicly available for
researchers from the TraceLab web site 4. These applications
have been used in other studies, making it easy to reproduce
our results and compare them with other approaches.

Albergate, the first evaluated application, is a software
system designed to implement all the operations required to
administrate and manage a small/medium size hotel (room
reservation, bill calculation, etc.). It was developed from
scratch by a team of final year students at the University
of Verona (Italy) on the basis of 16 functional requirements
expressed (as well as all the other system documentation) in the
Italian language. Albergate exploits a relational database and
consists of 13 requirements documents, 95 classes and about
20 KLOC [4]. Albergate has been used in different traceability
studies [38]. eTour is an electronic tourist guide developed by
students. It has 58 use cases and a total of 174 Java classes
with 366 recorded traceability links. Finally, SMOS is an

3http://multiwordnet.fbk.eu
4http://www.coest.org/index.php/for-researches1

application that is used to monitor high school students (e.g.,
absence, grades). It has 67 use cases and a total of 100 Java
classes with 1,044 recorded TLs.

C. Preprocessing Source Code Using Identifier Splitting

High quality identifier splitting is very important for
achieving good precision for software traceability approaches.
Low quality identifier splitting results in words that are not in
a dictionary or they incorrectly represent the semantic meaning
that they should otherwise convey.

The source code of the three subject applications, was
written by Italian developers, and they contain a combination
of both Italian and English words in identifier construction.
This prevents us from using any identifier splitting method
that relies primarily on heuristics derived from mining source
code repository. Accordingly, we built a fast, regular expres-
sion based identifier splitting that uses camel case and Java
identifier naming convention to split each identifier into their
separate English/Italian words.

D. Methodology

Our hypotheses are partially based on our idea that it
is better to compute similarity-based traceability by utilizing
relevant words from Wordnet and API calls as semantic
anchors that come from the JDK and that programmers use to
implement various requirements. To evaluate ENTRANCER,
we carry out experiments to explore its effectiveness and to
answer RQs.

1) Independent Variables: In our experimental design, we
consider two types of independent variables: IR approaches
and corpus treatment methods.

IR Approaches. TraceLab already implements a set of
IR approaches, which will be described briefly as indepen-
dent variables for our experimental design. In the context
of ENTRANCER, these techniques take as input a corpus
of documents (i.e., the target artifacts) and a set of queries
(i.e., the source artifacts) and compute the textual similarities
between the source and target artifacts.

One of earliest techniques is the Vector Space Model
(VSM) [46], which works as follows. First, it represents the
set of documents (i.e., the corpus) as a term-by-document
(TD) matrix, where each element of the matrix represents the
number of occurrences of the term in the document. Second,
the TD matrix is normalized and weighted using a traditional
weighting scheme, such as the term frequency-inverse docu-
ment frequency (tf-idf), which gives more weight to terms that
are relevant to the document, and less weight to common terms
that frequently appear in the documents. Third, the similarities
between the source artifacts, which are also represented as a
vector of terms, and the target artifacts are computed using the
cosine similarity between these two vectors. Although VSM
produces good results when the vocabulary between the source
and target artifacts matches, it does not handle the polysemy
and synonymy problem.

To overcome this issue, a more advanced IR technique
called Latent Semantic Indexing (LSI) [19] was introduced.
LSI also represents the corpus as a TD matrix, but it uses Sin-
gular Value Decomposition (SVD) to decompose the weighted



TD matrix into three different matrices using a dimensionality
reduction factor k, specified by the user. The reduced space of
the decomposed matrices is an approximation of the original
TD matrix and captures the most important concepts present
in the structure of the original matrix, and at the same time
ignoring any minor differences in terminology, thus addressing
the polysemy and synonymy problem. Similarly to VSM, LSI
also uses the cosine similarity to determine the similarities
between source and target artifacts.

Jensen-Shannon (JS) [1] is a recent IR technique that
represents each artifact of the corpus as a probability distri-
bution of the terms occurring in the artifact. The probability
distribution is based on the weight assigned to each term for
that particular artifact. The similarities between two software
artifacts (i.e., two probability distributions), are measured using
an entropy-based metric, called the Jensen-Shannon Diver-
gence. Similarly to VSM, JS does not take into account the
relation between terms, thus it encounters the same problems,
namely polysemy and synonymy.

Latent Dirichlet Allocation (LDA) [8] is a generative
probabilistic technique, which models each artifact as a mix-
ture of topics. In other words, each artifact is represented as a
probability distribution over a set of topics, and each topic
is represented as a probability distribution over the set of
terms in the corpus. In order to generate a model, the user
must specify the number of topics, and other parameters that
affect the “smoothness” of the distribution of the topics in the
documents, as well as the “smoothness” of the distribution
of the words in the topic. The textual similarity between two
software artifacts represented as topic distributions is computed
using the Hellinger distance [7].

The Relational Topic Model (RTM) [9] is a hierarchical
probabilistic model that generalizes LDA, by also considering
the links between the modeled artifacts. RTM takes as input the
corpus of documents (same as LDA) and a set of predefined
links between software artifacts, if they exist. Regardless of the
predefined links, the output produced by RTM includes (i) the
topic distribution for each artifact (same as LDA), as well as
(ii) a set of links between the artifacts based on the similarities
of their topic distribution (i.e., artifacts with similar topics will
be connected via a link).

Given a set of observations produced by different IR
methods, Principal Component Analysis (PCA) can be used
to determine various orthogonal dimensions (called principal
components) present in the data. These principal components
also quantify the variability found in the data. For example,
when PCA was applied on IR techniques in the context of
traceability link recovery (TLR), Gethers et al. [27] identified
that VSM and JS produced equivalent results, and RTM
produced orthogonal (complementary) results. Therefore, in
order to capture more variability in the data, these orthogonal
techniques were combined, resulting in the hybrid techniques
VSM-RTM and JS-RTM [27]. These hybrid techniques were
generated using an affine transformation [34] between the
similarities produced by these orthogonal techniques, where
the weight of the IR technique is (1) given equal weight
(denoted as IR1+IR2), and (2) assigned a weight proportional
to the variance obtained during the PCA analysis, denoted as
IR1 + IR2(PCA). The study showed that combining orthog-
onal IR methods produced improved results over standalone

IR methods for recovering TLs [27].

Corpus Treatment Methods. One of our goals is to
investigate how different corpus treatment methods affect the
precision of IR approaches for computing TLs. We translated
the JDK API documentation into Italian using Google Trans-
late, since the applications and requirements documents were
written by Italian programmers. We select five different corpus
treatment methods.

• The method Strawman (S) is a baseline method for our
experiments where the complete source code corpus
is treated as bag of words.

• Next, for the method JDK API call expansion, (J),
we replaced JDK API calls with their correspond-
ing description in the JDK documentation. This is
followed by identifier splitting. Comments from the
source code are discarded, so that we can evaluate
how expanding JDK API calls with words from the
relevant API call documents affects the precision of
recovery of TLs thus reducing the influence of other
confounding variables.

• The method J+W is a one-step extension of the
method J, where Wordnet synsets of dictionary words
found in the corpus are injected.

• J+S is the extension of the methods J and S, where
the JDK API calls are expanded along with source
comments present in the corpus.

• Finally, the method J+S+W is ENTRANCER where
all expansion techniques are combined in a single
approach.

Our goal is to address RQs by running experiments with
all combinations of IR and corpus treatment methods.

2) Dependent Variables: Dependent variables for EN-
TRANCER are precision (P ) and recall (R). To evaluate the
accuracy of each IR method, the number of correct links
and false positives were collected for each recovery activity
performed by a tool. The tool takes as an input the ranked
list of candidate links and classifies each link as correct link
or false positive until all correct links are recovered. Such a
classification is automatically performed by the tool exploiting
the original traceability matrix as an oracle.

The values of P and R are computed as follows: R =
|cor∩ret|

|cor| and P = |cor∩ret|
|ret| , where cor and ret

represent the sets of correct links and links retrieved by the
tool, respectively. Other than recall and precision, we also use
average precision [19], which returns a single value for each
ranked lists of candidate links provided.

In this paper we report the values of average precision for
R = 100%, i.e., when we apply IR methods and we change the
similarity threshold value to ensure that all TLs from the oracle
are in the set of recovered TLs. However, making this threshold
too low leads to the decreased precision, since many incorrect
TLs are added to the set of accepted TLs. Determining the
range of acceptable similarity threshold values is beyond the
scope of this paper and is a subject of future research.



E. Threats to Validity

In this section, we discuss threats to the validity of this
experimental design and how we address and minimize these
threats.

1) Internal Validity: Expansion techniques. Since evalu-
ating hypotheses is based on the data collected from external
sources such as the JDK documentation and Wordnet, we
identify three threats to internal validity: richness of the vocab-
ularies and their relation to the domains to which the subject
applications belong, and the uniformity of word distribution
among these sources.

Even though the JDK documentation offers a richer vo-
cabulary, a threat to validity is that this vocabulary is generic,
since it does not relate to specific domains for which subject
applications are built. Therefore, it is likely that many words
that were added to the corpus from the JDK documentation and
Wordnet did not result in computing correct TLs. Moreover,
there is a possibility that by adding some generic words to
the corpus, it is possible to compute TLs that are incorrect. In
addition, vocabularies can be much richer if domain-specific
dictionaries or SDKs are used to expand the corpora. Also, an
inequality in distributions of words among different topics may
result in computing more correct TLs for some modules and
fewer correct TLs for some other modules for which there are
fewer API calls. We address this threat to validity by recording
TLs for different components and using statistical information
about distributions of TLs to make conclusions with respect to
the RQs.

Traceability methods. Choosing ineffective IR-based
traceability methods pose a big threat to validity. If methods
are too general or trivial (e.g., exact matches among some
words), then every possible TL that has some similar words
in its source code and requirements will be retrieved, thus
inundating stakeholders with TLs that are hard to evaluate. On
the other hand, if an IR-approach is specific to a subject appli-
cation (e.g., ontology-based techniques), high precision will be
obtained, thus creating a bias towards this specific application
and IR-approach. To avoid this threat, we implemented our
experimental design in TraceLab (described in Section II-C),
which offers a diversified set of widely used IR-method that
are application independent. While this diversification of tasks
does not completely eliminate this threat to validity, it reduces
it significantly.

2) External Validity: To make results of this experiment
generalizable, we must address threats to external validity,
which refer to the generalizability of a casual relationship
beyond the circumstances of our experiment. The fact that
supports the validity of this experimental design is that the
subject applications and traceability methods are representative
of methods that are used in industry and research. A threat to
external validity concerns the usage of software traceability
tools in the industrial settings, where applications may not use
third-party API call libraries. However, it is highly unlikely
that modern large-scale software projects can be effectively
developed, maintained, and evolved without this reuse.

IV. RESULTS

In this section, we describe the results of our experiments
and using these results we give answers to our RQs.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35VSMJSRTMVSM+JSVSM+RTMJS+RTMVSM +JS(PCA)VSM+RTM(PCA)JS+RTM(PCA) J+W+SJ+SJ+WJS
Fig. 1. Precisions for recovering TLs using different IR methods and corpus
treatment methods for subject application Albergate.

0 0.1 0.2 0.3 0.4 0.5VSMJSRTMVSM+JSVSM+RTMJS+RTMVSM +JS(PCA)VSM+RTM(PCA)JS+RTM(PCA) J+W+SJ+SJ+WJS
Fig. 2. Precisions for recovering TLs using different IR methods and corpus
treatment methods for subject application eTour.

0 0.1 0.2 0.3 0.4VSMJSRTMVSM+JSVSM+RTMJS+RTMVSM +JS(PCA)VSM+RTM(PCA)JS+RTM(PCA) J+W+SJ+SJ+WJS
Fig. 3. Precisions for recovering TLs using different IR methods and corpus
treatment methods for subject application SMOS.

The results of experiments with subject applications for
different values of the dependent variable Precision, P are
shown in Table I and they are visualized in Figure 1, Fig-
ure 2, and Figure 3 for the corresponding subject applications.
ENTRANCER leads to the increase in P in the majority of
cases (75.92%), thus positively answering RQ1-RQ3. Closer
examination of the data reveals that for the method JS for the
subject application Albergate the precision increases for the



TABLE I. RESULTS OF EXPERIMENTS WITH SUBJECT APPLICATIONS FOR DIFFERENT IR TECHNIQUES. COLUMNS 2-6 DESCRIBE THE SIZE OF THE
DATASETS IN TERMS OF NUMBER OF REQUIREMENTS DOCUMENTS, JAVA SOURCE CODE FILES, NUMBER OF POSSIBLE LINKS, NUMBER OF ACTUAL LINKS
IN THE GOLD SET, AND THE RATIO OF ACTUAL TO POSSIBLE LINKS. COLUMNS 7-9 SHOW THE SOURCE CODE AND REQUIREMENTS DOCUMENT SIZES IN

KB AND THE RATIO OF THESE SIZES. THE NEXT COLUMN, “MAX EXP RATIO,” SHOWS THE RATIO OF THE NUMBER OF THE UNIQUE WORDS IN THE
EXPANDED CORPUS TO THE NUMBER OF UNIQUE WORDS IN THE ORIGINAL CORPUS. FINALLY, THE COLUMN LABELED “METHOD TRACEABILITY” AND

THE FOLLOWING FIVE COLUMNS LIST THE MEAN VALUES OF THE PRECISION FOR CORPUS TREATMENT METHODS FROM SECTION III-D1 FOR THE VALUES
OF RECALL, R = 100%.

Subject Doc Code Posbl Actual PL/AL Code Req Corp D/C Max Exp Method P for corpus treatment methods
App Files Files Links Links Ratio Size,KB Size,KB Ratio Ratio Traceability S J J+W J+S J+W+S

Albergate 16 55 880 54 0.06 516 72 0.13 362.08%

VSM 0.24 0.32 0.21 0.29 0.27
JS 0.21 0.26 0.2 0.2 0.22

RTM 0.11 0.17 0.13 0.14 0.11
VSM+JS 0.22 0.32 0.22 0.26 0.24

VSM+RTM 0.18 0.28 0.19 0.27 0.22
JS+RTM 0.15 0.22 0.19 0.21 0.19

VSM +JS(PCA) 0.22 0.32 0.22 0.26 0.24
VSM+RTM(PCA) 0.18 0.28 0.19 0.27 0.22

JS+RTM(PCA) 0.15 0.22 0.19 0.21 0.19

eTourITA 67 100 6700 1044 0.16 715 181 0.25 108.58%

VSM 0.3 0.26 0.31 0.37 0.36
JS 0.28 0.21 0.3 0.35 0.3

RTM 0.26 0.26 0.19 0.34 0.17
VSM+JS 0.31 0.25 0.33 0.39 0.35

VSM+RTM 0.31 0.34 0.36 0.41 0.29
JS+RTM 0.29 0.29 0.33 0.38 0.24

VSM +JS(PCA) 0.31 0.25 0.33 0.39 0.35
VSM+RTM(PCA) 0.31 0.34 0.36 0.41 0.29

JS+RTM(PCA) 0.29 0.29 0.33 0.37 0.24

SMOS 67 100 6700 1044 0.16 715 181 0.25 242.17%

VSM 0.26 0.29 0.28 0.35 0.34
JS 0.21 0.25 0.22 0.25 0.22

RTM 0.16 0.16 0.15 0.2 0.16
VSM+JS 0.24 0.29 0.26 0.33 0.3

VSM+RTM 0.21 0.24 0.23 0.3 0.27
JS+RTM 0.2 0.21 0.2 0.24 0.19

VSM +JS(PCA) 0.24 0.29 0.26 0.33 0.30
VSM+RTM(PCA) 0.21 0.24 0.23 0.3 0.27

JS+RTM(PCA) 0.2 0.21 0.2 0.24 0.19

corpus treatment method J when compared to S, but it drops
when applying the corpus treatment methods J+W, J+S, and
J+W+S. In fact, when comparing the results for corpus treat-
ment methods J and S, precision increases for all IR methods
for the application Albergate, but it drops for the application
eTour when applying the IR methods VSM, JS, VSM+JS, and
VSM+JS(PCA). A possible explanation is that by removing
comments from the source code for this application when
applying the corpus treatment method J, the expansion rate of
the corpus is not sufficient to increase precision for methods
where word matches are important for computing TLs. A
conclusion from this observation is that expanding the corpus
with the documentation JDK API calls only is often not enough
to get higher precision of traceability links when applying word
match similarity methods thus addressing RQ1.

We make similar observations about the precision of differ-
ent approaches when combining expansion of the corpus with
documentation from the JDK API calls and Wordnet. When
comparing the results for corpus treatment methods J+W and
J, precision increases for all IR methods for the application
eTour, but it drops for the applications Albergate and SMOS
for all IR methods. The resulting precision is still higher in
most cases when compared to the baseline corpus treatment
method S, however, it points out to an interesting phenomenon.
Clearly, expanding the corpus with relevant words works only
if the words in the original corpus can serve as good semantic
anchors. In our case, using Google translator in the presence

of mixed language vocabulary reduces the semantic quality
of information. Identifier splitting also has limited precision,
leading to situations where split words may not have semantic
relevancy. As a result, expanding semantically irrelevant corpus
with more irrelevant words leads to reduced precision. A
possible reason that the application eTour avoids the reduction
in precision is because the rate of its corpus expansion is the
smallest when compared to the two other subject applications,
thus having fewer erroneous TLs in the end. We conclude that
expansion of the corpus with a combined documentation from
the JDK API calls and Wordnet does not always result in a
higher precision of traceability links thus addressing RQ2.

Adding comments from the source code to the corpus
when expanding the JDK API calls with their documentation
leads across the board increase in P with exception of the
IR method RTM, which remains the worst method in our
experiment to see the effect of expanding the corpus with rel-
evant documentation. Part of this is addressed in the previous
work, noting that in some studies RTM was found to provide
orthogonal results, which could be used to complement other
IR techniques [27].

We conclude that including words from comments results
in a higher precision of traceability links when expanding the
corpus with a combined documentation from the JDK API calls
and Wordnet.

We investigate the question of correlation between the



size of the corpus and the precision of traceability links.
This research question can be answered with more rigorous
experimentation in the future. To understand how each of our
corpus modification methods effects the source code corpus,
we measure the change in the total word count and the number
unique words for each source code file from the subject
applications. Table II shows the average percentage difference
in the length of source code files when measured relative to
the unmodified original source code files. eTour source code
files are extensively commented with 43,211 words which
is 19.21 and 2.21 times greater than Albergate and SMOS
respectively. As a result eTour’s corpus size actually shrinks
and leads to a decrease in the precision values for the corpus
treatment method J (which excludes comments). On the other
hand, when using corpus treatment methods J+S and J+W+S,
which include the comments, we observe an improvement in
precision of recovering TLs across all IR methods.

TABLE II. AVERAGE PERCENTAGE DIFFERENCE IN THE LENGTH OF
SOURCE CODE FILES WHEN MEASURED RELATIVE TO THE UNMODIFIED

ORIGINAL SOURCE CODE FILES.

Type J J+W J+S J+W+S

Albergate
total 202.05 476.80 200.02 624.87
unique 96.71 261.06 136.81 362.08

eTour
total -18.50 238.44 100.79 357.75
unique -60.41 32.20 16.50 108.58

SMOS
total 69.08 592.92 210.43 734.36
unique -18.34 161.68 62.36 242.17

Based on our experimental results, we conclude that there
is a correlation between the size of the corpus and higher
precision of recovered TLs thus addressing RQ4.

ENTRANCER is not equally effective for different IR ap-
proaches for computing software traceability – VSM remains
the biggest winner and RTM is the biggest loser among the
used IR approaches. Adding VSM to a combination of other IR
methods improves the overall precision. Best ratios of precision
improvements for ENTRANCER are shown in Table III, where
the maximum obtained precision increase is 31% for SMOS
using the IR method VSM and the average precision gain
is nine percent. The lowest precision is obtained with the
IR method RTM. These best ratios are shown in Figure 4
for precision improvements when compared to the baseline
S for different IR methods applied to subject applications with
ENTRANCER that is shown in Table III. We conclude that
using VSM results in a higher precision of traceability links
when expanding the corpus with a combined documentation
from the JDK API calls and Wordnet thus addressing RQ5.

V. RELATED WORK

The first part of this section discusses in detail the most
relevant papers for ENTRANCER. The second part of the
section briefly enumerates a subset of the traditional TLR
techniques and tools.

Cleland-Huang et al. [13] proposed a technique to recover
TLs between regulatory codes and requirements by enhancing
the original query with similar terms that would help address
the polysemy and synonymy problem. More specifically, their
technique uses the original query as an input to web search
engines which retrieve a set of documents related to the query.

Fig. 4. Best ratios for precision improvements when compared to the baseline
S for different IR methods applied to subject applications with ENTRANCER
that is shown in Table III.

Among the words of these documents, the nouns and noun-
phrases are extracted, and term specific metrics are computed
(e.g., domain term frequency, domain specificity, concept gen-
erality). The nouns with the highest metric values are appended
to the original query, and the enhanced query is used for
retrieving TLs. A comparison with a basic IR TLR technique
revealed that, in some cases, their proposed technique is more
accurate in retrieving TLs [13]. Gibiec et al. [28] improved the
traceability technique proposed by Cleland-Huang et al. [13],
by automatically identifying the set of domain specific terms
(from the retrieved web-mining results), which will be used to
enhance the original query. Our approach is similar to Cleland-
Huang et al.’s [13] and Gibiec et al.’s [28] approaches in terms
of mining additional data to enhance the existing information.
However, the main difference is that ENTRANCER uses API
documentation to enhance the existing API calls found in the
corpus, as opposed to expanding only the query.

Dekel and Herbsleb [21][22] introduced an approach based
on the concept of knowledge push, which directs the attention
of developers to certain API calls that might need extra
consideration. First, the approach extracts some directives
(e.g., restrictions, limitations, performance issues, alternatives,
etc.) in the form of sentences that are embedded in the API
documentation. Second, this knowledge, which could be easily
skipped by a developer reading the API documentation, is
“pushed” or presented to the developer by highlighting in the
Eclipse IDE the method invocations that have associated these
directives [21][22].

The identifier mismatch problem was investigated in the
literature, and a different number of solutions have been
suggested. Deissenboeck and Pizka [20] proposed a tool that
enforces unique mappings between identifier names and con-
cepts, in order to reduce the mismatch problem. The tool
constantly updates the mappings while the system evolves.
Lawrie and Binkley [36] proposed a solution for automatically
expanding the splitted identifiers to their unabbreviated form.
However, the impact of these tools and techniques [20][36][32]
has not yet been evaluated for TLR.

Cleland-Huang et al. [11] advocated for writing require-
ments in a more concise and clear way, and to use a consistent
domain-specific vocabulary. De Lucia et al. [17] proposed
COCONUT, an IR-based TLR system that helps developers



TABLE III. BEST RATIOS OF PRECISION IMPROVEMENTS FOR ENTRANCER.

VSM JS RTM VSM+JS VSM+RTM JS+RTM VSM +JS(PCA) VSM+RTM(PCA) JS+RTM(PCA)

Albergate 1.13 1.05 1.00 1.09 1.22 1.27 1.09 1.22 1.27
ETourITA 1.20 1.07 0.65 1.13 0.94 0.83 1.13 0.94 0.83

SMOS 1.31 1.05 1.00 1.25 1.29 0.95 1.25 1.29 0.95

to select the most meaningful identifier names, which are
consistent with the domain terms found in the high-level
artifacts (e.g., requirements).

Antoniol et al. [3] proposed an IR-based technique to
recover TLs between documentation and source code using
the vector space model (VSM). Their work was extended by
Marcus et al. [37] who used latent semantic indexing (LSI) to
recover TLs, and showed that this technique produces better
results. Oliveto et al. [42] compared the performances of three
IR-based techniques (i.e., VSM, LSI and Jensen-Shannon (JS))
and one topic-model technique, LDA (Latent Dirichlet Alloca-
tion). Their results show the IR-techniques produce equivalent
results, whereas LDA produced complementary results, which
are orthogonal to the ones produced by the IR techniques. The
orthogonality of results was leveraged by Gethers et al. [27]
who combined the information produced by the IR techniques
VSM and JS with the information produced by the topic model
technique RTM (Relational Topic Model) to produce superior
results than using standalone techniques.

Among the numerous tools for supporting TLR that have
been introduced we mention a few representative ones. TOOR
[44] is a traceability tool that supports manual tracing between
various software artifacts, as well as management of existing
TLs. ADAMS [18] is a tool that automatically generates TLs
between different software artifacts, using LSI.

VI. CONCLUSION

We created a novel and automatic approach for expanding
corpora with relevant documentation that is obtained using
external function call documentation and sets of relevant
words. We experimented with three Java applications using
the TraceLab framework and we evaluate four methods of
systematically expanding source code corpus using relevant
words and semantic anchors. These methods improve precision
the of TL recovery in more than 75% of the cases, with 31%
in the best case and approximately 9% on average.

ENTRANCER is most effective using the IR method Vector
Space Model (VSM), where artifacts are represented as vectors
of words and a similarity measure is computed as the cosine
between these vectors. Since the main idea of ENTRANCER
is to expand the corpora with words that are relevant to
words in the documents, applying ENTRANCER increases
the probability of establishing matches between words in
requirements and other software artifacts, thereby leading to
sizeable increase in the precision of recovering TLs. However,
other IR methods like RTM benefit less from ENTRANCER
for a variety of different reasons, one of them being that the
expanded corpora contains words that reduce the effectiveness
of computing probabilistic distributions of these words across
different topics. Thus, we conclude that ENTRANCER pro-
duces the best results when applied with VSM.
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