
How do Developers Test Android Applications?
Mario Linares-Vásquez1, Carlos Bernal-Cárdenas2, Kevin Moran2, and Denys Poshyvanyk2

1Universidad de los Andes, Bogotá, Colombia
2College of William & Mary, Williamsburg, VA, USA

m.linaresv@uniandes.edu.co, {cebernal, kpmoran, denys}@cs.wm.edu

Abstract—Enabling fully automated testing of mobile applica-
tions has recently become an important topic of study for both
researchers and practitioners. A plethora of tools and approaches
have been proposed to aid mobile developers both by augmenting
manual testing practices and by automating various parts of
the testing process. However, current approaches for automated
testing fall short in convincing developers about their benefits,
leading to a majority of mobile testing being performed manually.
With the goal of helping researchers and practitioners – who
design approaches supporting mobile testing – to understand
developer’s needs, we analyzed survey responses from 102 open
source contributors to Android projects about their practices
when performing testing. The survey focused on questions regard-
ing practices and preferences of developers/testers in-the-wild
for (i) designing and generating test cases, (ii) automated testing
practices, and (iii) perceptions of quality metrics such as code
coverage for determining test quality. Analyzing the information
gleaned from this survey, we compile a body of knowledge to
help guide researchers and professionals toward tailoring new
automated testing approaches to the need of a diverse set of
open source developers.

I. INTRODUCTION

Mobile devices have quickly become the most accessible
and popular computing devices in the world [2] due to their af-
fordability and intuitive, touch-based user interfaces. The ubiq-
uity of smartphones and tablets has led to sustained developer
interest in creating “apps” and releasing them on increasingly
competitive marketplaces such as Apple’s App Store [18] or
Google Play [4]. Due to their highly gesture-driven nature,
GUI-based testing of mobile apps is paramount to ensuring
proper functionality, performance, and an intelligent user ex-
perience. However, GUI-based testing activities are typically
costly, and in the context of mobile apps, often performed
manually [37], [39]. Given the additional constraints on the
mobile application development process including pressure for
frequent releases [32], [36], rapid platform evolution and API
instability [21], [41], and parallel development across different
platforms [13], [37] it can be difficult for developers to budget
time for effective testing. Thus, the challenge of automating
mobile app testing has captured the interest of the software
engineering and systems research communities, and has led to
the development different types of automated techniques that
assist in various testing tasks.

Research-oriented tools aimed at improving mobile testing
span a diverse range, from record & replay approaches [27],
[33], to bug reporting aids [51], [52], to automated input
generation techniques [1], [3], [15]–[17], [20], [20], [22], [35],
[45]–[48], [50], [53], [55], [56], [59]–[61]. Perhaps the most
interesting and valuable of these techniques from a developer’s

or tester’s perspective are the automated input generation
(AIG) techniques. The high-level goal of such techniques is
relatively simple: given a mobile application under test (AUT),
generate a series of program inputs according to a pre-defined
testing goal. For the vast majority of these techniques, the
generated inputs are simulated touch events on the screen of
a device, and the testing goal is typically either achieving
the highest possible code-coverage or uncovering the highest
number of faults (e.g., crashes).

However, despite the large amount of research effort ded-
icated to building AIG techniques and other automated ap-
proaches, recent studies seem to indicate that these approaches
are typically not used in practice [39]. Choudhary et. al offer a
set of potential reasons for this lack of adoption as part of an
experience report analyzing several AIG tools [23], and among
the reasons reported are (i) lack of reproducible test cases,
(ii) side effects across different testing runs, and (iii) lack
of debugging support. While this study offers some insight,
researchers and practitioners who aim to build these tools
with the intention of them gaining adoption and positively
impacting developers do not have a clear understanding of the
testing needs and preferences of real developers.

This lack of guiding direction for this particular topic of
mobile software engineering research is somewhat troubling
given the highly practical impact that such tools could have
on daily development and testing workflows. Conversely,
it is unsurprising that many tools have failed to make an
impact without taking into account developer preferences, as
“Automation applied to an inefficient operation will magnify
the inefficiency”1. If the operation or goals of automation
techniques do not match developer needs, preferences, and
expectations (and are thus inefficient), there is little chance
that these will have a meaningful impact. Therefore, there is a
very clear demand to align the goals of research on automated
testing techniques with the needs of developers in order to
allow for practical impact.

In this paper, we aim to bridge this gap through a survey,
that at its core, aims to examine the testing preferences of open
source developers with the intended purpose of providing ac-
tionable information to researchers and practitioners working
on approaches to automate different aspects of mobile testing.

In summary, this paper makes the following noteworthy
contributions:

1Bill Gates, co-founder of Microsoft, in reference to automation in business
settings

• To the best of our knowledge, this is the first paper aimed
at analyzing mobile testing preferences of real open
source developers with a focus on (i) typical preferences
when designing test cases for mobile apps, (ii) preferred
characteristics for automatically generated test cases, and
(iii) preferred effectiveness metrics.

• This study complements previous work that has identified
and speculated upon potential reasons for lack of adoption
of automated mobile testing approaches by collecting
information from open source developers and providing
a set of learned lessons to guide future research.

• Our general findings indicate that developers (i) rely
heavily on usage models of their applications when
designing test cases, (ii) prefer high-level, expressive
automatically generated test cases organized around use-
cases, and (iii) prefer manual testing over automation
due to factors including test case representation and
issues with reproducibility (iv) do not hold the perception
that code coverage is an important measure of test case
quality, as indicated by a large portion (⇡ 64%) of study
participants, instead citing other measures of quality such
as feature coverage or fault-detection as more useful.

II. DESIGN OF THE EMPIRICAL STUDY

The main goal of this study is to identify and analyze
practices and preferences of mobile developers (MDs) toward
testing related activities. To this end, we explored MDs (i)
practices in documenting requirements and designing test
cases, (ii) preferences toward features of automated testing
approaches, (iii) use of existing automated tools, and (iv)
preferences for testing-related quality measures. The study
is intended to benefit the perspective of researchers and
practitioners interested in designing approaches and tools for
automated testing of mobile apps.

While common wisdom and best practices suggest that
test cases should be derived from requirements artifacts, to
the best of our knowledge, previous studies focused on the
challenges and tools used for testing but without analyzing the
details of the strategies used by MDs for designing manual test
cases or exploring preferences for automatically generated test
cases [37], [39]2. These aspects are important, as learning the
preferences of developers’ manual testing practices can inform
automated techniques to best meet these needs.

Consequently, we aim to fill this “gap” in recent work by
surveying contributors of open source Android apps hosted
on GitHub. We are most interested in understanding testing
practices of mobile developers from the viewpoint of test case
design, preferred testing strategies, reasons for the prevalence

2Kochhar et al [39] investigated also with a survey with 83 open source
Android developers the tools they use and challenges they face while testing
Android apps. It is worth noting that our survey also includes a question
concerning the tools used for automated testing (See SQ8 in Table I). Kochhar
et al [39] list a reduced set of tools (i.e., 10), however, we complement their
findings with a list of 55 tools used by our surveyed participants. We also
complement their findings with a specific question designed to understand
experiences and issues of mobile developers when using random testing tools
(See SQ9 in Table I)

TABLE I
SURVEY QUESTIONS FOR OUR EMPIRICAL STUDY

Id Question (Type)

SQ1
What type of documentation do you use for specifying the
requirements in your apps? (Multiple choice)

SQ2

How do you usually distribute your testing time among these
different activities (e.g., manual testing 20%, Junit testing
50%, cloud testing 30%)? (Open question)

SQ3
Please provide rationale for your answers to SQ3. (Open
question)

SQ4
How do you design the test cases for your apps? (Open
question)

SQ5
What is the target of the test cases you design for your apps?
(Multiple choice)

SQ6

If you are using (or intend to use) tools for automatic
generation of test cases, what format for the test cases do
you prefer? (Single choice)

SQ7

Assuming you have test cases in natural language, what type
of information would you like to have in them? (Multiple
choice)

SQ8 What tools do you use for automated testing? (Open question)

SQ9

What are your experiences with random testing tools such as
Android Monkey? Are random testing tools useful for your
needs? Did you experience any issues with the sequences
of events generated by a random testing tool like Android
Monkey? (Open question)

SQ10

Do you use code coverage as a metric for measuring the
quality of your test cases? Why? (If you answer is No, please
describe how else you measure or ensure the quality of your
test cases) (Open question)

of manual testing (as suggested by previous work [37], [39]),
and preferred information/features of ideal automatically gen-
erated test cases. We also wanted to survey MDs about the
usage of widely used techniques in the research community
such as random testing and coverage analysis.

1) Research Questions: In particular, we aimed at answer-
ing the following research questions (RQs):

RQ1: What are the strategies used by MDs to design test
cases?
RQ2: What are the MDs’ preferences for automatically
generated test cases?
RQ3: What tools are used by MDs for automated testing?
RQ4: Do MDs consider code coverage as a useful metric
for evaluating test cases effectiveness?

2) Data Collection: Table I lists the questions in the survey.
SQ1-SQ5 were used to answer RQ1; SQ6 and SQ7 aim
at answering RQ2; SQ8 and SQ9 were designed to answer
RQ3 ; and SQ10 served to answer RQ4. We also collected
demographic background information to filter participants with
short or over claimed experience in Android development, and
to measure the diversity of our sample.

The survey was hosted online on the Qualtrics platform [7],
and the participants were contacted via email. To select the
potential participants, we followed the same procedure from
previous work [44] — that also surveyed open source devel-
opers — to extract contributors’ emails from GitHub. After
the extraction and filtering, we emailed the survey to 10,000
email addresses from which we got 485 survey responses.
We discarded 5 responses in which the participant reported
0 years of experience in Android programming, 3 with invalid

●

●●● ●●

Android

General

0 5 10 15 20 25 30

a) Programming Experience in years

●● ●●● ●●● ●● ●●● ●● ●● ●●● ●

3 4 5 6 7 8 9 10

b) How do you estimate your programming experience?
 1 (very inexperienced) to 10 (very experienced)

PhD
PostDoc

High School
Master

Bachelor
c) What is your academic level?

0 10 20 30 40 50

1
2

13
36

51

●●●

0 5 10 15 20 25

d) How many years of industrial experience do you have
 (programmer, software engineer, etc.)?

Fig. 1. Results of demographic questions for the 102 survey participants

answers, and 370 unfinished surveys. In the end, we obtained
102 valid responses.

The demographics of the participants are depicted in
Figure 1. Our sample (102) is comparable to final num-
bers of mobile developers (with industrial experience) sur-
veyed/interviewed in previous studies investigating other soft-
ware engineering phenomenon: 3 in [42], 9 in [49], 45 in [21],
83 in [39], 200 (188 developers + 12 experts) in [37], and
485 in [44]. In addition, the claimed programming experience
is diverse for the three cases: general programming, Android
programming, and industrial experience.

The answers to multiple/single-choice questions were ana-
lyzed using descriptive statistics. In the case of open questions,
we categorized the answers manually following a grounded
theory-based approach [25]. Three of the authors went through
all of the free-text answers and performed one round of open
coding by independently creating categories for the answers.
After the round of open-coding, the codes were standardized.
In the cases of non-agreement between the three coders,
corresponding answers were marked as “Unclear”.

III. RESULTS AND DISCUSSION

In this section we report the responses by the participants
and provide answers to the aforementioned research questions.
We describe the results using descriptive statistics and through
summaries and discussion of examples of free-text answers.

A. RQ1: What are the strategies used by MDs to design test
cases?

Artifacts for documenting app requirements. Android
developers use a diverse set of artifacts to document require-

Use cases
User stories
Feature lists

Informal NL. descr.
No documentation

What type of documentation do you use for specifying
 the requirements in your apps?

0 10 20 30 40 50

45
46

57
43

6

Fig. 2. Artifacts used by Android developers to document apps requirements.
The bar plots show the number of times each artifact was selected by the
participants.

ments, including artifacts from disciplined and agile methods.
Fig. 2 depicts the answers for each of the options in our SQ1
(note that this was a multiple-choice question). Although there
is no large tendency towards a preferred artifact, feature lists
are the top-used artifact. Surprisingly, only six participants do
not document requirements, and the usage of the other options
(i.e., use cases, user stories, and informal natural language
descriptions) is balanced across the participants. When ana-
lyzing the most popular answers (including combination of
choices as a whole answer provided by participants), there is
no clear preference; however, we found that the most popular
responses reporting the usage of only a single type of artifact
as the documentation practice are distributed as follows: user
stories (14 participants), feature lists (12), informal natural
language descriptions (10), use cases (9). Additionally some
participants selected the combination of all 4 artifacts (8) as a
single answer.

Distribution of testing efforts. Previous studies have re-
ported that manual testing is preferred over automated ap-
proaches [37], [39]. In the survey, we asked participants
about how they distribute their testing effort and time across
different testing activities (SQ2). In particular we asked about
the following activities: manual testing, random testing using
Monkey, JUnit testing, Record & Replay-based (R&R) testing,
GUI ripping-based tools, automated testing with automated
testing APIs (ATA), cloud testing services, and others. The
answers provided by the participants are depicted with box-
plots in Fig. 3.

●● ●●● ●●●● ●● ● ●●●●●●

● ●●

● ●●●●●● ●

●●

● ●●● ●●● ●● ● ●● ●●

●●● ●●● ●● ●●● ●● ●

● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●

Manual
Monkey

Junit
R.R

Ripping
ATA

Cloud
Other

0 20 40 60 80 100

How do you usually distribute your testing time among these
different activities (e.g., manual testing 20%,

Junit testing 50%, cloud testing 30%)?

Fig. 3. Distribution of testing activities reported by our participants. *ATA
means Automated Testing APIs, and R.R means Record & Replay.

As expected, manual testing is the preferred testing activity
with an average of 58.18% of the testing efforts dedicated by
the participants, an interquartile range (IQR) of [25%, 97.25%]
and a maximum of 100%; 96 out of 102 participants reported
more than 5% of testing effort devoted to manual testing

with 35 of them reporting more than 90% of dedication to
manual testing. The second most popular activity in which the
developers dedicate their testing efforts is JUnit-based testing
with and average dedication of 18.96%, an IQR of [0%, 30%]
and a maximum of 90%; 58 participants reported more than
5% of testing effort devoted to unit testing. The third most
popular testing activity is automated testing with APIs such as
Expresso and Robotium, with an average dedication of 8.29%,
an IQR of [0%, 10%] and a maximum of 80%; 34 participants
reported more than 5% of effort devoted to manual testing.

Fuzz/Random testing with Android Monkey is widely used
as the baseline for comparing new automated testing tools pro-
posed by the research community [23], [45], [46], [53]. How-
ever, responses from our participants suggest that fuzz/random
testing is not widely used in-the-wild. Only 11 participants
reported more than 10% of testing effort with Android Monkey
with an average of 16.36% (for those 11 participants) and a
maximum of 35%. One automated strategy that is widely used
in the research community and serves as the foundation for
multiple methods of AIG is GUI ripping [15], [16], [20], [54];
however, it seems that developers in-the-wild are not aware of
such tools or do not find them useful. Only two participants
reported the usage of automated ripping tools with 5% and
10% of their testing efforts. Concerning the case of Record
& Replay, five participants reported this technique with more
than 5% of testing effort and a maximum of 30%.

Despite of the availability of services such as Xamarin
test cloud [58], Saucelabs [11], and Perfecto [6], only 14
participants mentioned the usage of cloud services for testing
with an average effort of 12.57% (for those 14 participants)
and a maximum of 30%.

Finally, under the “Others” option, we got 14 answers in
which the participants claimed more than 10% of testing
effort with an average of 29.29% and maximum of 95%.
The participants further explained in the answer to SQ3 that
this is mostly because they use customized tools or strategies,
instrumentation-based testing, or beta testing with users.

Regarding the rationale provided by the participants for their
choices, the preference for manual testing is supported by
several reasons such as (i) changing requirements, (ii) lack of
time for testing and process decisions, (iii) size of the apps,
(iv) lack of knowledge of automated tools and techniques, (v)
usability and learning curve of available tools for automated
testing, and (vi) the cost of maintaining automated testing
artifacts. For instance, the following rationale provided by
some participants illustrate their preference for manual testing
as a consequence of changing requirements:

“our app changes very frequently and we can’t afford
unit testing and automated testing”

“it’s hard to right the useful test case for current project,
because the requirement is changed very often, and the
schedule is very tiny. So we still prefer hire some tester
to do manually testing. In the other hand, the android
test framework is not good enough yet, I tried study
roboeletric, it’s a little bit hard to understand.”

“A lot of what I do is related to how the app looks and
feels. Therefore a lot of my testing is done manually. When
I have complexity in my classes I use junit. Sometimes
I use the Instrumentation testing classes from Android,
but not much as manually testing feels faster. Also the
requirements tend to change a lot so manually testing
unfortunately is the best option for me.”
The survey participants also justified the usage of manual

testing because of time-related issues and project management
decisions. For example:

“Usually customers doesn’t provide enough time for
development of automated tests.”

“Too much time required in configuring the components
for automated testing. Partly because I was working in a
consultancy firm so there was no incentive to spend time
on automated testing (not chargable)”

“I do not agree about this method but this is management
decision. I repeatedly expressed by disconformity with this
methodology.”

“Although I strongly disagree with this: the institution I
work at does not provide the atmosphere to make testing
a vital part of our development.”

“My previous work didn’t have any testing requirements
for the apps, and writing tests takes time that the budget
didn’t account for. ”
Cost, in terms of money and time, for creating and maintain-

ing automated testing artifacts is also another reason for pre-
ferring manual testing. This case is illustrated by the following
examples of rationale provided by the survey participants:

“I’m faster by testing the app and all it’s possibilities on
the device itself, instead of writing separate Test Cases.”

“Quickly testing the product is important and writing
automated tests can’t be done quick enough. So a majority
of my time is spent making sure the product works
manually, then spending time automating what I can. jUnit
is wrote by developers, so I’ve added a couple of tests, but
not much. Have just played around with Android Monkey.
Our product uses the Cloud, but another person takes care
of the majority of the testing.”

“We prioritize feature work over automated testing.
Automated tests have done little to prevent bugs, but
incur significant overhead when creating new features or
refactoring old.”

“For Android traditionally it has been very difficult to
write tests for. Also UI tests can be brittle and take
significant effort to maintain. In an environment where
development resources are constrained and features / bug
fixes works takes priority, it is very difficult to have
sufficient tests. Manual testing with a dedicated QA team
is more practical to maintain.”

“I’m skeptical of UI testing because I’ve found that the
tests are fragile, require a lot of maintenance, and are
generally more work than worth.”
The survey participants also claimed a general lack of

knowledge of existing automated testing techniques, along
with difficulties related to the usability of the tools as factors
for not performing automated testing:

“We don’t really know how to use other tools.”

“I did not know about Android Monkey prior to this
survey. I will try it out.”

“I have not found any easy-to-use testing solutions for
Android”
Finally, the size and maturity of the apps is also a factor

that influences the preference for manual testing:

“I never got involved in an Android project big enough
to require unit testing, it wasn’t worth investing in that.”

“I mostly do manual testing due to the limited size of my
apps. I sometimes use a custom replay system (built into
the app) to duplicate bugs after I come across them. This
method is usually combined with manual testing (printing
debug information to the log) to pinpoint the cause.”

“I’m mostly just building toys or research prototypes,
never built Android apps professionally. So I test pretty
informally (and poorly) because I just want to build a
thing quick and don’t care if it’s robust.”
Test case design strategies. After the open coding for the

responses to SQ4, 34 answers were not considered because
(i) the participants explicitly mentioned they do not perform
testing or do not design test cases, and (ii) for some answers
we were not able to understand/codify the textual answer.
From the valid/accepted answers, the top strategy reported
by the participants to design test cases is follow the usage
model of the app as a guide (30 answers). The next in the
list is designing unit tests for individual components/methods
(10 answers), followed by negative testing and edge cases
(9 answers), and testing expected outputs (6 answers). Bugs,
changes in the last version, and regression account for 9
answers. Three participants claimed they follow the Behavior-
Driven-Development philosophy (BDD). In addition, three
participants mentioned they perform ad-hoc testing. Finally,
two of the participants combine the usage model with feedback
from the end users.

Non-functional requirements were mentioned only in few
cases as the drivers for designing test cases: robustness (2
answers), performance (1 answer), usability (1 answer), and
different device configurations (1 answer). Other strategies
mentioned by only one participant each are: code coverage,
defining assertions in code, dependencies, testing the GUI
model, and testing the business logic.

We also found that developers tend to prefer a single criteria
for designing test cases, as very few respondents reported
more than one preference. Only 15 participants reported mixed
strategies, as those described in the following responses:

“l look for boundary conditions - i try to work out what
happens in the Grey Areas - i look for ways of breaking it.
i also test a range of use cases, how Can the user interact
with the app? when combinations are possible? i try to
test the most probable Scenarios and some strange ones.”

“1) specific tests depending on what the app should do.
For instance: schedule should be as precise as is required
for a scheduling app. 2) robustness: find the limits on
the app by constantly changing the aspect ratio of the
screen or switching app on and off. 3) look at CPU
utilization while testing the app... app should not drain
battery unnecessary”

“Based on the user stories or Use cases. Define initial
state (local data). Perform scenario (call a rest service
/ perform an activity, etc). Validate final screen or rest
service result”
The answers to SQ4 were complemented by participants

reporting the testing goals they have when designing test cases
(SQ5). Fig. 4 depicts the responses for SQ5. As shown in
Fig. 4, the developers prefer to design test cases that target
individual uses cases/features (77 answers), or combinations
of multiple uses cases/features (49 answers). Random events
were mentioned only by 16 participants. The option “Other”
was selected by nine participants; four of the “Other” an-
swers were “none”, two participants mentioned non-functional
attributes (i.e., performance and robustness), one participant
responded “corner cases”, and one mentioned “unit test”.

Single UC/F
Random events

Multiple UC/F
Other

What is the target of the test cases you design for your apps?

0 10 20 30 40 50 60 70

77
16

49
9

Fig. 4. Target of test cases designed by the survey participants. The bar plots
show the number of times each target was selected by the participants. *UC
means Use Case, and F means Feature.

Answer to RQ1. Mobile developers (as represented by our
survey sample) heavily rely on usage models to document
and design test cases. First, requirements are documented
using different artifacts such as feature lists, informal nat-
ural language descriptions, user stories and use cases; only
six out of 102 participants reported they do not use any
artifact to document requirements. Second, the surveyed
participants mostly rely on manual testing and unit testing
for their testing strategies. The rationale provided by the
participants for their preference and effort dedication to
manual testing is supported by several reasons such as
(i) changing requirements, (ii) lack of time for testing
and process decisions, (iii) size of the apps, (iv) lack
of knowledge of the tools and techniques, (v) usability
and learning curve of available tools, and (vi) the cost
of maintaining automated testing artifacts. Finally, the
surveyed developers mostly focus on the usage model to
design test cases, and use one or a combination of use
cases/features as the target for their test cases.

ADB−input
ATA

Other
NL

If you are using (or intend to use) tools for automatic generation of
test cases, what format for the test cases do you prefer?

0 5 10 15 20 25 30

18
22

30
33

Fig. 5. Automatically generated test cases format preferred by the survey
participants. NL means Natural Language, ATA means Automated Test API,
and ADB-input means input commands generated via the Android Debug
Bridge (ADB).

Steps
Steps by UC/F

Outputs
Screenshots

Other

Assuming you have test cases in natural language,
 what type of information would you like to have in them?

0 10 20 30 40 50 60

36
52

62
22

18

Fig. 6. Information preferred by survey participants in automatically generated
test cases. UC means Use Case and F means Feature.

B. RQ2: What are MDs preferences for automatically gener-
ated test cases?

Concerning SQ6, natural language is the format preferred
by the survey participants (See Figure 5) for automated test
cases, with 33 out of 102 participants selecting this option.
The second most popular answer was the “Other” option (30
participants), which represented mostly the lack of participant
knowledge about tools for automatic generation of test cases
or the lack of preference for any format. Unfortunately, the
option “Other” did not provide us with actionable knowledge;
17 textual answers for the “Other” option are empty or
claim no preference for any format; ten participants reported
that they do not use/do not like/are not aware of tools for
automatic generation of test cases; one answer was unclear;
one answer mentioned scripts augmented with comments; and
one participant responded “Replayable event streams, starting
from a known good state”.

The third most popular option for SQ6 was test cases written
with automated testing APIs such as Espresso and Robotium
(22 participants), and the least selected choice was ADB
input commands (18 participants). Therefore by combining
the number of participants voting for natural language test
cases and test cases written with ATAs, the results suggest
that Android developers prefer expressive test cases over low
level scripts with input commands.

Concerning the preferred information that developers would
like to have in an ideal automatically generated test case
(SQ7), expected outputs and reproduction steps organized
by use case or feature are preferred over the other options.
The answers for SQ7 are depicted in Fig. 6. 82 out of
102 participants (80.39%) selected either “Expected outputs”
or “Reproduction steps grouped by use case/feature”. Only
21.7% of the participants agreed on having screenshots as
part of test cases. And, the textual answers to the “Other”
option include: reason/motivation for the test case, device
and contextual information (e.g., Android OS version, display
dimension, internet connection status), malicious user inputs,
and specifications like in the RSpec framework for Ruby [10].

Fig. 7. Tools used by the participants for automated testing of Android apps.

Answer to RQ2. Automatically generated test cases in
natural language or expressed using automated testing
APIs (e.g., Robotium or Espresso) are preferred by the
participants. This suggest a preference for high-level lan-
guages instead of low level events (e.g., using ADB input
commands). In addition, the surveyed developers prefer to
have test cases that include expected outputs and repro-
duction steps organized/grouped by use cases/features.

C. RQ3: What tools are used by MDs for automated testing?

Tools for automated testing. 55 different tools have been
used by our survey participants (SQ8); the tools and frequen-
cies are depicted as a word cloud in Fig. 7. The most used tool
is JUnit [5] (45 participants), followed by Roboelectic [8] with
16 answers, and Robotium [9] with 11 answers. 28 participants
explicitly mentioned they have not used any automated tool for
testing mobile apps. 39 out of 55 tools were mentioned only
by one participant each, which suggests that mobile developers
do not use a well established set of tools for automated
testing. In addition, surprisingly, Monkey [31], the state-of-
the-art tool for fuzz/random testing, was mentioned only by
three out of 102 participants, and the results are similar for
other tools designed/promoted by Google: Espresso [30] (eight
participants), MonkeyRunner [29](one participant), Lint [28]
(one participant), and UIAutomator [30] (one participant).
None of the mentioned tools allow for automatic derivation of
test cases from source code, real app usages, or requirements
specifications3

Experiences with random testing tools. 60.78% (62 out of
102) of the participants reported no experience with Monkey
or tools for random testing (SQ9). 15 participants (14.71%)
provided no-rationale/unclear answers. Concerning usefulness,
13 participants (12.75%) consider Monkey and random testing
as useful tools for corner cases or stress testing, and in some
cases for finding performance issues. For instance:

“Yes, it’s useful to detect minor/stability issues. For
instance it sometimes finds issues happened when tapping
buttons many times quickly.”

“Monkey is very useful for stress testing the application
or to verify that there are no leaks (typically memory

3It is worth nothing that the Android Monkey tool generates random
sequences of events, however, the sequences are not easy to document or
describe in terms of use cases.

leaks) that build up over time. Sometimes, it also catches
the odd bug as well.”
However, eight of those 15 participants pointed out that

some issues or limitations are related to low impact of the
discovered bugs and reproducibility:

“They can be useful in finding memory leaks, ANRs, bad
navigation flows and the like. They can be problematic
in doing unexpected things, e.g. exiting your application
during a test run. ”

“Good for stress testing, not very consistent results.”

“They add a lot of noise for very little signal. They are
good at finding some really weird cases, but mostly it
seems like the cases they find wouldn’t normally be hit by a
user and that time could be better spent adding features.”

“I used it long time ago and find that it works as a
solution only for low-quality fragile code. It’s rarely helps
to improve overall quality of the app.”
11 participants (10.78%) provided answers in which the

main message is that Monkey/Random testing tools are not
useful because of reproducibility issues, maintenance costs of
the scripts, and lack of tangible benefits:

“hard to reproduce bugs, steps hardly reproducible by
human beings”

“I’ve ran Android Monkey and it found some defects, but
the developers said ”that barely happens” or ”that never
happens”. So the defects weren’t looked into.”

“I don’t think random tests provide any value. The ideal
is to have a tool able to perform an entire session (run
several scenarios) / without having the test-runner to kill
and initialize the app before running each scenario.”
Although random testing has been proven to be “useful”

by the research community [14], [19], [24], [26], available
random testing tools for mobile apps (e.g., Monkey) have is-
sues such as lack of expressiveness. For instance, the Android
Monkey tool allows for reproducibility of event streams (by
using the same seed), but it does not have log capabilities
for creating a higher level representation of the streams.
In addition, it seems to be the only tool available for the
community for random testing of mobile apps.

Researchers have also designed tools for mobile random
testing (e.g., Dynodroid [46]), however those tools are still
only known by the research community or have impediments
for industrial usage (e.g., applicability only under certain
conditions). In general, the main finding here is the lack of
experience with and lack of usage of random testing tools
by the surveyed participants. Regarding the usefulness, few
participants reported cases in which the tools are useful for
finding corner cases and stress testing; and few participants
reported that the tools are not useful at all. However, common
complaints in both cases (from both participants who saw
benefits and those who didn’t) are lack of reproducibility of
the event sequences. These results suggest, that current tools

used by Android developers need to be improved to allow
expressiveness of the generated streams. Also more effort in
the research community should be dedicated to promote the
usage of random testing tools generated as part of research,
and to deliver tools that can be easily adopted by the industry.

Answer to RQ3. The surveyed participants rely on a
diverse set of tools for supporting automated testing of
mobile apps. In particular, 55 different tools were reported
showing a preference for APIs such as JUnit, Roboelectric
and Robotium. Compared to the study by Kochhar et
al. [39], we report a larger set of tools answered by a
larger set of participants. However, both studies agree on
listing JUnit, Roboelectric and Robotium as part of the top-
4 used tools. Record & replay, and random testing tools
are used only by few participants. In the case of random
testing tools, few participants claimed some benefits such
as stress testing, execution/discovery of corner cases, and
execution of events that are hard to generate by humans.
However, impediments for increased adoption of random
testing tools (e.g., the Android Monkey tool) are the lack
of expressiveness of the generated event streams, and
difficulty reproducing scenarios.

D. RQ4: Do MDs consider code coverage as a useful metric
for evaluating test cases quality?

14 out of 102 participants reported they do not use code
coverage, do not use automation tools, or were unaware of
code-coverage as a quality metric (SQ10); and six out of 102
participants provided no valid answers. From the remaining
82 participants, 51 answered “No” (i.e., code coverage is not
useful), 29 answered “Yes” (i.e., code coverage is useful),
and two participants provided a “yes-no” answer. In the case
of the “No” answers, 19 out of 51 augmented the answer
claiming that code coverage is not a good metric for measuring
quality of test cases because there are other useful and better
methods/metrics such as code (test cases) reviews, number of
faults detected by the test cases (fault-detection capability),
features covered by the test cases (feature coverage), or the
“works for me” criteria4. Examples of the answers claiming
that code coverage is not a useful metric for evaluating test
case quality include the following:

“No. We measure the number of uncaught bugs and
regressions over time that devs had to spend time fixing”

“No, calculate total coverage based on features, covered
elements etc.”

“I don’t usually participate in the testing side of things,
but I wouldn’t use code coverage as a metric for quality
as the two are completely distinct and different things.”

“Code coverage categorically does not measure the
quality of tests. It is useful to show that code is not

4Note that the effectiveness of code coverage for measuring the quality of
test suites has been already questioned by the software engineering community
[34], [38], [62].

currently tested but it says nothing further about the code
that is already under test. Many people – probably most –
are quite skilled at writing useless tests. Education is the
only tool for producing high-quality tests and code review
is the only tool for ensuring that quality. That said, fuzz
testing, for instance, is a very powerful tool for certain
kinds of testing. Knowing how to use the tools available
to us is part of that education.”
29 out of 102 participants found code coverage a useful

metric for measuring test cases quality, in particular for
identifying code entities that have not been tested. Examples
of their answers are as in the following:

“I use code coverage mainly as a tool to ensure I haven’t
forgotten any major areas of testing. Most of my projects
have a minimum coverage requirement of 75-80%”

“Yes, I try to keep code coverage at an acceptable level.
This is definitely not the only thing that matters, but I
think it does matter.”

“We use code coverage because it’s easy to measure,
it’s a good enough metric, and because if developers feel
they are being measured they are more likely to write more
tests, thus generally producing the desired outcome.”
Finally, the “Yes-no” answers claim code coverage is not

useful at all, but they help to identify parts of the code that
have not been tested:

“Yes and no. It’s an indication if something is tested, not
that the test is correct.”

“No. We use code coverage more as a guide to which
part of the code base might need more attention in terms
of writing more tests. We don’t really have other metric
for measuring quality of the test cases.”

Answer to RQ4. Code coverage is not used or not
considered as useful for measuring the quality of test cases
by 63.73% (i.e., 65 out of 102) of the surveyed participants.
Some of the reasons explaining the lack of confidence in
the metric is that they prefer fault-detection or feature-
coverage capabilities of test cases as a measure of quality,
or they prefer to measure test cases quality by performing
code reviews. On the other side, some participants consider
that code measure is a useful metric because it helps to
identify parts of the code that are not tested.

IV. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation, and relate to possible mea-
surement imprecision when extracting data used in a study.
To minimize this threat we filtered out incomplete surveys,
participants with zero years of experience, and surveys with
invalid answers. Moreover, to minimize a source of inexac-
titude in our study on the open questions, we followed a
grounded theory-based approach [25]. In particular three of the
authors performed an open coding by independently creating

categories, then the codes were standardized and in case of
no-agreement the answers were marked as “Unclear”.

Threats to external validity concern the generalizability of
our findings. The results in our study may not be generalizable
to developers on other platforms, moreover our study only
focuses on developers from open source projects on Github
and we can not guarantee that all participants are commercial
developers (although the average industrial experience for
participants is between 5-10 years). In addition, the testing
practices and automated tools used by our sample set may not
generalize across all mobile developers. However, despite this
fact, we believe the information provided by our respondent
pool can be used to effectively provide guidelines for the re-
search community towards devising more practical automated
testing approaches.

Another threat related to generalizability is that the results
of our study are based on 102 respondents which might not be
representative of the global community of Android developers.
However, this study surveys a comparable number of Android
developers to other studies [12], [37], [39].

V. RELATED WORK

In this section we present the related work and we differ-
entiate the outcomes of our study compared to other studies
concerned with investigating the topic of mobile testing.

Erfani et al. [37] performed a study to understand the
challenges that developers face during the life cycle of mobile
software development. The study comprises interviews and
a semi-structured survey targeted to 12 experts on mobile
development and 188 people from the general mobile com-
munity respectively. Therefore, the findings can be catego-
rized in four main topics: (i) general challenges such as
fragmentation, testing support, open/closed platforms, data
intensive, and frequent code changes; (ii) development across
multiple platforms with problems such as native vs. hybrid
apps, capabilities of platforms, code reuse vs. writing from
scratch, behavioral consistency cross platform, and effort on
migration across platform; (iii) current testing practices like
manual testing, developers as testers, platform specific testing,
levels of testing, beta testers; and finally (iv) testing challenges
including limited unit test support for mobile specific features,
better monitoring support, crash reports, emulators, missing
platform-supported tools, rapid changes, multiple scenarios to
validate, app stores and usability testing.

The study concluded that one of the most important chal-
lenges for developers is having to deal with multiple platforms,
since the knowledge of one platform typically can’t be trans-
ferred to another. In addition, tools to monitor and measure the
performance of mobile apps are important for developers as
are testing frameworks and tools. Our paper differs from the
goals of this study in that we focus on examining the testing
practices and preferences of open source developers whereas
Erfani et al. analyzed a variety of aspects of the entire software
development process.

Kochhar et al. [39] conducted an empirical investigation into
open source apps and two different surveys, the first one com-

prising three questions asked to 83 android developers, and the
second comprising five questions as an improved version of the
first study, posed to 127 windows app developers at Microsoft.
The study includes questions to investigate techniques used
to test apps, frameworks used, types of testing used, reasons
for using testing tools, and challenges encountered during
testing process. The authors concluded that Android apps are
not properly tested since around 86% of the apps do not
contain any test cases. In addition, existing automated tools
are not able to reach certain parts of code in mobile apps
and are typically prohibitively difficult to use. Finally, the
study found that developers are not aware of many existing
testing tools. Our paper differentiates itself in the fact that
we attempted to distill developer’s testing preferences and
practices for both manual and automated practices in order
to inform the development of more practical automated tools,
and our participants were Android developers.

Choudhary et al. [23] presented a comparison between
test input generation techniques for Android applications.
Choudhary et al. studied these tools applied to 60 real-world
applications considering four different criteria: (i) ease of
use, (ii) android framework compatibility, (iii) code coverage
achieved, and (iv) fault detection. The authors concluded that
random testing (specifically Android Monkey) surpasses all
other automated techniques. In contrast to this study we sur-
veyed developers to investigate trends on usage of automated
testing tools and experiences with random testing tools.

Linares-Vásquez et al. [43], recently conducted a survey
of current tools, frameworks, and services available to sup-
port mobile testing practices. This survey draws comparisons
between different testing techniques and solutions, describing
the benefits, and delineating drawbacks and trade-offs between
different approaches/tools. Additionally, the work offers a
forward-thinking vision for effective mobile testing along three
principles: Continuous, Evolutionary, and Large-Scale. While
this work offers a valuable perspective on the current state
and potential future of mobile app testing, it does not survey
developers to understand current mobile testing trends.

Aho et al. [12], presented an industrial evaluation of the
Murphy tool that models the graphical user interface to support
several testing tasks during the software development cycle.
The experiences presented in the paper were based on the
evaluation of three software systems and three test engineers
from industry. The Murphy tool decreased the time and effort
of generating test cases from the model. The authors concluded
that Murphy helped to minimize the tedious and repetitive
work while creating manual test cases that involves analysis
and verification from the tester. Compared to this study, we
do not focus on the evaluation of one particular approach
rather we surveyed open source developers about the usage
of different automated testing tools, and preferences for ideal
automated testing techniques.

VI. CONCLUSION AND LEARNED LESSONS

In this paper we presented the results of an empirical study
with 102 contributors of open source mobile apps hosted at

GitHub. In particular, the study was conducted with a survey
aimed at gathering information about their practices in-the-
wild and preferences for (i) designing and generating test
cases, (ii) using automated approaches, and (iii) assessing the
quality of test suites.

Our survey reveals highly relevant opinions of open source
developers such as they rely primarily on usage models (e.g,
use cases, user stories) of their applications when designing
test cases, and they prefer high-level expressive automatically
generated test cases organized around use-cases. As of to-
day, little effort has been devoted to include usage models
[40], [45], [57] during automated test cases generation for
mobile apps; thus, usage models and expressive test cases
should be considered as an important goal for automated
approaches/tools for mobile testing. The survey results support
the need for multi-models in model-based testing as suggested
by Linares-Vásquez et al. [43].

Another result we would like to highlight is the fact that
code coverage is not perceived by the survey participants as an
important measure of test cases quality. While code coverage
has been widely used by researchers to validate automated
approaches for testing mobile apps, this result could be used
as an insight that reinforce the discussion regarding code
coverage utilty [34], [38]. Additionally, this should spur the
discussion and creation of new evaluation models — for new
testing approaches/tools — that consider other criteria such
as relevant fault detection capability (e.g. faults along heavily
traversed parts of the app) and feature coverage.

Finally, our survey confirms the fact that despite the plethora
of tools proposed by the research community, the state-of-the-
practice for automated testing are automation APIs; manually
written test cases with automation APIs are very fragile to
changes in the GUI of the app under test test [37], [43];
even the official Google tool for random/fuzz testing (i.e.,
Monkey) has a low usage rate. In order to aid in technology
transfer, researchers should consider developer preferences and
workflows when designing and evaluating their approaches.
Such preferences can be gleaned from the developer responses
in this paper, and include among others: (i) A need for
automatically generated test cases to co-evolve with apps and
features, (ii) low-overhead tools that tightly integrate into
current (agile) development workflows, and (iii) expressive test
cases that allow for easier debugging and traceability between
test cases and features. By taking such preferences into consid-
eration, researchers should be able to design approaches that
make a meaningful impact during real mobile testing practices.

REFERENCES

[1] Android ui/application exerciser monkey http://developer.android.com/
tools/help/monkey.html.

[2] Current number of smartphones in use https://www.statista.com/
statistics/330695/number-of-smartphone-users-worldwide/.

[3] Google firebase test lab robo test https://firebase.google.com/docs/test-
lab/robo-ux-test.

[4] Google play store https://play.google.com/store?hl=en.
[5] Junit. http://junit.org.
[6] Perfecto. http://www.perfectomobile.com.
[7] Qualtrics. http://www.qualtrics.com.
[8] Roboelectric. http://robolectric.org.

[9] Robotium. https://code.google.com/p/robotium/.
[10] Rspec. http://rspec.info.
[11] Sauce labs. https://saucelabs.com/features/#features-automated-mobile.
[12] P. Aho, M. Suarez, T. Kanstren, and A. Memon. Murphy tools: Utilizing

extracted gui models for industrial software testing. In ICSTW’14, pages
343–348, 2014.

[13] M. Ali, M. E. Joorabchi, and A. Mesbah. Same app, different app stores:
A comparative study. In MOBILESoft’17, pages 79–90, Piscataway, NJ,
USA, 2017. IEEE Press.

[14] D. Amalfitano, N. Amatucci, A. R. Fasolino, P. Tramontana, E. Kowal-
czyk, and A. Memon. Exploiting the saturation effect in automatic
random testing of android applications. In MOBILESoft 2015, pages
33–43, 2015.

[15] D. Amalfitano, A. Fasolino, P. Tramontana, S. De Carmine, and
A. Memon. Using gui ripping for automated testing of android
applications. In 258-261, editor, ASE’12, 2012.

[16] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. Memon.
Mobiguitar - a tool for automated model-based testing of mobile apps.
IEEE Software, page to appear, 2014.

[17] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In FSE’12, 2012.

[18] Apple. App store. https://itunes.apple.com/us/genre/ios/id36?mt=8,
2017.

[19] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. IEEE Trans. Softw. Eng., 38(2):258–
277, Mar. 2012.

[20] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In OOPSLA’13, pages 641–660,
2013.

[21] G. Bavota, M. Linares-Vásquez, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. The impact of api change- and fault-
proneness on the user ratings of android apps. IEEE Transactions on
Software Engineering (TSE), 2015.

[22] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps
with minimal restart and approximate learning. In OOPSLA’13, pages
623–640, 2013.

[23] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input gen-
eration for android:are we there yet? In 29th IEEE/ACM International
Conference on Automated Software Engineering (ASE’15), 2015.

[24] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer. On the
number and nature of faults found by random testing. Softw. Test. Verif.
Reliab., 21(1):3–28, Mar. 2011.

[25] J. Corbin and A. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology, 13(1):3–21, 1990.

[26] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE
Trans. Softw. Eng., 10(4):438–444, July 1984.

[27] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing-
and touch-sensitive record and replay for android. In International
Conference on Software Engineering (ICSE’13), pages 72–81, 2013.

[28] Google. Lint. http://developer.android.com/tools/help/lint.html.
[29] Google. monkeyrunner. http://developer.android.com/tools/help/

monkeyrunner concepts.html.
[30] Google. Testing ui for a single app. http://developer.android.com/

training/testing/ui-testing/espresso-testing.html.
[31] Google. Ui/application exerciser monkey. http://developer.android.com/

tools/help/monkey.html.
[32] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting

mobile app bugs with appdoctor. In Ninth European Conference on
Computer Systems (EuroSys’14), page Article No.18, 2014.

[33] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-
replay for android. In OOPSLA’15, OOPSLA 2015, pages 349–366,
New York, NY, USA, 2015. ACM.

[34] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 435–445, New
York, NY, USA, 2014. ACM.

[35] C. S. Jensen, M. R. Prasad, and A. Moller. Automated testing with
targeted event sequence generation. In International Symposium on
Software Testing and Analysis (ISSTA’13), pages 67–77, 2013.

[36] N. Jones. Seven best practices for optimizing mobile testing efforts.
Technical Report G00248240, Gartner, 2013.

[37] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In ESEM’13, pages 15–24, 2013.

[38] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In

Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 654–665, 2014.

[39] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo.
Understanding the test automation culture of app developers. In ICST’15,
pages 1–10, 2015.

[40] E. Kowalczyk and A. Memon. Extending manual gui testing beyond
defects by building mental models of software behavior. In ASEW’15,
pages 35–41, Washington, DC, USA, 2015. IEEE Computer Society.

[41] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: A
threat to the success of android apps. In ESEC/FSE’13, pages 477–487,
2013.

[42] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk. Optimizing energy consumption of guis
in android apps: A multi-objective approach. In ESEC/FSE’15, pages
143–154, 2015.

[43] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk. Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing. In 33rd IEEE International Conference on Software
Maintenance and Evolution (ICSME’17), page to appear, 2017.

[44] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk. How
developers detect and fix performance bottlenecks in android apps. In
ICSME’15, page to appear, 2015.

[45] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk. Mining android app usages for generating actionable
gui-based execution scenarios. In MSR 15, 2015.

[46] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE’13), pages 224–234, 2013.

[47] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: Segmented evolu-
tionary testing of android apps. In FSE’14, page to appear, 2014.

[48] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated
testing for android applications. In ISSTA’16, pages 94–105, 2016.

[49] M. Miranda, R. Ferreira, C. R. B. de Souza, F. Figueira Filho, and
L. Singer. An exploratory study of the adoption of mobile development
platforms by software engineers. In MOBILESoft’14, pages 50–53, New
York, NY, USA, 2014. ACM.

[50] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek. Sig-droid: Auto-
mated system input generation for android applications. In ISSRE’15,
pages 461–471, Nov 2015.

[51] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk. Auto-completing bug reports for android applications. In FSE’15,
page to appear, 2015.

[52] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk. Fusion: A tool for facilitating and augmenting android bug
reporting. In ICSE’16, May 2016.

[53] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
android application crashes. In ICST’16, 2016.

[54] B. Nguyen and A. Memon. An observe-model-exercise* paradigm
to test event-driven systems with undetermined input spaces. IEEE
Transactions on Software Engineering, 99(Preprints), 2014.

[55] L. Ravindranath, S. nath, J. Padhye, and H. Balakrishnan. Automatic
and scalable fault detection for mobile applications. In 12th annual
international conference on Mobile systems, applications, and services
(MobiSys’14), pages 190–203, 2014.

[56] R. Sasnauskas and J. Regehr. Intent fuzzer: Crafting intents of death.
In WODA+PERTEA’14, pages 1–5, 2014.

[57] P. Tonella, R. Tiella, and C. Nguyen. Interpolated n-grams for model
based testing. In International Conference on Software Engineering
(ICSE’14), 2014.

[58] Xamarin Inc. Xamarin test cloud. https://xamarin.com/test-cloud.
[59] W. Yang, M. Prasad, and T. Xie. A grey-box approach for automated

gui-model generation of mobile applications. In FASE’13, pages 250–
265, 2013.

[60] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of
oracles for testing user-interaction features of mobile apps. In ICST’14,
pages 183–192, Washington, DC, USA, 2014. IEEE Computer Society.

[61] H. Zhang and A. Rountev. Analysis and testing of notifications in
android wear applications. In ICSE’17, May 2017.

[62] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 214–224,
New York, NY, USA, 2015. ACM.

