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Abstract—Mobile app development involves a unique set of
challenges including device fragmentation and rapidly evolving
platforms, making testing a difficult task. The design space for a
comprehensive mobile testing strategy includes features, inputs,
potential contextual app states, and large combinations of devices
and underlying platforms. Therefore, automated testing is an
essential activity of the development process. However, current
state of the art of automated testing tools for mobile apps posses
limitations that has driven a preference for manual testing in
practice. As of today, there is no comprehensive automated
solution for mobile testing that overcomes fundamental issues
such as automated oracles, history awareness in test cases, or
automated evolution of test cases.

In this perspective paper we survey the current state of the
art in terms of the frameworks, tools, and services available to
developers to aid in mobile testing, highlighting present shortcom-
ings. Next, we provide commentary on current key challenges
that restrict the possibility of a comprehensive, effective, and
practical automated testing solution. Finally, we offer our vision
of a comprehensive mobile app testing framework, complete
with research agenda, that is succinctly summarized along three
principles: Continuous, Evolutionary and Large-scale (CEL).

I. INTRODUCTION

The mobile handset industry has been growing at an
unprecedented rate and the global “app" economy, made up
of millions of apps and developers, and billions of devices
and users, has been a tremendous success. This burgeoning
mobile app market is fueled by rapidly evolving performant
hardware and software platforms that support increasingly
complex functionality. Currently, many modern mobile apps
have practically the same features as their desktop counterparts
and range in nature from games to medical apps. These
mobile platforms enable user interaction via touch-screens and
diverse sensors (e.g., accelerometer, temperature, gyroscope)
that present new challenges for software testing.

Unique characteristics and emerging best practices for creat-
ing mobile apps, combined with immense market interest, have
driven both researchers and industrial practitioners to devise
frameworks, tools, and services aimed at supporting mobile
testing with the goal of assuring the quality of mobile apps.
However, current limitations in both manual and automated
solutions underlie a broad set of challenges that prevent
the realization of a comprehensive, effective, and practical
automated testing approach [1]–[3], [129]. Because of this,
mobile app testing is still performed mostly manually costing
developers, and the industry, significant amounts of effort, time,
and money [1]–[3]. As development workflows increasingly

trend toward adoption of agile practices, and continuous
integration is adopted by larger numbers of engineers and
development teams, it is imperative that automated mobile
testing be enabled within this context if the development of
mobile apps is to continue to thrive. However, current solutions
for automated mobile testing do not provide a “fully" automated
experience, and several challenges are still open issues requiring
attention from the community, if the expected goal is to help
mobile developers to assure quality of their apps under specific
conditions such as pressure from the users for continuous
delivery and restricted budgets for testing processes.

In this perspectives paper we present a new take on mobile
app testing called CEL testing, which is founded on three
principles: Continuous, Evolutionary, and Large-scale (CEL).
To properly frame and illustrate our vision, our paper (i)
surveys the current state of research and practice for mobile
testing, (ii) summarizes the key challenges deterring the
creation of a comprehensive automated solution, (iii) offers a
vision, informed by years of research, industrial collaborations,
conversations with industry experts, for a comprehensive,
practical automated testing solution, and (iv) outlines an
actionable research agenda enabling this vision that we hope
will be readily adopted by the SE research community.

II. STATE-OF-THE-ART AND PRACTICE

In order to adequately describe our vision for the future
of mobile testing practices, it is first important to take a step
back, and survey the state of research and practice. Thus, in
this section, we give an overview of the frameworks, tools,
and services that are currently available to support mobile
application testing, hinting at current limitations that must be
overcome to enable our proposed vision. In order to provide
an “at-a-gance" overview of the current state of mobile testing,
we summarize solutions currently available to developers (see
Table I). Due to space limitations, we focus on the use cases
and existing problems and challenges with the state of the art.

It should be noted that a comprehensive overview of all
available research and commercial software related to mobile
testing is outside the scope of this paper and that our overview
is by no means exhaustive. The goal of presenting this
information is to inform readers who may not be familiar
with topic of mobile testing and motivate our vision by
highlighting the current shortcomings of research and tools as
informed by our past experience. Thus, we limit our analysis to
research generally concerned with functional testing of mobile



applications, and to popular commercial testing services and
tools as gleaned from our previous research experience and
industrial collaborations. The 7 categories of tools presented
were derived in different ways. The first three categories
(Automation Frameworks & APIs, Record & Replay Tools,
and Automated Input Generation tools) have generally been
defined by prior work [2], [4], [5], and we expand upon these
past categorizations. The other four categories were derived by
examining commercial software and service offerings available
to mobile developers, as informed from our past experience.
We delineated the features of these offerings, and it was clear
that some tools shared common dimensions, thus forming the
categories we present in this section.

A. Automation APIs/Frameworks

One of the most basic, yet most powerful testing tools
available to developers on several mobile platforms are the GUI-
Automation Frameworks and APIs [6]–[14]. These tools often
serve as interfaces for obtaining GUI-related information such
as the hierarchy of components/widgets that exist on a screen
and for simulating user interactions with a device. Because
these frameworks and APIs provide a somewhat universal
interface to the GUI or underlying system functionality of a
mobile platform, they typically underlie the functionality of
many of the other input generation approaches and services
discussed in this section. Typically these frameworks offer
developers and testers an API for writing GUI-level tests for
mobile apps through hand-written or recorded scripts. These
scripts typically specify a series of actions that should be
performed on different GUI-components (identifying them
using varying attributes) and test for some state information
via assertion statements.

While useful for developers, these tools are not without
their shortcomings. While these frameworks typically provide
cross-device compatibility of scripts in most cases, there may
be edge cases (e.g., differing app states or GUI attributes)
where scripts fail, highlighting the fragmentation problem. Also,
they typically support only a single testing objective, as few
tools offer support for complex user actions such as scrolling,
pinching, or zooming or interfaces to simulate contextual states,
which is required for effectively carrying out complex testing
scenarios. More problematic, however, is that GUI level tests
utilizing these frameworks are very expensive to maintain as
an app evolves, discouraging many developers from adopting
them in the first place.

B. Record and Replay Tools

Manually writing test scripts for mobile GUI or system tests
can be tedious, time consuming, and error prone. For this
reason both academic and industrial solutions for Record &
Replay (R&R) based testing have been devised. R&R is an
attractive alternative to manually writing test scripts from an
ease of use viewpoint, as it enables testers with very limited
testing knowledge to create meaningful test scripts for apps.
Additionally, some of the R&R approaches offer very fine
grained (e.g., millisecond accuracy) capture and replay of

complex user actions, which can lend themselves well to testing
scenarios which require such accuracy (e.g., deterministically
testing games) or portions of apps that require fined grained
user input (e.g., panning over a photo or a map).

However, despite the advantages and ease of use these
types of tools afford, they exhibit several limitations. Most
of these tools suffer from a trade-off between the timing and
accuracy of the recorded events and the representative power
and portability of recorded scripts. For context, some R&R-
based approaches leverage the /dev/input/event stream
situated in the linux kernel that underlies Android devices.
While this allows for extremely accurate R&R, the scripts are
usually coupled to screen dimensions and are agnostic to the
actual GUI-components with which the script interacts. On
the other hand, other R&R approaches may use higher-level
representations of user actions, such as information regarding
the GUI-components upon which a user acts. While this type
of approach may offer more flexibility in easily recording test
cases, it is limited in the accuracy and timing of events. An
ideal R&R approach would offer the best of both extremes, both
highly accurate and portable scripts, suitable for recording test
cases or collecting crowdsourced data. R&R requires oracles
that need to be defined by developers, by manually inserting
assertions in the recorded scripts or using tool wizards.

C. Automated Test Input Generation Techniques
Perhaps the most active area of mobile software testing

research has been in the form of the Automated Input Gener-
ation (AIG) techniques. The premise behind such techniques
is the following: Because manually writing or recording test
scripts is a difficult, manual practice, the process of input
generation can be automated to dramatically ease the burden on
developers and testers. Such approaches are typically designed
with a particular goal, or set of goals in mind, such as
achieving high code coverage, uncovering the largest number
of bugs, reducing the length of testing scenarios or generating
test scenarios that mimic typical use cases of an app. AIG
approaches have generally been classified into three categories
[2], [4]: random-based input generation [26]–[29], systematic
input generation [4], [30]–[32], [34], and model-based input
generation [32], [35]–[40]. Additionally, other input generation
approaches have been explored including search-based and
symbolic input generation [5], [44], [45], [48]. Nearly all of
these approaches can trace their origins back to academic
research, with companies like Google just recently entering the
market with software-based automated testing services [34].
We provide at-a-glance information about these categories of
approaches in Table I.

Research on this topic has made significant progress,
particularly in the last few years, however, there are still
persistent challenges. Recent work by Choudhary et. al. [2]
illustrated the relative ineffectiveness of many research tools
when comparing program coverage metrics against a naive
random approach and highlighted many unsolved challenges
including generation of system events, the cost of restarting an
app, the need for manually specified inputs for certain complex



TABLE I
THIS TABLE SURVEYS THE CURRENT STATE OF TOOLS, FRAMEWORKS, AND SERVICES THAT SUPPORT ACTIVITIES RELATED TO MOBILE TESTING,

ORIGINATING FROM BOTH ACADEMIC AND INDUSTRIAL BACKGROUNDS.
Automation Frameworks & APIs

Name GUI-Automation OS API Automation Black Box Test-Case Recording Cross-Device Support Natural Language Test Cases Open Source
UIAutomator [6] Yes No Either No Limited No Yes
UIAutomation (iOS) [8] Yes No No Yes Yes No Yes
Espresso [7] Yes No No No Limited No Yes
Appium [9] Yes No Yes Yes Limited No Yes
Robotium [14] Yes No Yes Yes Limited No Yes
Roboelectric [10] No Yes No No Yes No Yes
Ranorex [13] Yes No Yes Yes Yes No No
Calabash [11] Yes No No No No Yes Yes
Quantum [15] Yes N/A No N/A N/A Yes No
Qmetry [16] Yes N/A No N/A N/A Yes No

Record & Replay Tools
GUI Support Sensor Support Root Access Required Cross-Device High-Level Test Cases Open Source

RERAN [17] Yes No Yes No No Yes
VALERA [18] Yes Yes Yes No No No
Mosaic [19] Yes No Yes Limited Yes Yes
Barista [20] Yes No No Yes Yes No
Robotium Recorder [21] Yes No No Limited Yes No
Xamarin Test Recorder [22] Yes No No Yes Yes No
ODBR [23] Yes Yes Yes Limited Yes Yes
SPAG-C [24] Yes No N/A N/A No No
Espresso Recorder [25] Yes No No Limited Yes Yes

Automated GUI-Input Generation Tools
Tool Name Instrumentation GUI Exploration Types of Events Replayable Test Cases NL Crash Reports Emulators, Devices Open Source

Random-Based Input Generation
Monkey [26] No Random System, GUI, Text No No Both Yes
Dynodroid [27] Yes Guided/Random System, GUI, Text No No Emulators Yes
Intent Fuzzer [28] No Guided/Random System (Intents) No No N/A No
VANARSena [29] Yes Random System, GUI, Text Yes No N/A No

Systematic Input Generation
AndroidRipper [30] Yes Systematic GUI, Text No No N/A Yes
ACTEve [31] Yes Systematic GUI No No Both No
A3E Depth-First [32] Yes Systematic GUI No No Both Yes
CrashScope [4], [33] No Systematic GUI, Text, System Yes Yes Both No
Google RoboTest [34] No Systematic GUI,Text No Yes Devices No

Model-Based Input Generation
MobiGUItar [35] Yes Model-Based GUI, Text Yes No N/A Yes
A3E Targeted [32] Yes Model-Based GUI No No Both No
Swifthand [36] Yes Model-Based GUI, Text No No Both Yes
QUANTUM [37] Yes Model-Based System, GUI Yes No N/A No
ORBIT [38] No Model-Based GUI No No N/A No
MonkeyLab [39] No Model-based GUI, Text Yes No Both No
Zhang & Rountev [40] No Model-based GUI, Text N/A N/A Both Yes

Other Types of Input Generation Strategies
PUMA [41] Yes Programmable System, GUI, Text No No Both Yes
JPF-Android [42] No Scripting GUI Yes No N/A Yes
CrashDroid [43] No Manual Rec/Replay GUI, Text Yes Yes Both No
Collider [44] Yes Symbolic GUI Yes No N/A No
SIG-Droid [45] No Symbolic GUI, Text Yes No N/A No
Thor [46] Yes Test Cases Test Case Events N/A No Emulators Yes
AppDoctor [47] Yes Multiple System, GUI2, Text Yes No N/A No
EvoDroid [48] No System/Evo GUI No No N/A No
Sapienz [5] Yes Search-Based GUI,Text,System Yes Yes Both Yes
Jabbarvand et al. [49] Yes Search-Based GUI,Text,System Yes Yes Both Yes

Bug & Error Reporting/Monitoring Tools
Video Recordings App & GUI Analytics Automatic Crash Reporting Replayable Test Scripts Open Source

Airbrake [50] No No Yes No No
TestFairy [51] Yes No Yes No No
Appsee [52] Yes Yes Yes No No
BugClipper [53] Yes No No No No
WatchSend [54] Yes Yes Yes No No
ODBR [23] No No No Yes Yes
FUSION [55]–[57] No No No Yes Yes

Testing Services
CrowdSourced Testing Expert Testers UX Testing Functional Testing Security Testing Localization Testing Open Source

Pay4Bugs [58] Yes N/A No Yes No N/A No
TestArmy [59] Yes Yes Yes Yes Yes N/A No
CrowdSourcedtesting [60] Yes Yes Yes Yes No Yes No
CrowdSprint [61] Yes Yes Yes Yes Yes No No
MyCrowdQA [62] Yes Yes Yes Yes No Yes No
99Tests [63] Yes Yes Yes Yes Yes Yes No
Applause [64] Yes Yes Yes Yes Yes Yes No
Test.io [65] Yes Yes Yes Yes N/A N/A No
Userlytics [66] Yes Yes Yes No No No No
TestFlight [67] Yes No No Yes No N/A No
SWRVE [68] Yes N/A Yes (A/B Testing) No No No No
Loop11 [69] Yes No Yes No No No No
Azetone [70] Yes No Yes No No No No
UserZoom [71] Yes Yes Yes No No No No
Apperian [72] No No No No Yes No No
MrTappy [73] N/A N/A Yes N/A N/A N/A N/A
LookBack [74] Yes No Yes No No No No
Apptimize [75] Yes No Yes (A/B Testing) No No No No

Cloud Testing Services
Automated Test Case Generation Real Devices Emulators Remote Device Control Test Reports Open Source

Xamarin Test Cloud [76] No Yes No No Yes No
AWS Device Farm [77] No Yes No Yes Yes No
Google Firebase [78] Yes Yes No No Yes No
SauceLabs [79] No No Yes N/A N/A Partially
TestGrid [80] Yes Yes No No Yes No
Keynote [81] No Yes No Yes Yes No
Perfecto [82] No Yes No Yes Yes No
Bitbar (TestDroid) [83] Yes Yes No No Yes No

Device Streaming Tools
Streaming Over Internet Streaming to Desktop from Conected Device Recording Open Source

Vysor [84] No Yes Yes (Screenshots) No
OpenSTF [85] Yes Yes Yes (Screenshots) Yes
Appetize.io [86] Yes No Yes (Video & Screenshots No



app interactions, adverse side affects between different runs, a
need for reproducible cases, mocking of services and inter-app
communication, and a lack of support for cross-device testing
scenario generation. While headway has been made regarding
some of these challenges in recent work [4], [5], many have
not been fully addressed. The specific limitations of these tools
again fail to address broader challenges, including flaky tests,
fragmentation, limited support for diverse testing goals, and
inadequate developer feedback mechanisms.
D. Bug and Error Reporting/Monitoring Tools

These types of tools have grown to become an integral part
of many mobile testing workflows. There are two types of
tools in this category: (i) tools for supporting bug reporting
(a.k.a., issue trackers), and (ii) tools for monitoring crashes
and resource consumption at run-time (e.g., New relic [87] and
Crashlytics [88]). Classic issue trackers only allow reporters
to describe the bugs using textual reports and by posting
additional files such as screenshots; but, real users can only
report the bugs when an issue tracker is available for the app,
as is the case of open source apps. In the case of tools for
monitoring, if developers do not choose to include third-party
error monitoring in their application (or employ a crowd-based
approach), typically, the only user-feedback or in-field bug
reports they receive are from user reviews or limited automated
crash reports. Unfortunately, many user reviews or stack traces
without context are unhelpful to developers, as they do not
adequately describe issues with an application to the point
where the problem can be reproduced and fixed. In order to
mitigate these issues regarding visibility into application bugs
and errors, several tools and services exist that aim to help
developers overcome this problem. These tools typically employ
features that give developers more detailed information, such as
videos [51]–[54] or test scripts [23], on failures with concrete
reproduction steps or stack traces (e.g., crashes); however, to
collect that information, the apps need to include API calls to
the methods provided by the services. Additionally, they may
provide analytic information about how users typically interact
with an app, or assist end-users in constructing useful bug
reports for apps [55]–[57]. Unfortunately, the automated error
monitoring tools are limited to crash reporting (i.e., exceptions
and crashes), restricting their utility.
E. Mobile Testing Services

Due to the sheer number of different technical challenges
associated with automated input generation, and the typically
high time-cost of manually writing or recording test scripts for
mobile apps, Mobile Testing Services have become a popular
alternative that utilize groups of human testing experts, or more
general crowd-based workers. This allows the cost of test case
generation or bug finding to be amortized across a larger group
of workers compensated for their time devoted to testing. There
are typically four different types of testing services offered
including: (i) Traditional Crowd-Sourced Functional Testing
[58]–[71], [74], [75] which employs both experts and non-
experts from around the world to submit bug reports relating
to problems in apps, and who are compensated for the number

of true bugs that are uncovered; (ii) Usability testing [59]–[63],
[65], [69]–[71], [75] aims to the measure the UX/UI design
of an app with a focus on ease of use and intuitiveness; (iii)
Security Testing [59], [61], [63], [64], [72], which aims to
uncover any design flaws in an app that might compromise
user security, and (iv) Localization Testing [60], [62]–[64],
which aims to ensure that an app will function properly in
different geographic regions with different languages across the
world. While these services do partially address some of the
broader challenges of mobile testing such as fragmentation and
support for limited testing goals, there are still several notable
remaining challenges. None of these frameworks are open
source or free, restricting developers from freely collecting
critical usage data from the field which could improve general
challenges such as test flakiness or history agnosticism by
modeling collected information. Additionally, due to the time
cost required of such crowdsourced services, they are typically
not scalable in agile development scenarios where an app is
constantly changing and released to customers.

F. Device Streaming Tools

Tools for Device Streaming can facilitate the mobile testing
process by allowing a developer to mirror a connected device to
their personal PC, or access devices remotely over the internet.
These tools can support use cases such as streaming secured
devices to crowdsourced beta testers, or providing Q/A teams
with access to a private set of physical or virtual devices hosted
on company premises. They range in capabilities from allowing
a connected device to be streamed to a local PC (Vysor [84])
to open source frameworks and paid services that can stream
devices over the internet with low-latency (OpenSTF [85] &
Appetize.io [86]) These tools, particularly OpenSTF, could
support a wide range of important research topics that rely on
collecting user data during controlled studies or investigations
or tools related to crowdsourced testing.

III. CHALLENGES FOR ENABLING CEL MOBILE TESTING

Despite the plethora of methods, techniques, and tools
available for automated testing, manual testing of mobile apps is
preferred over automated testing due to several factors including
personal preferences, organizational restrictions, and current
tools lacking important functionality [1], [3], [89]. These factors
are rooted in a set of challenges that makes mobile app testing
a complex and time-consuming task, stemming from both
the inherent properties of mobile smart devices as well as
unique pressures and constraints on mobile development teams.
Compared to desktop or web applications, mobile apps are
highly event-driven, accepting inputs from users and environ-
mental context shifts, facilitated by a diverse set of sensors and
hardware components that provide interfaces for touch-based
gestures, temperature measurements, GPS locations, orientation,
etc. These diverse input scenarios are difficult for developers to
emulate in controlled testing environments. Furthermore, time
and budget constraints related to testing practices of startups,
small development teams, and even large companies, reduce the



possibility for testing apps against a large set of configurations
that are representative of “in-the-wild" conditions.

These two overarching themes, namely inherent technical
challenges associated with modern mobile platforms and unique
development constraints, underlie a broad set of key challenges
that we identify within the context of this paper. In this
section we describe a set of distinct open problems, serving
as the most prominent deterrents to enabling a comprehensive
automated mobile testing solution, derived from our research
experience, industrial collaborations, and conversations with
industry professionals. More specifically, these “challenges"
refer to (i) burdensome components of the mobile testing
process that directly (and drastically) impact the testing process,
(ii) open problems for which there are no automated solutions
(yet), and (iii) facets of the mobile testing process that have
not yet been fully investigated by research or industry.

A. Fragmentation
Mobile app marketplaces allow developers to reach an

unprecedented number of users through their online stores.
Therefore, in order for an app to be successful, mobile
developers must assure the proper functioning of their apps on
nontrivial sets of configurations due to the diversity of existing
devices. These sets of configurations can be represented as a
testing matrix combining several variations of OSes, versions,
and devices. For instance, Nexus 4 devices were originally
shipped with Android KitKat, however, as over-the-air updates
were pushed to the device, different OS versions were installed
by the user-base, a common pattern driving complexity.

This phenomena is known as fragmentation and has been
widely recognized as one of the largest challenges when testing
apps. Fragmentation is more notable in the case of Android,
because the open nature of the platform has led to a large
number of devices with different configurations available to
consumers [1], [90], [91]. As of the time of writing, 25 versions
of the Android OS have been released with 7 of the 25 releases
(4.1, 4.2, 4.3, 4.4, 5.0, 5.1, 6) [92] accounting for about 97%
of the marketshare across a multitude of hardware. In the case
of iOS, the fragmentation is lower, as the number of devices
is limited and controlled by Apple, and the market share is
more biased toward devices with the latest OS. According to
the Apple Store [93], as measured on February 2017, 95% of
the iOS users are concentrated in only two versions of the
OS (iOS 9 and iOS 10). Despite marketshare consolidation of
iOS versions, regular updates to devices create a non-trivial
test matrix for developers with 39 distinct combinations when
considering only iOS 9 and iOS 10 [94].

As outlined in the previous section, one potential solution
to this fragmentation issue, is cloud/crowd-based services that
provide developers with the ability to test their apps on farms of
virtual/physical devices, or with a crowd of users with different
devices. However, available cloud/crowd-based services are
paid, which restrict the type of companies/teams/labs that can
afford the services. In addition, the time typically required
to carry out this type of testing is not amenable to agile and
DevOps practices.

B. Test Flakiness
Many modern mobile apps heavily rely on back-end services

to (i) delegate operations that can not be performed on
the device (e.g., lengthy computations and storage), and (ii)
access third-party services such as authentication and geo-
localization [95]. The bigger the dependency on back-end
servers/services, the more prone an app is to suffer from race-
condition scenarios or impacted by loss of service due to a lack
of connectivity, response time outs, and data-integrity issues
when large amounts of data are transferred to and from a
device. These conditions can introduce non-determinism in app
behavior and outcomes, directly impacting testing: test cases
can fail (or succeed) due non-deterministic outcomes affecting
assertions. This phenomenon is known as test flakiness [96].

Flaky tests typically emerge when testing complex apps due
to assumptions codified in test scripts and test sequences (e.g.,
inter-arrival delay between events), and lack of mechanisms for
identifying (in the app and the tests) unexpected scenarios when
invoking back-end servers/services. Other sources of “flakiness"
are varying runtime device states that depend on the available
resources when executing the tests. For instance, GC (Garbage
Collection) events (in Android apps) can be randomly triggered
when the device is running out of memory, and these events
can induce GUI lag and even Application Not Responding
(ANR) errors [89], [97]. Automation API/Frameworks such as
Espresso execute GUI events in test cases only when the GUI
is idle, which reduces the risk of flaky tests because of longer-
than-expected inter-arrival delays. However, test flakiness is
still a major challenge for automated approaches, both from
the GUI front-end, and services back-end points of view.

C. Mobile-Specific Fault Model and its Application
A key component for measuring test effectiveness or auto-

matically generating effective tests for any software platform
is a robust understanding of the faults typically associated
with that platform. Mobile apps utilize a programming model
different from other more “traditional" platforms like the web
mainly due to mobile-specific factors such as contextual events,
event-driven behavior, and gestures-driven interaction. Previous
efforts from researchers and practitioners have been devoted to
build catalogs of faults (a.k.a., fault models, or fault profiles)
that describe recurrent (or uncommon) bugs associated with
software developed for a particular platform or domain [98]–
[101]. Derived profiles are platform specific and can be used
for designing/deriving test cases and for simulating faults
during mutation testing [102]–[108]. In the case of mobile
apps, a few works have analyzed/produced bug catalogs mainly
focused on performance and energy-related issues [89], [97],
[109]–[111]. A recent work by Linares-Vásquez et al. [112]
reports a taxonomy of bugs in Android apps derived from
manual analysis of different sources such as bugs reported in
papers, issue trackers, commit messages, and StackOverflow
discussiones. One of the main conclusions in the study is that
object-oriented fault models only represent/describe a subset of
the faults and bugs in mobile apps [112]. As of today there is
no specific usage of mobile-specific fault models for deriving,



manually or automatically, test cases or mutation operators.
Fault models for mobile apps can also help to statically detect
issues before publishing the apps in the markets. However,
none of the current approaches for automated testing of mobile
apps (described in Section II) uses fault models.

D. Lack of History Awareness in Test Cases
System and acceptance testing aim to exercise an application

under test by simulating user behavior with functional scenarios
combining different use cases. For example, testing the correct
behavior when deleting or updating a task in a TODO list,
first requires the creation of the task. Designing test cases, for
both system and acceptance testing, involves designing event
sequences that have “memory" and are aware of the features
and uses cases exercised previously.

History awareness in test cases for mobile apps has been
primarily explored in two ways using: (i) models constructed
via event-flow graphs (EFG) [32], [35]–[38], or (ii) language
models [39], [113]. EFGs model the GUI behavior as a
finite state machine consisting of various GUI states (e.g.,
windows/screens) with transitions (between the states) defined
as input events (e.g., click on OK button); EFGs are ripped
automatically from the app during runtime, derived a-priori
manually or by using static analysis tools like GATOR
[114], [115], or by some combination of these approaches.
Language models are probabilistic distributions computed over
sequences of tokens/words; in the case of testing, the words are
GUI events, and the distributions are generated by analyzing
execution traces collected during manual execution of the app.

While EFGs and language models are a first step towards
history aware models, the derived sequences are prone to
be invalid. EFGs do not have explicit memory, but history
aware executions can be derived as an artifact of traversing
the EFGs. In the case of language models, the memory is
explicitly modeled with conditional probability distributions
that generate the next event in a test sequence based on its
probability conditioned to the occurrence of the previous events
[39], [113]. Both, EFGs and language models are not able to
recognize high-level features (i.e., uses cases) in test cases; the
models generate event sequences but without recognizing what
features/use cases the events belong to, thus, the generated test
cases are sequences of events instead of sequences of use cases.
Furthermore, the previously described test-flakiness problem
makes proper history-aware test case generation problematic.

E. Difficulties Evolving and Maintaining GUI Scripts/Models
Of the available approaches for automated testing of mobile

apps, test scripts recorded manually or written with automation
APIs/Frameworks are the most vulnerable to app evolution and
fragmentation [1]–[3]. Generating test scripts is time consuming
because it requires a practitioner to record/write the test for each
target device. However, these scripts are typically either coupled
to display locations (e.g., RERAN), or impacted by reactive
GUI-layout changes across devices with differing dimensions.
As an application evolves, test scripts need to be updated
when changes modify the GUI (or GUI behavior) as expected

in the scripts (e.g.,, the id of a component is modified or a
component is removed from a window). Automation APIs like
Espresso allow for declaring GUI events partially decoupled
from device characteristics, but, the scripts are coupled to
change-prone component ids. As of today there is no current
approach for automatically evolving scripts written or recorded
using Automation APIs.

One potential solution to this problem is to employ models,
as some AIG approaches do. In theory, a model could be co-
evolved as an app changes, and test cases could be generated
from the continuously updated model. While this could cur-
rently be accomplished by automated GUI-ripping approaches
(and tools based on systematic exploration) that extract the
model at runtime, because the model is generated “just-in-
time", this approach wastes the potentially useful knowledge
embedded in previously generated models. Therefore, there is
a need for techniques that implement intelligent continuous
model evolution for the purpose of test case generation.

F. Absence of Mobile-Specific Testing Oracles

An oracle is a set of conditions or expected results that define
when a test case has “failed". Current tools and practices heavily
rely on developers and testers to (i) manually verify expected
results, and (ii) to manually codify oracles via assertions or
exceptions when using Automation APIs [1], [3], [89]. In
addition to Manually-Codified-Oracles (MCO), other types
have been explored, including:
• Exceptions-As-Oracle (EAO): technically, there is no prede-

fined oracle, however, crashes and errors that are reported
during the execution of a test case [2], [4], [5], [24], [37], [39],
[116]–[119] are considered as the oracles for determining
whether the case has passed or failed;

• GUI-state-As-Oracle (GAO): expected transitions between
windows and GUI screenshots have been proposed as
potential solutions for automatic detection of GUI errors
in Android apps [24]. Thus, this type of approach requires
(i) executing the test suite on an app version that is considered
as the baseline for the testing process, and (ii) collecting
the oracles (e.g., screenshots or GUI hierarchy snapshots
after each step in the test case). The oracles are then used
to verify GUI states in later tests, under the assumption that
the GUI-states will remain the same.
While some promising approaches have been proposed in the

context of AIG approaches [24], [37], automatic generation of
robust test oracles is still an open issue. Most of the automated
approaches that rely on EAO, are useful for detecting crashes
and unexpected errors, but lack capabilities for identifying
errors occurring in the GUI; e.g., a GUI component expected to
be in a window was not activated due to a bug in presentation or
business logic where no exception was thrown (or the exception
was encapsulated or handled with an empty catch). In addition,
using APIs for automated testing (e.g., Espresso, Robotium)
is very convenient in terms of automatic execution but is also
expensive in the sense that they require a developer/tester to
write and maintain the tests and corresponding oracle(s).



Some automated approaches have proposed a reliance on
GAOs implemented as screenshot comparison (i.e., expected
GUIs vs. resulting GUIs) which get closer to the goal of
detecting such GUI-level errors, however, they require image
similarity thresholds, which could vary widely for different apps
and analyzed windows. The GUI comparison and similarity
threshold definition can be impacted by several conditions
exhibited under different devices and settings [24]. In our
experience we have found that the accuracy of matching GUI
oracles (i.e., using images as test oracles) can be negatively
affected when comparing images (i.e., a GUI oracle against
collected GUIs during tests) of different screen sizes and
when the test is performed on a different device or orientation
(e.g., horizontal vs. vertical). Additionally, GUI hierarchies
are typically rendered differently (e.g., hiding/showing some
components) on smaller displays because of responsive design
capabilities provided by the mobile frameworks or defined
programmatically by the developer, which can cause further
issues in matching screenshot pairs on devices with diverse
configurations. Further issues with GAOs are: differing color
schemes and internationalization. Color palettes can be mod-
ified drastically in a target device according to the theme
defined by the user or the language setting, which can cause
false positives when using images as test oracles. Moreover,
GUI components displaying dynamic content, such as date/time
pickers or map visualizations, can differ based on context. For
instance, collecting a GUI oracle on a CalendarView in an
app on February 29th, and then running the test cases ten days
later could result in a failing test.

G. Missing Support for Multi-Goal Automated Testing

Thus far, AIG approaches have typically centered around
destructive-testing [120], aimed at eliciting failures from mobile
apps. However, this is only a small subset of the different types
of testing required by mobile developers to ensure properly
functioning, high-quality apps. Other types of important testing
include: regression, functional, security, localization, energy,
performance and play testing. While some recent work has
explored energy-aware test prioritization [49], very few other
testing goals have been considered by AIG approaches.

Arguably, other types of testing, particularly functional and
regression testing, carry more value than destructive testing
as they ensure that an app is functioning according to its
design and requirements. Generating tests for functional and
regression testing goals is a difficult problem, as an effective
approach is required to draw logical links between high-level
requirements or use cases and event sequences that would
properly exercise and validate these use cases. Drawing links
across abstraction levels in this manner is a challenging task.
In terms of security testing, while approaches for identification
of mobile malware have been an active topic of research
[121], [122] test case generation, or automated identification
of security vulnerabilities can still be made practical and
more robust. Other than studies into the topic [89], [97],
automated approaches addressing performance testing have
also not been extensively investigated. Finally, automated game

or play-testing is known to be a technically difficult issue.
Game designers/developers test games by hiring users that play
the game under development and provide them with useful
feedback regarding bugs, feature requests, and any type of
enhancement that could be applied as the game; this type of
testing is known as play-testing, and as of today is the only
effective way for testing games, given (i) the game interaction
through special devices (e.g., joysticks, remote controllers, and
sensors) or gestures on tactile displays (e.g., Wii U Gamepad);
and (ii) the need for high-level cognition tasks such as reading,
strategic thinking, and visual patterns recognition, that are
required when playing games.

IV. VISION: HOW TO ENABLE CEL MOBILE TESTING

To instantiate a coprehensive mobile testing solution, the chal-
lenges listed in Section III must be addressed. The CEL testing
framework is based on three core principles aimed at addressing
these challeneges: Continuous, Evolutionary, and Large-scale.
These principles integrate and extend concepts from software
evolution and maintenance, testing, agile development, and
continuous integration. However, the principles alone are not
enough to provide solutions to the aforementioned challenges.
Therefore, as part of the CEL testing vision, we propose a
system architecture for automated mobile testing following
CEL principles. To make this vision tractable, we propose a
research agenda for enabling CEL testing and implementing
our envisioned system.

A. The CEL Testing Principles
Automated testing of mobile apps should help developers

increase software quality within the following constraints: (i)
restricted time/budget for testing, (ii) needs for diverse types
of testing, and (iv) pressure from users for continuous delivery.
Following the CEL principles can enable effective automated
testing within these requirements:
Continuous. Following the principles that support continuous
integration and delivery (CI/CD), mobile apps should be
continuously tested according to different goals and under
different environmental conditions. Tests should simulate real
usages and consider scenarios that simulate different contextual
eventualities (e.g., exploring a photos app when loosing
connectivity) as dictated by app features and use cases. Any
change to the source code or environment (i.e., usage patterns,
APIs, and devices) should trigger — automatically – a testing
iteration on the current version of the app. To avoid time-
consuming regressions, test cases executed during the iteration
should cover only the impact set of the changes that triggered
the iteration. Finally, to support practitioners when fixing bugs,
the bug reports generated with CEL testing should be expressive
and reproducible, i.e., the bug reports should contain details
of the settings, reproduction steps, oracle, inputs (GUI and
contextual events), and stack traces (for crashes).
Evolutionary. App source code and testing artifacts (i.e., the
models, the test cases, and the oracles) should not evolve
independently of one another; the testing artifacts should adapt
automatically to changes in (i) the app, (ii) the usage patterns,
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and (iii) the available devices/OSes. Thus, the testing artifacts
should continuously and automatically evolve, relying not only
on source code changes as an input, but also information
collected via MSR techniques from sources such as on-device
reporting/monitoring, user reviews, and API evolution. CEL
testing employs a multi-model representation of the app and
this mined data, consisting of GUI, domain, usage, fault, and
contextual models, to properly evolve the testing artifacts. This
multi-model representation can be used for the evolutionary
generation of testing artifacts which consider both historical
and current data.
Large-scale. To assure continuous delivery in the face of
challenges such as fragmentation, constrained development
timelines, and large combinations of app inputs from GUI and
contextual events, CEL requires a large-scale execution engine.
This engine should enable execution of test cases that simulate
real conditions in-the-wild. Therefore, to support a large test-
matrix, CEL testing should be supported on infrastructures for
parallel execution of test cases on physical or virtual devices.
While virtual devices reduce the cost of implementing the
engine, physical devices (or extremely accurate simulations)
are mandatory for performance testing. The large-scale engine
should be accessible in the context of both cloud and on-
premise hardware. Thus, an open-source implementation of the
engine is preferred because CEL testing is targeted for both
professional development and SE research.

B. Proposed Architecture
In this section we propose a conceptual architecture for a

solution that follows the CEL principles. Fig. 1 depicts the
architecture composed of the following primary components: (i)
a change-monitoring subsystem, (ii) a testing artifact generation
module, and (iii) a large-scale execution engine.

1) Change-monitoring subsystem: The continuous principle
suggests that (i) changes to a system under test or its
environment should trigger testing iterations; and (ii) test
cases should focus on the impact set of the changes to
reduce the execution time of testing iterations. The monitoring
subsystem should be integrated directly with any source of
change or any available mechanism that describes application
usages at runtime. Therefore, a CEL testing system should
monitor (i) changes pushed to the source code repository or in
underlying APIs, (ii) usage patterns collected with on-device
reporting/monitoring, and (iii) bugs/crashes reported via user

reviews in mobile markets. The rationale for monitoring API
changes, is based on the fact that those changes impact directly
the quality of mobile apps as perceived by users, because of
the change- and bug-proneness of the APIs [123]–[125]. Other
sources of information that should be exploited by CEL testing
systems are app usage patterns in-the-wild and user reviews;
both are a valuable source for identifying sequences of use
cases exercised by the users, and bugs/crashes that are context
dependent or very hard to identify with testing.

2) Testing artifacts generation module: The monitoring
subsystem detects changes to the system and its environment,
and monitors app usages at run-time and bugs/crashes reported
in-the-wild. Any significant changes in monitored data should
automatically trigger a testing iteration by (i) mining/extracting
the information from the mentioned sources in a suitable
format for easy analysis, (ii) identifying the impact set of
the events (relevant features and code locations, directly and
by propagation), (iii) generating/updating underlying models
used for deriving test cases, and (iv) generating test cases that
are relevant to an event that triggered the testing iteration.

The decision to use models within the CEL testing archi-
tecture is based on capability to express testing scenarios as
high-level tokens decoupled from device characteristics (e.g.,
the GUI level model proposed at [39]) and their versatility in
effectively representing different aspects of a system (e.g., GUI
flow or domain entities). However, model-based testing is an
area of research that has traditionally focused on individual
models instead of multi-model representations. Testing an app,
often requires understanding its GUI, use cases, and domain
entities. In the case of testing, mobile-specific fault models
can improve the testing process by identifying common faults
and risky places in an app. Finally, mobile app execution
depends on contextual events such as network connectivity and
geo-location capabilities, therefore, a model to represent these
features is also valuable when testing apps [4], [37], [126].

A CEL testing system should consider models that can be
extracted automatically from the different sources including
APIs, app usages, and user reviews. The five GUDCF models
(GUI, Usage, Domain, Contextual, Fault) should be combined
in a unique Multi-Model (MM) representation capable of gen-
erating test cases for different goals. Note that the MM model,
particularly the Usage sub-model, should be history-aware.
The GUDCF+MM models should co-evolve automatically with



source code changes, and external factors (i.e., API evolution,
app usages, user reviews) following the CEL evolutionary
principle. Evolutionary models allow for on-demand generation
of test cases focused on the current needs of the iteration. For
instance, a small commit with a move-method refactoring
should only trigger a regression on the impact set, and a large
change to the underlying APIs should trigger a testing iteration
for all the features that use the modified APIs. Finally, the
artifacts generation module, should automatically derive the
oracles for the generated cases. The combination of test cases
and oracles enables fully automated testing and error reporting.

3) Large scale execution engine: CEL testing requires exe-
cuting the tests at large-scale to help mitigate the fragmentation
problem and reduce the execution time. Large-scale testing can
be achieved with farms of physical or virtual devices, allowing
for testing across many hardware combinations. Physical
devices can be an issue when scaling, in particular for small
teams that do not have the budget for a large number of
testing devices. Virtual devices are a potential solution, and
in particular the ones based on virtual machines that can be
instantiated (off-premise or on-premise) using containers (e.g.,
docker-style images). Current device farm services do not offer
the flexibility or customization necessary to achieve our CEL
vision. It is worth noting that the test cases to be executed on
the devices should be decoupled from device characteristics
to reduce test flakiness induced because of invalid GUI events
when changing to larger (or smaller) screens. Finally, in the
case of bugs/crashes, reports should be expressive enough to
guide bug fixing in an effective way.

C. Research Agenda
Based on the current frameworks, tools, and services that

are available to developers, as well as the limitations and
remaining open challenges in the domain of mobile testing, we
firmly believe that our vision for Continuous, Evolutionary and
Large-Scale mobile testing offers a comprehensive architecture
that, if realized, will dramatically improve the testing process.
However, there are still many components of this vision that
are yet to be properly explored in the context of research.
Therefore, in order to make our vision for the future of mobile
testing tractable, we offer an overview of a research agenda
broken down into six major topics.

1) Improved Model-Based Representations of Mobile Apps:
Current approaches for deriving model-based representations
of apps are severely lacking a multi-model-based approach
that might significantly improve the utility of model-based
testing. However, to this end, there are several unexplored areas
requiring further research and investigation. While model-based
representations of mobile GUIs have been widely explored
[35]–[40], researchers should focus on unifying the (often
complementary) information which can be extracted from both
static and dynamic program analysis techniques. For instance,
using static control flow information from a tool like GATOR
to guide dynamic GUI-ripping to extract a more complete GUI
model. Very little research work has been devoted to deriving
domain models from applications, however, such models will be

crucial for enabling automated tests to exercise complex inputs
and behaviors. Future studies could focus on automatically
extracting domain models from source code and data storage
models, and by examining common traits between apps that
exist in similar categories in app marketplaces in order to
derive common event sequences and GUI-usage patterns.

Given the highly contextualized environment of mobile
apps (e.g., varying network and sensor conditions), effective
automated testing will require a contextual model identifying
and quantifying the usages of related APIs within in application.
While some recent work has explored such functionality [4],
this can be made more precise and robust through more
advanced static analysis and dynamic techniques that infer
potential context values to help drive automated testing. Very
few automated testing approaches for mobile apps consider
usage models [5], [39] stipulating common functional use
cases of an app, expressed as combinations of GUI events.
Recent advances in deep-learning based representations may
be applicable for appropriately modeling user interactions and
high-level features, if properly cast to the problem domain.

In order to better inform test case generation and properly
measure the effectiveness of automated testing, platform
specific fault models must be empirically derived through
observations and codification of open source mobile app issue
trackers, and knowledge bases such as Stack Overflow [127]
or the XDA developer forums [128]. Finally, in order for these
models to be viable within an evolutionary context, there must
exist mechanisms for accurate, history aware model updates.
A continuously evolving model will allow for more robust
updates to generated test-related artifacts.

2) Goal-Oriented Automated Test Case Generation: Current
approaches for automated input generation for mobile apps have
typically focused on a single type of testing, namely destructive
testing [120] or some derivation thereof. The effectiveness of
such techniques are typically measured code coverage metrics
or by the number of failures uncovered. While this type of
testing can help improve the quality of an app, it is one of
many important testing practices in the mobile domain. In order
to provide developers with a comprehensive automated testing
solution, researchers must focus on automated test generation
for other types of testing aimed at different goals, particularly
those measuring mobile-specific quality attributes. Some of
these testing types include security testing, localization testing,
energy testing, performance testing and play-testing. Testing
for different goals on mobile platforms fundamentally differs
from similar testing scenarios for other types of software due
to the GUI and event-driven nature of mobile apps, and the
fact that GUI tests on devices are currently a necessity (as
unit testing misses important features untestable outside of
device runtimes) for exercising enough app functionality to
achieve effective practices for many of these testing scenarios.
Therefore, the challenge to the research community is to utilize
the representation power of the models we describe in this
paper to devise techniques for automated test case generation
for different testing goals.



3) Flexible Open Source Solutions for Large Scale and
CrowdSourced Testing: As mobile markets mature and ad-
ditional devices are introduced by consumer electronics
companies, the mobile fragmentation problem will only be
exacerbated. As previously discussed, cloud-based services
offering virtually accessible physical devices and crowdsourced
testing are two promising solutions to this issue, however,
these solutions are not available to all developers and are not
scalable to all testing goals. For instance, it may be difficult
to carry out effective energy or security testing on cloud-
based devices if such services are not specifically enabled
by a cloud provider. As outlined in our vision, we looked to
container and virtual machine technology that has made testing
practices scalable in development scenarios like continuous
integration (CI). Thus, it is clear that a robust and highly
customizable container or virtualization image of a mobile
platform is the most promising long-term, scalable solution
for enabling our vision of CEL testing. Future research in
the systems area could focus on improving the viability of
promising open source source projects as androidx86 [130]
to be used in CI-like development environments, allowing
for further customizations and control over attributes such as
sensor value mocking and screen size and pixel density. While
valuable, these virtual devices will not be applicable to all
types of testing, such as usability testing, or usage information
collection which can be used to derive an effective usage model
of an app. Instead, such goals fit the model of crowdsourced
testing well. Unfortunately, no flexible open source solutions to
support developers or researchers currently exist, signifying the
need for such a platform. Luckily, there are existing modern
open source solutions such as OpenSTF [85] and ODBR [23]
that could help facilitate the creation of such a platform. This
platform should allow for easy collection of privacy-aware
execution traces and logs, suitable for deriving usage models.

4) Derivation of Scalable, Precise Automated Oracles:
To allow viable automated support of a diverse set of testing
goals, progress must be made in the form of automatically
generated, accurate, and scalable oracles. It is likely that such
oracles will be specific to particular types of testing tasks
and require different technological solutions. Some automated
testing approaches have broached this problem and devised
simple solutions such as using app agnostic oracles based
on screen rotation actions [37] or GUI screenshots as state-
representations [24]. However, there are still open problems
even with these simple types of oracles, and they are not
comprehensive. Promising directions along this research thread
might include mixed GUI representations that utilize both
image and textual representations of GUI information to form
robust state indications, which could be used as automated
oracles. Additionally, the derivation of mobile platform-specific
fault models may help in deriving automated oracles that could
test for common problems inherent to mobile apps.

5) Mining Software Repositories and User Reviews to Drive
Testing: While many different automated testing solutions
for mobile apps have been proposed, they largely ignore
information sources which could be invaluable for informing the

testing process, namely data mined from software repositories
and user reviews. Information from software repositories for
mobile apps could be collected in two ways, which could
be combined to maximize the information utility, (i) mining
the development history of a single application, and (ii),
the development history of collections of open source apps
hosted on services like GitHub. Here lightweight static analysis
techniques could be used at scale, whereas more expensive
app control flow analysis techniques could be used to provide
more detailed code-level information about a single subject app.
Mobile app developers also have an unprecedented feedback
mechanism from users in the form of user reviews. As such
there is a growing body of work that has focused on identifying
informative reviews [131]–[133], linking these to affected areas
of source code [132], and even recommending code changes
[134]. However, little work has been done to use the information
contained within informative reviews to drive different types of
testing. For instance, in the context of functional or regression
testing, user reviews could be used to prioritize test cases, or
even generate test cases for issues derived from reviews.

6) Derivation of Methods to Provide Useful Feedback for
Developers: In order to make the results of automated testing
practices useful and actionable for developers, researchers must
dedicate effort to (i) deriving useful visual representations of
testing results, and (ii) augmenting typical methodologies by
which users might report feedback to developers. Very few
automated testing approaches have considered methodologies
for augmenting or effectively reporting testing information
to developers [4], [55]. Here researchers might consider
applications of promising visualization approaches adopted
from the HCI community combined with developer information
needs derived from empirical studies. The studies conducted
with engineers can help to develop theoretically grounded
solutions for providing them with actionable information
and augmented context (e.g., sound traceability links back
to different parts of application code). Additionally, novel
mechanisms for aiding users in providing actionable feedback to
developers will be important to increase the quality of mineable
information (e.g., on-device bug reporting and monitoring).

V. CONCLUSIONS

In this paper we presented a comprehensive perspective
of automated mobile testing with the purpose of reporting
the current tools and challenges, and envisioning the future
of the field. After surveying the current state of the art and
challenges related to mobile testing, we provided our vision of
future automated mobile testing techniques that enable agile
development practices. To this, we defined the CEL testing
framework that is based on the Continuous, Evolutionary, and
Large-scale principles. This framework includes a proposal
of an architecture encompassing a fully automated system for
mobile app testing, and a research agenda that describes six
major topics that should be addressed in the near future to
enable fully automated solutions adhering to CEL principles.
We hope this paper will serve as a road map for the mobile
testing community to design and implement future approaches.
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