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Abstract—Performance of rapidly evolving mobile apps is one
of the top concerns for users and developers nowadays. Despite
the efforts of researchers and mobile API designers to provide
developers with guidelines and best practices for improving the
performance of mobile apps, performance bottlenecks are still a
significant and frequent complaint that impacts the ratings and
apps’ chances for success. However, little research has been done
into understanding actual developers’ practices for detecting and
fixing performance bottlenecks in mobile apps. In this paper,
we present the results of an empirical study aimed at studying
and understanding these practices by surveying 485 open source
Android app and library developers, and manually analyzing
performance bugs and fixes in their app repositories hosted on
GitHub. The paper categorizes actual practices and tools used by
real developers while dealing with performance issues. In general,
our findings indicate that developers heavily rely on user reviews
and manual execution of the apps for detecting performance bugs.
While developers also use available tools to detect performance
bottlenecks, these tools are mostly for profiling and do not help
in detecting and fixing performance issues automatically.

Index Terms—Performance, Bottlenecks, Developers, Android

I. INTRODUCTION

Nowadays, the performance of mobile apps, which are
rapidly evolving, is one of the top concerns for users and
developers. The official markets of the top three mobile
platforms (i.e., Android, iOS, and Windows Phone) hosted
1.43M [32], 1.4M [31], and 300K [33] active apps in 2014,
respectively. While the apps from Google Play and the Apple
Store have been downloaded more than 125 billion times, per-
formance bottlenecks are still among significant and frequent
complaints that impact apps’ ratings and chances for success.
For example, a recent study by Liu et al. [59] reported that
11K+ out of 60K Android apps have suffered or are suffering
from performance bugs. Also, Khalid et al. [55] analyzed 6K+
user reviews of iOS apps and found that unresponsiveness and
heavy resource usage are among the major reasons for the
negative user reviews. Despite the efforts of researchers [51],
[59], [61] and mobile API designers in providing developers
with guidelines and best practices [2], [35], [34] for improving
the performance of mobile apps, there is still a significant
gap between research and practice in terms of dealing with
performance issues by developers in the wild [59], [55].

Our work is empirical in nature and is aimed at filling this
important gap and at increasing the understanding of current
performance related practices by developers of Android apps.
While previous empirical studies [51], [59], [61] focused
on understanding and categorizing performance bugs, in this

paper, we analyze real practices that are followed and actual
tools that are used by developers to fix performance related
bugs. In the context of our study, we surveyed 485 contributors
of open source Android apps and libraries hosted on GitHub,
inquiring about their practices and tools for detecting and
fixing performance bottlenecks; then, we manually analyzed
the repositories (i.e., bugs from the issue trackers and commits
from the code change histories) of their apps to study real
performance bottlenecks and fix-inducing commits to inves-
tigate actual strategies followed by developers to deal with
performance related issues.

This paper makes the following noteworthy contributions:

• To the best of our knowledge, this is the first study aimed
at analyzing real practices of open source developers for
detecting and fixing performance issues in Android apps;

• The study provides an overview and key insights into
types of performance related issues faced by developers
as well as prevalent practices and tools used to deal with
performance bugs and bottlenecks. The results also reveal
current performance related needs of developers that can
be used to drive future efforts of researchers;

• Our findings complement previous studies of performance
bottlenecks in Android apps by providing the viewpoint
of real developers via analysis of their practices;

• We provide extensive online appendix that includes the
anonymized answers collected from the survey, the list
of tools reported by the participants, and the examples of
real performance bottlenecks in Android apps [10].

In summary, our findings demonstrate that the preferred
practices of open source Android developers for detecting
performance bottlenecks are those related to manual execution
of apps and analysis of both user reviews and bug reports.
Also, manual execution of apps is usually accompanied by
using specific tools (e.g., Traceview, Eclipse MAT) or add-
hoc practices (e.g., adding debugging statements with time
measurements) that support observation-driven analysis of per-
formance problems. Surprisingly, the results point to the fact
that developers do not rely on existing static analysis tools for
detecting performance bottlenecks. Although a large number
of tools for dynamic analysis are available, these tools neither
support automatic detection of performance bottlenecks nor
provide developers with suggestions about how to fix the
bottlenecks. Regarding the practices for fixing performance
bottlenecks, the most frequent practices are the usage of multi-

1



threading to avoid lengthy operations in the main thread,
GUI optimizations for reducing the complexity of the UI,
and caching to avoid redundant, blocking, or time consuming
resource accesses.

II. DESIGN OF THE STUDY

The goal of the study is to identify current practices
of Android developers for detecting and fixing performance
bottlenecks in Android apps. In particular, we selected open
source Android apps hosted on GitHub and the developers
contributing to those apps as the context for this study. Our
decision to focus on open source apps and developers is based
on the fact that we wanted to identify the state of practice
and have access to the revision history of their Android apps
for further analysis. The choice of GitHub is motivated by
the fact that this is the largest repository of Android apps.
Consequently, we aim at answering the following RQs:

• RQ1: What practices are used by Android developers to
detect performance bottlenecks? This question aims at
identifying current practices, strategies, and sources used
by developers for identifying performance bottlenecks;

• RQ2: What tools are used by Android developers to
detect performance bottlenecks? This question focuses on
studying the tools used by developers in practice;

• RQ3: What practices are used by Android developers to
fix performance bottlenecks? This question aims at build-
ing a taxonomy of practices and investigating specific
practices for fixing performance bottlenecks.

The goal of this study goes beyond identifying the practices
and tools. We also categorize the practices in a taxonomy and
present them in such a way that (i) researchers can analyze the
state-of-the-practice to propose new approaches and tools, and
(ii) practitioners can use these findings as a reference guide.
A. Data Collection

To answer the research questions, we designed an online
survey with the questions (SQs) listed in Table I. SQ1 to
SQ3 are for collecting demographic background, filtering
participants with short or over claimed experience in Android
development, and understanding the diversity of our sample.
SQ4 to SQ7 were designed to answer our RQs. In particular,
SQ4 and SQ5 were designed to answer RQ1; SQ6 is related
to RQ2; and SQ7 serves to answer RQ3.

The survey was sent to GitHub contributors of open source
Android apps. To select the potential participants, we first
extracted all of the Android projects on GitHub by first iden-
tifying all Java projects (381,161) through GitHub’s API and
locally cloning the projects. We searched the local repositories
for the presence of an AndroidManifest.xml file, required by
Android apps. We refined this list to the projects where the
manifest file was at the top-level. To select active projects and
to prevent duplicate projects, we filtered projects with at least
one fork, star, or watcher and that were not a fork.

After filtering, we found 16,331 potential repositories from
which we extracted the contributors. We identified the devel-
opers that contributed changes to the apps, and we merged
email addresses that occurred across multiple projects to avoid

Table I
SURVEY QUESTIONS

Id Question (Type)
SQ1 For how many years have you been programming? (Numeric)

SQ2
For how many years have you been developing Android apps?
(Numeric)

SQ3
What is your academic level? (Single-choice: High school |
Bachelor | Master | PhD | PostDoc)

SQ4

How do you detect performance bottlenecks in mobile Apps?
(Multiple-choice: App reviews/issue reports | Manual testing
| Other strategies | Tools)

SQ5
What other strategies (if any) do you use for detecting
performance bottlenecks? (Open)

SQ6
What tools (if any) do you use to detect performance bottle-
necks? (Open)

SQ7
What strategies/practices do you use for improving perfor-
mance bottlenecks in mobile apps? (Open)
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Figure 1. Programming experience of survey participants

duplicates. Subsequently, we filtered invalid email addresses
and removed accounts of Developers at Google to avoid de-
velopers that work on Android’s core operating system, which
is beyond the scope of our study. Then, we emailed the survey
to 24,340 email addresses from which we got 5K+ messages
reporting “undelivered message” and 628 survey responses.
From those responses, we filtered the invalid ones and those
ones from the participants who indicated less than one and
more than ten years of experience in Android development
(note that the first two internal alpha releases of Android
were available in late 2005 - early 2006). In the end, we
obtained 485 valid responses. On average, the participants
had 12 years of programming and three years of Android
development experience (Fig. 1 (a)). Concerning the academic
level, 45.57% of the participants had only a B.S. degree and
38.76% had a M.S. degree (Fig. 1 (b)).
B. Analysis Method

The answers to SQ1 to SQ4 were analyzed using descriptive
statistics. In the case of the open answers (SQ5-SQ7), we
categorized the answers manually by following a grounded
theory-based approach [37]. Three of the authors went through
all of the free-text answers and performed one round of open
coding by independently creating categories for the answers.
After the round of open-coding, the codes were standardized.
In the cases of no-agreement between the three coders, corre-
sponding answers were marked as “Unclear". Then, we used
the categories to build a taxonomy of practices for improving
performance bottlenecks in Android apps. Our findings for the
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Figure 2. How developers detect performance bottlenecks in mobile Apps
(Reviews/issue reports | Manual testing | Tools | Other strategies | None)

practices (RQ1) and tools (RQ2) for detecting performance
bottlenecks are presented in Sections III and IV, respectively.
The practices for improving performance bottlenecks (RQ3)
are discussed in Section V.

In SQ4 of the survey, we asked the participants to vol-
untarily type the URLs of the GitHub repositories to which
they previously contributed. We manually inspected the change
histories in these repositories by looking for commit messages
and issue reports related to performance bottlenecks. Then, we
inspected the commits related to fixing performance issues in
order to identify the concrete strategies used by developers.
The results (i.e., examples and detected practices) of this
qualitative analysis are presented also in Section V.

C. Threats to Validity

The results of our study cannot be generalized to developers
of all mobile platforms. Our focus is only on Android devel-
opers. Another threat to the external validity is that the sample
of surveyed developers may not be statistically representative
of the Android developers community. However, as showed in
Fig. 1, our sample of 485 participants is diverse in terms of
programming experience. Additionally, we focused on open
source Android apps hosted on GitHub. Thus, we cannot
generalize our findings to all Android developers, since the
findings may not necessarily apply to developers working
on commercial apps. It might be possible that developers
working for commercial apps use different tools and follow
best practices. To avoid selection bias, we only filtered clearly
invalid email addresses and Google developers, which would
be working on the operating system and are out of scope.
In terms of threats to construct validity (i.e., the relationship
between theory and observation), they are mainly related to
the measurements that we performed in our study. To avoid
potential issues with construct validity, we filtered answers
provided by developers with less than one year of experience
and more than ten years of experience in Android program-
ming (as explained in Section II-C) to avoid invalid and non-
informative answers. Also, because our survey included free-
text answers, we coded the answers using Grounded Theory
(Section II-B). In particular, we discarded the answers when
agreement was not achieved between the three coders.

III. RESULTS FOR RQ1: PREFERRED PRACTICES FOR
DETECTING BOTTLENECKS

Fig. 2 shows the distribution of practices followed by the
surveyed developers. The figure caption explains the labels
used for the bars, e.g., R+M means Reviews and Manual
testing. In general, responses indicate that developers rely on
a diverse set of practices and tools for detecting performance
bottlenecks in Android apps. However, we also observed that
when using tools, they were inclined toward dynamic analysis
based ones. For instance, the combination of manual testing
with analysis of user reviews is the most preferred practice
by 23.66% of the respondents. Manual testing as a standalone
practice was the top-2 practice (22.85%); and the combination
of analysis of reviews, manual testing, and relying on existing
tools was the top-3 practice (14.61%). The next preferred
practice was the combination of manual testing and existing
tools (11.52%). The tools reported by the participants are
analyzed in Section IV.

Manual testing was mentioned in all top four combinations
of practices and it accounts for 353 answers (72.63%). The
analysis of the reviews appears in all top five practices
accounting for 207 answers (42.59%). When looking into
the results while considering each practice separately, the
results suggest the same order of preferences: manual testing
(87.04%), analysis of user reviews (50.41%), existing tools
(39.92%), and other strategies (18.32%).

89 answers to the SQ4 “Other strategies” were expanded
upon with textual descriptions in SQ5 (in a free response
field). Among these answers, we discarded 15 responses that
were ambiguous with respect to the strategies for detecting
bottlenecks (e.g., “’Reasoning”,“If it’s slow, I improve it”). We
also omitted the answers where respondents claimed that they
do not care about improving performance. In the remaining
valid answers (74 answers), the most prominent strategy was
the one relying on instrumenting the code with debugging
statements and analyzing the logs (31 answers); 14 out of
those 31 answers mention logging time measurements. The
second most used strategy was code inspections (11 answers)
followed by checking apps on different devices with low
specifications and different OS versions. The application of
best practices and good design principles are also claimed,
but as a prevention (instead of detection) strategy in six
answers. Different types of testing, mostly automated, account
for only nine answers including unit testing, mock-based
testing, stress testing, and end-user testing. Observation-based
practices such as profiling, debugging, and monitoring were
mentioned in ten responses; however, these answers overlap
with the answers for the tools that were used. Algorithmic
analysis was mentioned only in two cases and GUI overdraw
checking was mentioned only once.

Answer to RQ1. Open source Android developers primarily
rely on manual testing and analysis of the reviews for de-
tecting performance bottlenecks. Manual execution of apps
is also accompanied by tools that help measure and visual-
ize performance-related measurements (e.g., execution time



Table II
TOOLS USED BY ANDROID DEVELOPERS TO DETECT

PERFORMANCE-RELATED ISSUES
Purpose Tool / Suite

Profiling-
Monitoring

MAT, TraceView, DDMS, Android Device Monitor,
ADT, ADB, Strict Mode API, OpenGL Tracer, ADB
profiler, Android Debug API, Heapdump, Surface
Flinger, Hprof, Dumpsys, Dmtracedump, Eclipse pro-
filer, Systrace, Trepn, Valgring/Calgrind, Intel Studio,
AT&T ARO, Emmagee, Procrank, Chrome trace tool,
NewRelic, Adreno profiler, IntelliJ profiler, LittleEye,
Netbeans Profiler, Nvidia Nsight, Perf, VisualVM,
High Performance C++ profiler, Top, Linux process
monitor, Acra, Charles Network Analyzer, Crashlytics

Testing
Roboelectric, JUnit, Appium, Robotium,
Xdotool+Geniemotion, Robospock, Monkey,
MonkeyRunner, Cloud-services

Debugging Eclipse debugger, GDB, JDB, SQLLITE Explain
Query Plan, Nvidia Nsight

Static Analysis Sonar, Lint, FindBugs, PMD
GUI-based
analysis

Hierarchy Viewer, Android overdraw visualizer, Sur-
face flinger, OpenGL tracer

Analytics GoogleAnalytics, MintSplunk, Crashlytics, NewRelic
Logging Logcat, Custom logging systems
Other Jenkins, Git Bisec, Android Battery Stats, Caliper

and memory). Despite the availability of tools for profiling
performance-related measurements, a number of practitioners
still rely on manually inserting statements in the code to
measure and print execution time and memory consumption.

IV. RESULTS FOR RQ2: TOOLS FOR DETECTING
BOTTLENECKS

194 participants selected the option “Tools” in SQ4 and
expanded the answer with a textual description for SQ6. We
categorized the tools according to their purpose as well as
whether these tools are provided and/or supported by Google
or third-party vendors. Table II lists the tools grouped by
their purpose. 156 participants reported tools from the Android
ecosystem and 54 participants reported third-party tools (note
that some of the respondents reported both Android and
third-party tools in the same answer). However, the reported
tools were mostly used for observation-based analysis, which
encompasses tasks such as profiling, monitoring, testing, and
debugging. Only five participants mentioned using static anal-
ysis tools (i.e., Lint, SONAR, FindBugs, and PMD).

Fig 3 depicts Android tools used by the developers (see
frequencies in appendix [10]). The participants referred to
specific tools (e.g., Traceview [45] and Memory Analyzer
Tool, MAT [4]) as well as tool suites such as Android Device
Monitor [41] or Android Debugger Bridge [38]. A total of
30 tools and suites from Android ecosystem were mentioned.
For instance, Traceview is the top used tool (34 answers)
followed by MAT (20 answers). Next top three Android tools
are DDMS [49] (17 answers), Systrace [48] (16 answers), and
Logcat [43] (11 answers). In addition to the survey answers,
one respondent replied with an email providing a listing of the
tools that she uses for improving apps performance [68].

Fig 4 depicts the third-party tools used by the participants.
In 54 answers mentioning third-party tools, we found 47 dif-
ferent tools mostly used for profiling, monitoring, debugging,
and testing purposes. However, the set of tools in responses

Figure 3. Word cloud of Android tools

Figure 4. Word cloud of third-party tools

was diverse enough in that 34 participants mentioned a unique
tool that was not utilized by any other participant. The top most
prevalent third-party tools are JUnit (4), Perf (4), Crashlytics
(4), Valgrind/Callgrind (4), and LittleEye (3).

Answer to RQ2. Although there is a diverse set of available
tools, Android developers mostly rely on tools for performance
profiling and debugging of their apps; most of the tools are
from Google, as expected. There is a preference towards tools
supporting observation-based analysis, and most of the tools
do not support automatic detection of bottlenecks. Only a few
tools support automatic detection of a limited number of types
of performance bottlenecks (Google’s StrictMode Android
API and PerfChecker tool [59]), yet these tools are not widely
used. Static analysis tools are used less frequently and only in
a few cases for detecting performance optimizations.

V. RESULTS FOR RQ3: PRACTICES FOR IMPROVING
PERFORMANCE BOTTLENECKS

For SQ7, we obtained 410 free-text answers. We discarded
90 answers coded as “Unclear” and 25 answers in which the
developers stated they do not need or care about improving
performance. In the end, we obtained 72 codes identifying
individual practices for improving performance bottlenecks.
These 72 codes were further categorized into 16 groups by
considering the type of practice (e.g., threading) or the goal
(e.g., memory management). Finally, these 16 groups were
linked to the following types of high-level categories: GUI lag-
ging, Memory bloat, Energy leak, General-purpose, Unclear-
benefit. The first three categories represent performance bugs
defined by Liu et al. [59]; thus, the groups linked to these cate-
gories represent practices aimed at solving corresponding bug
types (e.g., GUI optimization aims at reducing “Application
Not Responding-ANR” errors and GUI lagging). The last two
categories are for general-purpose cases (e.g., profiling) and



Table III
TAXONOMY OF PRACTICES FOR IMPROVING PERFORMANCE

BOTTLENECKS: CATEGORIES, GROUPS, AND ANSWER FREQUENCIES

Category Group (frequency)

GUI lagging

Threads (74), GUI optimization (47), Caching (40),
Memory management (32), Network resources(17),
Avoid blocking operations (5), Delegation(cloud)
(4), On-demand resources(2), Others (3)

Memory bloat GUI optimization (45), Memory mgmt. (30), Net-
work resources(5), On-demand resources(2), Etc(2)

Energy leak Delegation (4), Reduce GPS calls (1), Wakelock (1)

General
Design(74), Optimizations (68), Observation-driven
analysis (61), Testing (24), Native code (13), APIs
(10), DB-optimizations (5)

Unclear benefit No reflection(1), Depend. injection(1), Recursion(1)

when the perceived benefit is unclear. The complete taxonomy
(codes, groups, and categories) is in our appendix [10].

It is worth noting that some answers mentioned more than
one practice; in those cases, the coders assigned more than
one code to the answer: For example, the following answer
was coded with the practices Wakelock, GC, Separate-thread,
Data-structures, Logic, Profiling:

“WakeLock usage, since energy is very important. Reduc-
ing garbage collection. Android Debug class and Eclipse
MAT could be useful. One should not block main UI
thread but it happens... In case of large data, IPC (even
AIDL) causes too many garbage collection, which lags UI.
Proper data structure choice: e.g., just plain array instead
of LinkedList<T> or ArrayList<T> whenever possible.
Proper algorithm choice: e.g., most of the time, just plain
binary search should do... complicated algorithms work
best for complicated problems. We should truly understand
an algorithm before actually using it. Being mindful about
dynamically allocated objects while coding helps”
Another answer noted combination of practices not only for

improving responsiveness but also memory consumption:
“Background threads for CPU/IO intensive operations;

memory allocations outside of loops; caching onerous
computations/io accesses; recycling of views (esp. Android
listviews)”

As the answers illustrate, the set of practices used by develop-
ers is diverse. Table III summarizes the taxonomy of practices.
In particular, the table lists the high-level categories, the groups
of practices linked to the categories, and the number of an-
swers including a practice in the groups oriented to the corre-
sponding category. For example, 32 answers mention memory
management practices aimed at reducing GUI lagging, and 30
answers mention memory management practices oriented to
avoid Memory bloat. There is also the case of practices that
are double-purpose, such as recycling/compressing resources
that are used to reduce GUI lagging and Memory bloats. In
the following, we describe the most representative practices
grouped by the high-level categories in our taxonomy.

A. Improving GUI lagging

Lengthy operations can impact app responsiveness and
smoothness and result in GUI lagging or ANR (Application
Not Responding) crashes. Both scenarios are usually triggered

by blocking operations that run in the UI thread. In fact,
threading-related practices are the most frequent way used by
developers to deal with GUI lagging and ANRs. The following
answer illustrates this case:

“As far as Android is concerned, improving performance
is generally easiest to do by way of reducing memory
consumption rather than raw algorithmic performance.
GC runs are expensive, and avoiding them is key to
smooth performance. Also, many inexperienced Android
devs simply do too much work on the main thread; most app
sluggishness isn’t caused by CPU spikes at all, but rather,
the fact that these spikes occur on the main thread instead
of a background thread. Using Handlers to shift work
off the main thread generally results in much better app
performance, and having sane a threading model and smart
memory allocation generally does much more to increase
performance than "tweaking" algorithms for speed. ”

In general, “threading” practices were mentioned 74 times,
and the main purpose is to separate lengthy or blocking oper-
ations from the UI thread by implementing worker threads.
Those worker threads are implemented by the participants
using background services [3], asynchronous tasks [39], or
threads carefully managed using a Handler [42].

An example of the threading practice can be found
in the repository of the Sgtpuzzle app [22], which is an
app containing 38 single-player logic games. One project
contributor created an issue based on an old report concerning
particular game taking an exceptional amount of time to cancel
the generation, and identified the problem as “The cancel
button sets a flag which the game generation loop checks,
because it is not possible to safely stop a thread. Pearls just
needs a few more checks of this flag adding to its generator,”
[27]. The developer indicated that the single-threaded design
created difficulty to reduce the cancellation time by stating,
“Generating a game is a long and complex operation that has
to have regular cancel-checks because it can’t be easily killed
without killing a whole process. So let’s move it to a separate
process that can be killed if a cancel is requested” [27]. In
particular, the developer modified the class SGTPuzzles
by adding several methods: killGenProcess,
startGameGenProcess, startNewGame, startGame
Thread, waitForProcess and generateGame;
additionally, the author had to modify native code and all the
changes spanned four commits [25], [24], [23], [26]. The fix
is not simply a thread creation, but managing the threads (i.e.,
waiting for the threads to prevent a memory leak in memory,
storing process IDs, ensuring successful thread exit) and
ensuring that the underlying C code accommodated the new
environment. The developer confirmed that the multi-threaded
implementation was working and closed the ticket [28].

Another frequent group of practices (47 answers) are GUI
optimizations, which aim at reducing complexity of the GUI
and optimizing rendering (especially for games and anima-
tions). Two of the participants described the practices as
“simplifying the view and decreasing overdraw”, and “Is the



problem poor display performance? Analyze the view stack
and find ways to simplify or eliminate views and view layers”.
In fact, the most used GUI optimizations are simplifying
views layouts, minimizing the number of views used in the
screens, and reducing overdraw [50]. Surprisingly, although
reducing overdraw has been promoted by Google as one of
the best practices for optimizing GUIs and performance, only
7 answers mentioned the practice. Having flat UIs and reduc-
ing/reusing views (i.e., GUI components extending the View
class) is a desired practice because of several reasons such
as: (i) the Activity.findViewById method has been
described by a Google Engineer as an expensive function [11],
and the method was detected as an energy greedy API [58];
(ii) overdrawing pixels in the screen is expensive because
the GUI components in Android apps are redrawn frequently.
Other GUI optimizations are more specific for apps requiring
rendering; in this case, the reported practices include reusing
bitmaps, reducing texture pages and frame sizes, applying
sprite batching, and reducing screen updates (e.g., “lower
draw latency to keep 60 fps”). Concerning tools for detecting
bottlenecks related to the GUI, some participants reported
the usage of HierarchyViewer, the "Show GPU overdraw"
setting in Android devices, and the adb shell dumpsys
gfxinfo command for profiling GPU rendering.

One example of GUI lagging generated by screen update
frequency can be found in the PresureNet app, which auto-
matically collects pressure measurements using barometers in
Android devices and provides weather forecast based on the
collected data [20]. A user reported a GUI lagging: “When
zoomed out and panning around, pressureNET lags due to the
large number of measurements contained in the view. Improve
the performance and make all map movement snappy” [19]. To
solve the issue, the developer changed the code of the method
BarometerNetworkActivity.addDataToMap to re-
duce the refreshing frequency of the map [18] and later com-
mented that the fix significantly improved the performance.

Developers also avoid rendering every pixel on the screen
because this is expensive for apps relying on rendering.
One specific mechanism provided by OpenGL is called face
culling, which ignores the back face of a shape during the
rendering to save time and memory [17]. The following
response mention that practice:

“If the bottleneck involves graphical performance prob-
lems perhaps the app could make use of hardware accel-
erated functionality or change the algorithm to "cheat",
i.e. you don’t need to draw every single pixel in an
animation. Maybe just skip every second update value
and the performance will improve and the user will never
notice.”
“Optimizing the rendering (culling, batching, caching).

Use threads for computationally intensive operations”

Caching techniques are also useful to avoid GUI lagging and
ANRs. 40 answers mentioned this type of practice that aims
at avoiding redundant blocking/time consuming operations
related to resources access. Caching is not only used for

local resources (e.g., images or database queries), but also for
resources obtained from external providers like in a network
response as expressed in the following answers: “caching
onerous computations/io accesses”; “Caching network re-
sponses and images are normally the best thing I can do for
performance”;“Optimise using caches and/or inline functions
which are executed more often”;“Also, requesting data only
when needed (and use a local cache with timestamps) reduces
the number of "big" data requests”. Concerning caching
specific mechanisms, developers use their own-solutions based
on memory data structures and Android API mechanisms [40],
[46] or specialized caching such as “sprite caches” [12] for 2D
images/animations in games.

B. Improving Memory bloats

Excessive memory consumption in mobile apps can cause
“Out Of Memory” (OOM) errors [59] or frequent Garbage
Collection (GC) events (i.e., automatic invocations) that are
triggered when the allocated memory goes beyond a prede-
fined threshold. The latter can also impact responsiveness,
because GC events can stop apps from executing in order
to free memory. Developers improve memory-related issues
by relying on several practices including GUI optimization,
memory management, source code optimizations (e.g., avoid
instantiating objects in loops), delegating operations to remote
services, and invoking resources on demand.

The respondents confirmed that GUI optimizations are not
only useful for avoiding GUI lagging but also for reducing the
memory allocated by the GUI:

“Most of the apps I have developed have memory related
issues. I usually solve them by image compression tech-
niques, reusing bitmaps and caching.”
We found an example of how to avoid memory bloats in the

repository of the GitHub app for Android [9]. The issue 513
[7] reported a performance problem that was exhibited when
displaying the avatar image (bitmap). A developer reviewed
the source code of the class AvatarLoader and found that
the bitmaps were loaded in the app with their original sizes
(i.e., the same used in the web version of GitHub). Hence,
some images were large enough to generate memory bloats.
A hot-fix was committed aimed at saving memory by resizing
the image before rendering it in the GUI [6]. The developer
later confirmed that the commit fixed the issue [8]. Recycling
images is another practice reported by developers that helps
to reduce memory consumption. Recycling is mostly done in
Android apps by calling the Bitmap.recycle method [44].

In general, memory-management practices reported by the
developers aim at reducing memory allocations and avoiding
GC events as described in these responses:

“Due the bottleneck be the rendering, and the creation of
new objects(memory allocation), we improved the perfor-
mance using an object pool so that we could reuse objects”
“But there is possible few solution patterns : [...] back-

ground loading of heavy data or memory allocation im-
proving (reduce count of new objects, e.g., using different



object pools, especially for big objects like bitmaps, to
reduce load on GC) [...]”

Thus, good programming practices such as reusing objects,
avoiding object instantiations in loops, and using appropriate
data structures, are common practices reported by the partic-
ipants since excessive memory allocations trigger GC events
that can drastically impact performance of Android apps.

C. Energy leaks

Although the survey did not ask specifically about energy
leaks, two participants mentioned that wakelocks and GPS
calls impact the memory consumption. Both are pretty well-
known in the research community as threats to increases
energy consumption and have been previously analyzed by
researchers [62], [67]. In addition to reducing wakelocks and
GPS calls, we included service delegation as a practice for
reducing energy consumption (see Table III). Executing expen-
sive computations on remote servers reduces execution time
and resource consumption, which can also lead to reduction
in the energy drawn from the battery.

D. General-purpose practices

We used this category for answers describing (i) high-level
methodologies or observation-driven practices (e.g., “Profiling
performance and memory using Android and IDE tools.”), and
(ii) practices that can improve performance without focusing
on specific performance bugs (e.g., APK optimization, im-
proving algorithm implementation). In 74 cases, participants
mentioned “design”, “best practices”, “guidelines”, “design
patterns”, “refactoring”, and crowd-based documentation (e.g.,
Stack Overflow) as a method for preventing performance
bottlenecks or finding a solution when a bottleneck is detected.
In 61 cases, observation-based practices were described or
mentioned; these practices include profiling, code reviews,
debugging, cross-platform checks, algorithm analysis.

Source code optimizations were reported 68 times. This
group of practices includes improving implementation of the
algorithms (22 answers), using micro-optimizations at state-
ment level (22), using relevant data-structures (16), and using
static analysis tools for detecting optimization opportunities
(5). Two example responses in the “Optimizations” group are:

“Optimizing floating point operations, for loops optimiza-
tions, remove unnecessary allocations, use primitive types
instead of enums.”
“Look at the profile, check where time is spent. E.g. if
there’s much garbage collection going on with Bigints
inside calculation-intensive loop then try to use vanilla un-
boxed ints or doubles instead of proper rational numbers.
Another example is to optimize actual algorithm, replace
linear lookups with a hash table or tree-based map (or
binary search inside of array, depending on the particulars
of the problem at hand). Lastly it’s simple tricks to keep
in mind, e.g. avoid linked lists if you don’t need constant
inserts/deletions and use ArrayList instead.”

The issue 244 from Android-Universal-Image-Loader li-
brary shows how micro-optimizations can improve per-
formance [1]. The issue describes a situation when af-
ter profiling, a developer using the library found a
method MemoryCacheUtil.generateKey that appears
to be a bottleneck; this method could lag the GUI
when it is called from the main thread on each im-
age displayed by the library. In particular, the issue
is reported when calling the String.format in the
MemoryCacheUtil.generateKey method. Additionally,
the reporter provided a link to a Stackoverflow question
that discusses the low performance of String.format as
compared to StringBuilder [29]. As a response to the
issue, the repository owner committed a fix replacing the
String.format calls with StringBuilder.

Two more answers suggest that optimizations at com-
pile/build time can improve the performance of apps:

“Optimizing apks, eliminating code not needed in the apks.
Reducing the timing. Odexing while realigning the apks.”

“look for cache/branch prediction misses, missed loop
vectorization.unrolling/peeling. then investigate why the
compiler generated poor code and either 1) adjust GCC
optimizations to fix the issue, 2) file a bug with GCC and
possibly supply a patch, or 3) tune the source code to fix”
The remaining groups in these category describe (i) testing

practices as a way to detect bottlenecks, (ii) the usage of native
code over Java to improve the performance, (iii) the usage of
APIs under the assumption that they are optimized (e.g., “[...]
I keep looking for libraries able to provide a given feature with
a good performance.”), and (iv) optimizing SQL queries (e.g.,
“If I do any sqlite query, I do split them into small segments.”).

Answer to RQ3. The most frequent practices used by the sur-
veyed developers for fixing performance bottlenecks include
the usage of multi-treading to avoid lengthy operations in the
main thread, GUI optimizations for reducing the complexity
of the UI, caching to avoid redundant or blocking/time con-
suming resource accesses, memory management to avoid GC
events and OOM errors, and source code optimizations.

VI. LESSONS LEARNED

In this study, we analyzed the current practices of open
source developers for detecting and fixing performance bot-
tlenecks in Android apps. The results are described as a tax-
onomy of practices along with specific answers and examples
of real bugs and their fixes that we manually analyzed. In
addition to the results, we identified the factors that need
to be considered carefully by developers, API designers, and
researchers. We describe these findings as lessons learned and
highlight the implications for the community.

Tools. Despite the diverse offering of tools, developers rely
mostly on user reviews and manual testing to detect perfor-
mance bottlenecks. Developers tend to prefer crowdsourcing
to detection, because current tools are not enough to detect
performance bugs, and the time devoted to testing mobile apps
is reduced as reported in [53], [56]. In the case of participants



using tools, they mostly rely on tools that provide profiling,
monitoring, and debugging capabilities. We suppose that using
existing dynamic-analysis based tools may impose significant
taxes on developers’ time in order to get useful information.
For instance, the following response suggests that additional
effort is required when using profiling tools:

“I use the core Android tools such as tracedump, the ddms
profiler activated in-code, traceview etc to find hotspots,
narrowing down the search by visual identification of the
trace graph."
Another developer also reported on the issues of the tools:
“Didn’t really cover it in the survey, but android’s standard
profiling tools are absolutely useless and most people I’ve
spoken to about it in the industry resort to println and
System.get SystemTimeNanos in a lot of cases!"
While there are tools that help generate performance-related

warnings for Android apps (e.g., Lint), only two participants
used such tools for detecting potential performance bottle-
necks. Another Android-specific mechanism is StrictMode
API that allows developers to declare policies in the source
code and provides mechanisms for reporting policy viola-
tions for in-field app executions [30]. However, only four
participants mentioned using such API. Finally, the Render-
Script framework helps improve app performance through
parallelization of computationally expensive tasks across all
the available processors in the device [47]. Yet, only one
participant mentioned using RenderScript. This observation
could be an artifact of the sampled participants we had or due
to the fact that developers had particular reasons for not using
those tools. The main message here is that more research needs
to be done to evaluate effectiveness of current tools given the
fact that the existing tools are not able to automatically detect
hotspots or performance bottlenecks, and more effort from
the community should be devoted to develop useful tools that
automatically detect the bottlenecks.

Diversity of practices. The identified practices are diverse
because performance bugs can manifest themselves in different
ways; however, this diversity is also due to the wide adop-
tion of mobile apps in several app domain categories. For
instance, some techniques are specific to GUI-related practices
for games and apps that involve heavy computations; other
techniques are aimed at common issues such as asynchronous
tasks, GUI overdraw, executing long operations in the main
thread, memory management, among others. Therefore, our
observation is that developers in specialized domains (e.g.,
games) are more familiar with practices for quality and perfor-
mance assurance of their apps. Consequently, less experienced
developers need to pay attention to the best practices promoted
by the API designers [2], [35], [34]. Finally, mobile apps
are more prone to performance bottlenecks, because of the
GUI-centered philosophy and limited resources in the devices
[51], and the default single-thread policy of Android apps that
inexperienced developers often do not take care of. When
the guidelines are not followed carefully, it is rather easy
to "induce" certain types of performance bottlenecks such as

lengthy operations in the UI thread or memory bloats due to
naive mistakes when using images.

Tradeoff between quality attributes. Excessive caching
can generate memory bloats or frequent GC events. Also,
operations aimed at reducing the size of resources can be
lengthy and then impact app’s responsiveness. We found a
real case illustrating this tradeoff. There is a reported issue
in the Novoda image-loader library for asynchronous image
loading and caching in Android [15]. In the issue, a user
suggested to include a setting for disabling bitmap resizing,
since resizing bitmaps was expensive [16]. Bitmap resizing
usually samples the pixels from an original bitmap to gen-
erate a new one with a different size, which requires extra
computation and memory. Therefore, the user suggested to
disable the resizing when it was not necessary. A developer
agreed and added a variable alwaysUseOrignalSize to
ConcurrentLoader.load as a flag to disable resizing.
Therefore, some practices for improving performance bot-
tlenecks need to be implemented carefully by developers,
because a bug fix can introduce a different performance bug.
One opportunity here for research is to provide developers with
approaches and tools that automatically analyze the impact of a
refactoring or change in performance-related quality attributes.

Suboptimal API usages. Performance bottlenecks can be
also introduced by suboptimal usages of the APIs. We found
a GUI-related performance issue in the Mupen64Plus-ae app,
where a user complained that the frame per second (FPS)
was very slow in the Sony Xperia Z or newer Android
phones while playing any games [14]. To solve this is-
sue, the developers first updated the SDL plug-in [21] to
the most recent version (v2.0), but they observed that the
latency problem persisted. One user (or developer) offered
to help and utilized Logcat, and another developer recom-
mended DDMS as well. Subsequently, they removed the
EGL10.eglWaitNative and the EGL10.eglWaitGL
method calls from the GameSurface.flipBuffers
method [13]. The GameSurface class is described in the
class header as “[...] a graphical area of memory that can
be drawn to” in the source code [63]. The flipbuffers
method is responsible for swapping the display and the surface
buffers. This swap would physically display the drawn surface.
However, the two wait calls were used prior to ensuring that
both the native rendering calls and the OpenGL rendering calls
finished executing; it means that the calls were done before
swapping the display [5]. Although, we did not confirm this
with the developers, it is likely that these two waits were
unnecessary to ensure that the native and OpenGL processes
were completed, since the buffers swapped are private fields
and only initialized to store the objects (i.e., they are not
modified after initialization). After the developers updated the
emulator, two users confirmed that there was a noticeable
performance improvement in the application.

VII. RELATED WORK

To the best of our knowledge, this is the first paper that
analyzes current practices of Android developers to detect



and fix performance bottlenecks. However, previous work has
been done on understanding and detecting performance bugs
in mobile apps and non-mobile apps.

A. Performance Bugs in Mobile Applications
Guo et al. [51] developed a static analysis tool, Relda,

for detecting resource leaks in Android apps. Relda detects
energy and memory leaks as well as exclusive resources
(i.e., an infinite wait due to a resource never being released).
The approach builds a functional call graph and utilizes a
depth-first search analysis to evaluate resource summaries.
Then, it evaluates whether resources are released after use
or at the function exit points to determine the presence of
resource leaks. The paper also provides a classification of
resource leaks by causes. Nistor and Ravindranath [61] present
an approach, SunCat, which analyzes sequences of calls to
String getter methods, to understand the impact of larger
inputs on the user’s perception in Windows Phone apps. The
authors identified nine instances of performance problems
from 29 scenarios across five Windows Phone apps. Lin et
al. [57] found, in a study on 104 open source Android apps,
that long running operations were extracted from the UI thread
into asynchronous tasks only in 46% cases. Then, they propose
an approach, ASYNCHRONIZER, to automatically refactor
long-running operations into asynchronous tasks.

User reviews and app repositories have been also used
as a resource to understand performance bugs in mobile
apps. For instance, Khalid et al. [55] investigated the user
reviews for iOS applications and presented a taxonomy of
complaint types. The authors identified 12 different categories
of complaints through a manual categorization. Two of the
identified categories are specific cases of performance bugs:
heavy resources and unresponsive app. Liu et al. [59] analyzed
70 real performance bugs (i.e., bug reports, patches, commit
logs, and patch reviews) from eight Android applications. As a
result, the authors defined the three categories of performance
bugs that we used in the taxonomy of practices for improving
performance bottlenecks (i.e., GUI lagging, memory bloat,
energy leak). Additionally, the authors proposed an approach
based on static analysis, namely PerfChecker, to identify two
types of performance bugs: lengthy operations in the UI thread
and violations of the view holder pattern.

Our work differs from previous work in that we propose a
taxonomy of practices and tools for detecting an fixing perfor-
mance bottlenecks based on the survey with 485 developers.
While we manually analyzed bugs extracted from repositories,
similarly to [51], [59], our goal was to identify real practices
reported by the survey participants. Moreover, the combination
of the survey analysis and manual investigation into perfor-
mance bugs helped us derive actionable insights (Sect. VI).

B. Performance Bugs in Other Types of Applications
The differences between performance and non-performance

bugs in other types of apps have been investigated before [66],
[65], [60]. Zarman et al. [66] analyzed security, performance,
and other types of bugs in Firefox; in particular, their work
investigates the amount of time it takes to fix the bugs, the

number of developers assigned to the bugs, and the characteris-
tics of bug fixes. Afterward, the authors investigated the impact
that the bugs had on the end-user, the context in which the bug
appeared, the solution to the bug, and validation of the bug fix
[65]; that study used a qualitative study on both performance
and non-performance bugs in two systems, Firefox and Google
Chrome [65]. Nistor et al. [60] investigated the difference in
the fixing effort for performance and non-performance bugs,
the likelihood that fixing these two types of bugs will introduce
new functional bugs, and the way in which developers identify
performance bugs in JDT, SWT, and Mozilla.

Other work presented approaches for automatic detection
of performance bugs. Jovic et al. designed an approach for
identifying perceptible performance bugs (i.e., lags that can
be perceived by users) [54]. Jin et al. proposed a rule checker
to automatically identify performance bugs after investigating
109 bugs from five systems [52]. Syer et al. proposed an
approach to diagnose memory leaks by using performance
counters and execution logs in order to link execution events
to the memory usage at particular time intervals [64]. In situ
visualization has also been proposed to support performance
bottlenecks understanding in Java apps [36].

Nistor et al. found that few performance bugs are detected
by using profiling in desktop apps [60]. They also found that
many performance bugs are mostly identified by relying on
code reasoning instead of direct observation. Our findings
highlight that in the case of Android apps, people heavily
rely on user reviews, manual execution, and direct observation;
also, profiling in Android apps is a frequent practice.

VIII. CONCLUSION AND FUTURE WORK

Our key findings can be summarized as the following:
(i) Android developers primarily rely on manual testing and
analysis of the reviews for detecting performance bottlenecks;
(ii) Android developers prefer tools for performance profiling
and debugging their apps; (iii) the most frequent practices used
by the Android developers for fixing performance bottlenecks
include the usage of multi-threading to avoid lengthy opera-
tions in the main thread, GUI optimizations for reducing the
complexity of the UI, caching to avoid redundant or block-
ing/time consuming resource accesses, memory management
to avoid GC events and OOM errors. The following lessons
are emphasized based on our analysis: (i) there is a need for
tools that automatically detect performance bottlenecks; (ii)
developers need to follow the guidelines and best practices,
because mobile apps are more prone to performance problems;
(iii) developers need to be careful when following existing
practices for fixing the bottlenecks, because there may be
a tradeoff between the targeted quality attributes (e.g., re-
sponsiveness vs. memory management); and (iv) developers
need to use APIs carefully, because suboptimal usage of
the APIs can be a source of performance bottlenecks. These
findings and lessons represent the main input for our future
research agenda designing tools to support optimization and
performance improvement of mobile apps.
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