
Assessing Test Case Prioritization
on Real Faults and Mutants

Qi Luo, Kevin Moran, Denys Poshyvanyk
Department of Computer Science

College of William & Mary
Williamsburg, VA

Email: {qluo,kpmoran,denys}@cs.wm.edu

Massimiliano Di Penta
Department of Engineering

University of Sannio
Benevento, Italy

Email: dipenta@unisannio.it

Abstract—Test Case Prioritization (TCP) is an important
component of regression testing, allowing for earlier detection
of faults or helping to reduce testing time and cost. While
several TCP approaches exist in the research literature, a growing
number of studies have evaluated them against synthetic software
defects, called mutants. Hence, it is currently unclear to what
extent TCP performance on mutants would be representative
of the performance achieved on real faults. To answer this
fundamental question, we conduct the first empirical study
comparing the performance of TCP techniques applied to both
real-world and mutation faults. The context of our study includes
eight well-studied TCP approaches, 35k+ mutation faults, and
357 real-world faults from five Java systems in the Defects4J
dataset. Our results indicate that the relative performance of the
studied TCP techniques on mutants may not strongly correlate
with performance on real faults, depending upon attributes of
the subject programs. This suggests that, in certain contexts,
the best performing technique on a set of mutants may not be
the best technique in practice when applied to real faults. We
also illustrate that these correlations vary for mutants generated
by different operators depending on whether chosen operators
reflect typical faults of a subject program. This highlights
the importance, particularly for TCP, of developing mutation
operators tailored for specific program domains.

I. INTRODUCTION

Regression Testing is defined as the process of running a col-
lection of compact tests, aimed at testing discrete functionality
that underlies a software program, when that program changes
in an evolutionary context. This type of testing allows for the
discovery of software regressions, faults that cause an existing
feature to cease functioning as expected. Regression test suites
tend to be large for complex projects and are often run every
time code is checked into a repository, leading to longer than
desired testing times in practice. For example, Google has
reported that, across its code bases, there are more than twenty
code changes per minute, with 50% of the files changing per
month, leading to long testing times [13], [59]. To limit the
number of test cases to execute, Test Case Prioritization (TCP)
has been developed. TCP aims to prioritize test cases in a test
suite to detect regressions more quickly or reduce testing time.

A large body of research has been dedicated to designing
and evaluating TCP techniques [3], [6], [7], [11], [14], [15],
[37], [44], [51], [58], [72], [73], [75], [76]. Such evaluations
have typically been conducted by comparing the Average Per-

centage of Faults Detected (APFD) metric, or cost cognizant
APFDc metric [20], [24], [33], [60], for different techniques.

While in principle the evaluation of TCP techniques requires
the availability of real program faults, very often the lack
of real fault data has encouraged researchers to use artificial
faults, called mutants, each comprised of a simple syntactic
change to the source code [17], [29], [30], [45], [78]. The
underlying assumption of such evaluations is that there is a
strong correlation between prioritized sets of test cases that
kill high numbers of mutants and sets that detect a high
number of real faults. This assumption raises key questions:
How well do TCP techniques perform on real faults?; Is the
performance of TCP techniques on mutants representative of
their performance on real faults?; What properties of mutants
affect the representativeness of this performance?

Previous studies have examined the relationship between
real faults and mutants in order to understand the applicability
of mutants in software testing. In particular, these studies have
investigated: (i) whether mutants are as difficult to detect as
real faults [1], [2]; (ii) whether mutant detection correlates
with real fault detection [12], [35], [54]; (iii) whether mutants
can be used to guide test case generation [63]; and (iv)
whether tokens contained in patches for real-world faults can
be expressed in terms of mutants [27].

Despite the studies outlined above, no previous study has
investigated whether mutants are representative of real faults
in the context of evaluating TCP approaches. Indeed, such
evaluations aim to measure the rate at which large sets of
mutants are detected by prioritized sets of test cases according
to APFD(c), fundamentally differing from the experimental
parameters of the studies outlined above. For example, Just
et al. [35] focused on the relationship between real faults
and mutants measured by the ability of fault detection for a
whole test suite, which may not imply a similar relationship in
terms of APFD(c) values. Furthermore, TCP approaches have
not previously been extensively evaluated in terms of their
capabilities for detecting real-world faults, indicating that the
practical performance of these techniques is largely unknown.

To address this research gap, we perform an extensive em-
pirical study to understand the effectiveness of TCP techniques
when evaluated in terms of real faults, and examine whether
mutants are representative of real faults when evaluating

ar
X

iv
:1

80
7.

08
82

3v
1

 [
cs

.S
E

]
 2

3
Ju

l 2
01

8

TCP performance. We implemented eight well-studied TCP
techniques and applied them on (i) a dataset of real faults,
Defects4J [34], containing 357 real faults from five large Java
programs, and (ii) over 35k+ mutants seeded using Pit [57].

The results of our study show that for the subject programs
studied, mutation-based performance of TCP techniques, as
measured by APFD(c), tends to overestimate performance
by ≈ 20% on average when compared to performance on
real faults unless trivial and subsumed mutants are removed.
When trivial and subsumed mutants are controlled for, per-
formance measured according to the resulting mutants tends
to slightly underestimate performance by ≈ 3% on average
compared to real faults. Furthermore, our results indicate that
the performance of TCP techniques relative to one another
on mutants, may not correlate to relative performance on real
faults. However, the above findings tend to vary depending on
the subject program. Additionally, we find that, as a whole,
static TCP techniques tend to perform slightly better than
dynamic techniques on real faults, but differences are not
statistically significant. Finally, when examining the fault sets
in terms of mutant coupling and operator type, we found that
the representativeness of mutants (compared to real faults)
varies within programs. This suggests that different mutant
combinations could be derived to more closely resemble likely
real faults in a program.

To the best of our knowledge, this is the first comprehensive
empirical study that evaluates the performance of eight well-
studied TCP techniques on a large set of real faults and
compares the results to mutation-based performance in order
to determine the representativeness of mutants in this context.
The results of this study, and the code utilized are available
in an online appendix to facilitate reproducibility [47].

II. BACKGROUND & RELATED WORK

In this section we formally define the TCP problem, intro-
duce the studied TCP techniques, and discuss related work.

A. TCP Problem Formulation

TCP is formally described by Rothermel et al. [61] as
finding a prioritized set of test cases T ′ ∈ P (T), such that
∀′′, T ′′ ∈ P (T) ∧ T ′′ 6= T ′ ⇒ f(T ′) ≥ f(T ′′), where
P (T) refers to the set of permutations of a given test suite
T , and f refers to a function from P (T) to real numbers.
While there are many types of existing TCP techniques
[16], [23], [29], [38], [65], [79], one common dichotomous
classification, static [31], [42], [80] and dynamic techniques
[18], [19], [22], [41], [53], [64], [71], [78], relates to the
type of information used to perform the prioritization. Static
approaches utilize information extracted from source and test
code and dynamic techniques rely on information collected at
runtime (e.g., coverage information per test case) to prioritize
test cases [46]. Additional classifications exist, such as the
distinction between white-box and black-box techniques [30].
The techniques that require source code of subject programs
(or information extracted from source code) are typically
classified as white-box techniques [36]. Conversely, those that

only require program input or output information are classified
as black-box techniques. Approaches that only require test-
code have been classified as black-box [30], [46], however,
in this paper we more accurately refer to these techniques as
grey-box since they require access to test code with references
to the underlying program. There are also other approaches
[32], [62], [69] that use other types of information to perform
the prioritization, such as code-changes and requirements, that
do not fall neatly into these categories.

B. Studied TCP Techniques

In the context of our empirical investigation, we selected
eight well-studied white and grey-box TCP techniques as
they provide a effective means of comparing the performance
of widely disseminated techniques on real faults to their
reported performance on mutants in prior work. Furthermore,
the original papers that introduce our studied approaches
have been collectively cited over 1.4k times, indicating their
importance within the research community. Together we con-
sider four dynamic white-box techniques that utilize run-
time code coverage for prioritization [33], [43], [60], two
static gray-box techniques that operate only on test code [42],
[66], and two static white-box approaches that use call-graph
information [80]. In the remainder of this subsection we give
an overview of these eight techniques (where the Greedy and
Call-Graph-based techniques have two variants). Implemen-
tation details for these techniques are given in Section III-D.

1-2) Greedy Techniques (Total & Additional) The tradi-
tional greedy TCP techniques use two strategies, total and
additional, to prioritize test cases using coverage information
[60]. The total strategy always prioritizes test cases with
highest total coverage. Conversely, the additional strategy
prioritizes tests that cover the most additional code compared
to the prioritized set.

3) Adaptive Random Testing The Adaptive Random Testing
(ART)-based TCP technique was proposed by Jiang et al. [33].
ART approaches are used to spread test inputs evenly over the
entire input domain of a program in order to detect failures
more quickly as compared to random testing [10]. Initially,
this technique randomly generates a candidate set of test cases
and randomly selects a test case. Then, a new candidate set
is iteratively generated in a random fashion and the test case
that is farthest away from the already-prioritized set, in terms
of coverage-based Jaccard distance, is added. In our study, we
choose the minimum distance to measure the distance between
each test case and the set of prioritized test cases, since it has
been shown to be the most effective [33].

4) Genetic Algorithm-based Technique Li et al. proposed a
set of approaches that prioritize test cases using search-based
techniques, which are able to avoid producing sub-optimal
results that find only local solutions within the test input space
[43]. They used two meta-heuristics, namely hill climbing and
Genetic Algorithms (GAs), and used coverage information as
a prioritization objective. Their experimental results show that
GAs perform better than hill climbing, thus, we utilize the
GA-based approach in this study.

5-6) Call-Graph-based Techniques (Total & Additional)
Zhang et al. proposed an approach to prioritize test cases
based on call-graph information instead of coverage [80]. The
approach builds a call-graph for each test case, and uses the
information to measure the testing abilities for all test cases.
The test cases covering more methods are favored in the
prioritization scheme. Similar to greedy techniques, there are
two variations: total and additional.

7) String-based Technique Ledru et al. proposed a TCP
approach that uses textual information extracted from test
cases [42]. The underlying idea is that a set of textually diverse
test cases may have a better chance at uncovering more faults
than a textually similar set. This technique treats each test
case as a string, and introduces four types of string distances to
estimate the difference between a pair of test cases, prioritizing
test cases that are furthest from the prioritized set in a pairwise
manner. Experimental results show that Manhattan distance
performs best in terms of fault detection [42], and thus, we
use this setting in our study.

8) Topic-Model-based Technique This technique aims to
utilize the textual information in test cases, such as identifiers
and comments to build topic models for prioritization [66]. The
technique relies on topic models to approximate the abstract
functionality of each test case, and estimates the distances
between topics of test cases to favor those that are able to
test different high-level functionalities of the program. Similar
to the string-based TCP technique, the topic-model-based
technique uses Manhattan distance to measure the distance
between a single test case and the prioritized set. The test
furthest away from the prioritized set is chosen during each
iteration to maximize diversity. In our study, we implement
this approach as proposed by Thomas et al. [9], [66].

C. Threats to the Validity of Mutation-Based TCP Perfor-
mance Evaluations

There is a large body of work that has addressed the
problem of Test Case Prioritization [21], [32], [50], [62],
[74]. A common link between the evaluations of various
techniques is the utilization of fault-detection rates, typically
in terms of the APFD(c) metrics [30], [45], [67]. However,
due to the fact that finding and extracting real-world faults
from software is an intellectually intensive and laborious
task, real faults are rarely used when evaluating testing re-
lated research [34], [35], including existing work on TCP.
Instead, mutation analysis can be utilized. During mutation
analysis small, automatically-generated syntactic faults are
seeded throughout subject programs according to a set of
clearly-specified mutation operators. Then APFD(c) values are
calculated according to the number of mutants that are detected
(i.e., killed) by prioritized test cases. To make results of such
an evaluation generalizable to realistic settings, APFD(c) fault-
detection rates for mutants should correlate with detection
rates of real faults. Unfortunately, in the context of the typical
methodology used to evaluate TCP techniques, the relation
between performance on mutants and real faults is not well
understood. This gives rise to the potential for threats to

the validity of TCP evaluations relating to (i) the overall
performance of TCP techniques on mutation vs. real faults
(is performance over or under-estimated?); (ii) the relative
performance or performance correlation of real vs. mutation
faults (does a mutation based-analysis properly illustrate the
most effective technique on real faults?); and (iii) the impact
that different properties of mutants and programs have on
mutation-based performance of TCP.

D. Studies Examining the Relationship Between Mutants and
Real Faults

While our study is the first to examine the representativeness
of mutation faults in terms of real faults as it pertains to
the domain of TCP, we are not the first to investigate this
relationship in a general sense. Daran and Thévenod-Fosse
[12] performed the first empirical comparison between mutants
and real faults, finding that the set of errors and failures they
produced with a given test suite are quite similar. Andrews
et al. [1], [2] compared the fault detection capability of test-
suites on mutants, real-faults, and hand-seeded faults, reaching
two conclusions. First, mutants (if carefully selected) can
provide a good indication of a test suite’s ability to detect
real faults. Second, the use of hand-seeded faults can produce
an underestimation of a test suite’s fault detection capability.
Gopinath et al. conducted an empirical study that explored the
characteristics of a large set of changes and bug-fixes and how
these related to mutants [27].

Just et al. studied whether a test suite’s ability to detect
mutants is coupled with its ability to detect real faults, control-
ling for code-coverage [35]. Their results indicate that mutant
detection correlates more closely with real fault detection than
with code coverage. Additionally, their study also provided
suggestions regarding how mutant taxonomies can be im-
proved to make them more representative of real faults through
examination of how mutants are coupled to real faults. Just et
al. introduced a valuable dataset of 357 real faults across five
Java programs in an artifact called Defects4 [34], which we
utilize in this paper. Shamshiri et al. conducted an empirical
study of automatic test generation techniques to investigate
their ability to detect real faults in the Defects4J [63]. Finally,
Chekham et al. conducted a study examining how mutation,
statement and branch coverage correlate to fault revelation
[8]. They found that strong mutation testing has the highest
fault revelation capability and fault revelation only tends to
significantly increase once high coverage levels are attained.

While the aforementioned research has investigated several
aspects of the relationship between real-faults and mutants,
there is no prior work examining this relationship in the
context of typical TCP evaluation methodologies. Thus, it is
unclear whether results from these studies hold in the context
of TCP, as the experimental settings in such cases (and hence
in our study) fundamentally differ from past work. These
differences manifest in the typical methodology used to assess
the effectiveness of TCP techniques, which involves seeding
mutants into a single version of a program and calculating
fault-detection rates according to the APFD(c) metrics.

TABLE I
THE STATS OF THE SUBJECT PROGRAMS: #REAL: #REAL-WORLD

FAULTS; #ALL: #ALL MUTATION FAULTS; #DETECTED:
#MUTATION FAULTS CAN BE DETECTED BY TEST CASES;

#SUBSUMING: SUBSUMING MUTANTS.
Subject Programs #Real #Detected #Subsuming #All
JFreeChart 26 32,790 1,796 102,629
Closure Compiler 133 82,572 9,731 111,826
Commons Maths 106 80,059 5,016 113,680
Joda-Time 27 24,555 3,066 34,147
Commons Lang 65 25,173 2,129 31,214
Total 357 245,767 21,738 393,496

In order to more clearly illustrate the need for this study,
it is useful to consider how our experimental setup differs
from prior work such as Just et. al’s [35]. The most analogous
study to ours that Just et. al conduct is that which measures
the correlation between a test suite’s ability to detect real
faults and the test suite’s mutation score, without considering
the impact of test case ordering within a suite. In contrast,
our study is, in essence, aimed at investigating how test case
ordering (and prioritization) can impact the representativeness
of mutants in terms of fault detection rates. This nuance has
important implications for TCP because the distribution of
faults across a program can impact the rate at which a test suite
detects faults depending on test case ordering. For example,
mutants could be distributed throughout a program in a more
uniform manner than real faults, causing differences in the
effectiveness of the prioritization schemes of different TCP
techniques. Previous studies that only examine test suites in
their entirety were not capable of exploring this phenomenon.

III. EMPIRICAL STUDY

The goal of this study is to analyze the extent to which
mutation analysis can support the evaluation of Test Case
Prioritization, as opposed to using data from real faults. The
study context consists of data from five Java open source
projects (Defect4J [34], [35]), mutants generated by PIT [57],
and the eight TCP techniques described in Section II.

A. Research Questions (RQs):

The study aims at answering the following three RQs:
• RQ1: How effective are TCP techniques when applied to

detecting real faults?
• RQ2: Is the performance of TCP techniques on mutants

representative of performance on real faults?
• RQ3: How do the properties of real faults and mutants

affect the performance of TCP techniques?

B. Study Context

In order to properly evaluate the performance of TCP
approaches when applied to detecting real-world faults, our
study requires a well understood set of verified, real program
faults preferably containing coupling information between real
faults and mutants. To satisfy this criteria, we utilize the
Defects4J [34] dataset, which contains 357 real faults extracted
from five Java subject programs, listed in Table I, and has
been utilized in past studies [35], [63]. Defects4J isolates the
real faults from the version control and bug tracking system
of each subject program. For each isolated fault there exists

a faulty program version and a corresponding fixed version.
Table I shows the distribution of isolated real faults across the
five subject programs, with Closure Compiler and Commons
Maths representing the largest numbers of faults.

For each real fault (i.e., faulty version), Defects4J provides
a test suite including at least one test case that is able to
trigger the fault but pass successfully in the corresponding
fixed version. Additionally, it provides the code locations (i.e.,
method and class names) that were modified to fix the fault.
Test cases were extracted at test-method granularity rather than
the test-class granularity, as TCP techniques have been shown
to perform best under such experimental settings [46].

The primary goal of this study is to determine how well
mutation-based measures of TCP effectiveness reflect the
performance of these techniques on real faults. More generally,
we aim to answer the following question: “If one prioritizes
test cases using mutants, would this prioritized set likely be
as effective on real faults?” In order to explore this question
we seeded mutants using the PIT mutation tool [57] with
all built-in operators enabled. During this seeding process we
excluded mutants that cannot be killed (i.e., triggered the test
case to fail), by any test case in the existing JUnit suites for
two reasons: i) to mitigate a potential threat to validity from
equivalent mutants, ii) they do not affect our studied metrics
according to the definitions of APFD(c) as defined in Section
III-C. The number of detected mutants and the total number
of seeded mutants are shown in columns 3 and 5 of Table I
respectively (see online appendix for further information [47]).

To perform mutant seeding that allows for comparison
between real faults and mutants, for each (real) faulty version
of a program in Defects4J, we create one mutated program
instance by seeding a randomly selected mutant into the latest
corresponding program version, and then repeat this process
100 times (e.g., for Closure: 133 versions with real faults × 1
mutant × 100 instances = 13,300 total mutants). For instance,
taking the JFreeChart program as an example, one mutant
was randomly selected from the set of 32,790 mutants able
to be detected by at least one test case, until a set of 26
mutant versions of JFreeChart were accumulated (matching
the number of real faulty versions). This procedure is then
repeated 100 times. This results in 100 groups of 26 mutants,
or 2,600 mutants being evaluated for JFreeChart in total. We
repeat the seeding process 100 times due to the fact that
the selected mutant is a random variable, and we aim to
provide a reliable statistical analysis and the best possible
approximation for TCP evaluations from prior work. In initial
experiments, excluded due to space limitations (but included in
our online appendix [47]), we computed the APFD(c) values
using five randomly seeded mutants per instance (instead of
one), following the settings of previous work [29], [45], [46],
[50], [77]. The results for this analysis generally agree with the
presented results, and thus we do not expect that the number
of mutants per instance will dramatically impact findings.

The intention for choosing these experimental settings is to
evaluate whether past mutant-based methodologies measuring
TCP efficacy hold for real faults. Thus, we seeded mutants

TABLE II
STUDIED TCP TECHNIQUES.

Type Tag Description

Static

TCPcg−tot Call-graph-based (total strategy)
TCPcg−add Call-graph-based (additional strategy)
TCPstr The string-distance-based
TCPtopic Topic-model-based

Dynamic

TCPtotal Greedy total (statement-level)
TCPadd Greedy additional (statement-level)
TCPart Adaptive random (statement-level)

TCPsearch Search-based (statement-level)

in accordance with past studies [46], [50], [62], [77], [78],
applying mutation analysis to the latest version of each subject
program. This means that test suites from each faulty program
version in Defects4J are prioritized for both each faulty version
and the latest version (with mutants injected). As Section V
describes, this makes for a reasonable comparison due to the
fact that past work measuring the impact of software evolution
on TCP efficacy has shown that mutation-based performance
remains consistent when applying test cases from an earlier
program version to both the earlier and later versions [45].

Furthermore, two recent works outline the potential impact
of trivial/subsumed mutants for mutation-based analysis [30],
[55]. Thus, we investigate our RQs both with and without
trivial and subsumed mutants removed from the set of seeded
mutants. We follow the methodology defined in prior work
[55], which is the best approximation for the removal of
subsuming mutants, as this has been proven an undecidable
problem. The number of subsuming mutants is shown in
Table I. Thus we will discuss results in terms of two different
mutant sets: the full mutant set, and the subsuming mutant set.

C. Methodology

1) RQ1: TCP Effectiveness on Real Faults: The goal of
this research question is to investigate the performance of
TCP techniques when they are applied to detect real faults.
We first ran these eight TCP techniques on 357 Defects4J
program versions containing real faults to obtain ranked lists
of test cases for each faulty version. The tests are run at
the test-method level, since past work has shown method-
level yields more effective TCP results [45], [46]. Then, to
measure the effectiveness in terms of fault detection for each
studied technique, we calculated two well-accepted metrics,
the Average Percentage of Faults Detected (APFD) [21], [60]
and its cost cognizant counterpart APFDc [20], [24]. Formally,
APFD is defined as follows: Let T be a test suite and T ′ is a
permutation of T , the APFD value for T ′ is given by

APFD = 1−
∑m

i=1 TFi

n×m
+

1

2n
(1)

where n is the number of test cases in T , m is the number
of faults, and TFi is the position of the first test case in T ′

that detects fault i. Intuitively, the higher the APFD value,
the higher the rate of fault detection by the prioritized test
cases. In order to derive a more holistic understanding of
the relationship between TCP performance on real faults and
mutants we also consider APFDc. This metric takes both
execution cost and fault severity into account. Since there is
no clearly-defined nor widely-used method for estimating fault

severity, we consider severity to be the same for all faults.
Therefore, in the context of this study APFDc reduces to the
following formal definition:

APFDc =

∑m
i=1

(∑n
j=TFi

tj − 1
2 tTFi

)
∑n

j=1 tj ×m
(2)

where tj is the execution cost for the test case ranked at
position j in the ranked test suite. Intuitively, APFDc, as
defined above, will be higher for prioritized test suites that
both find faults faster and require less execution time. Since we
study five subjects, each with a different number of real faults,
we computed the average APFD(c) values of the different
versions across all five systems to understand the effectiveness
of each studied approach. Additionally, to statistically analyze
the differences between TCP techniques in terms of APFD
and APFDc values, we perform an Analysis of Variance
(ANOVA) and a Tukey Honest Significant Difference (HSD)
test [68] on the average APFD(c) values across the five
subjects. The ANOVA analysis is used to test whether there are
statistically significant differences between the performance
of TCP techniques when applied to real faults versus when
applied to mutants. The Tukey HSD test classifies the TCP
techniques into different groups based on their performance
in terms of APFD(c) values. For both statistical procedures
we consider a significance level α = 0.05.

2) RQ2: Representativeness of Mutants: The goal of RQ2

is to understand whether mutants are representative of real
faults in the evaluation of TCP techniques. Thus, we applied
mutation analysis according to the description given in Section
III-B. As mentioned in Section III-B, two sets of mutants are
examined, the full mutant set and the subsuming mutant set.
Then, we ran all studied TCP techniques on these sets of
mutant versions and calculated the average APFD(c) values
(see Equations 1 and 2) across all 100 mutant groups for all
five subject programs, in order to examine the mutant-based
performance of our studied TCP techniques.

At this point, we are able to evaluate the effectiveness of
TCP techniques in terms of both real fault and mutant detec-
tion according to APFD(c), which we refer to as the absolute
performance. In addition to the absolute performance, we are
also concerned with how different techniques perform relative
to one another across different fault sets, which we refer to
as the relative performance. If the ranking of TCP techniques
from most to least effective is similar when measured across
both mutants and real faults, the relative performance would
be positively correlated, otherwise it would be negatively
correlated. To calculate this, we utilize the Kendall rank
correlation coefficient τ [40] to measure the relationship. This
correlation metric is commonly used to measure the ordinal
association between two quantities [39] and has been widely
used in the area of software testing for such purpose [26],
[56], [77]. Consider the APFD values of real fault detection
and mutant detection across all studied techniques as a set of
pairs (R,M), where R is the APFD/APFDc values of real
fault detection and M is the APFD/APFDc values of mutant

detection. Any pair of (ri,mi) and (rj ,mj) (APFD values for
TCPi), where i 6= j, are concordant if ri > rj and mi > rj
or if ri < rj and mi < mj . They are discordant if ri > rj
and mi < mj or if ri < rj and mi > mj [52]. The Kendall τ
rank correlation coefficient is formally defined as the ratio of
the number of concordant pairs less the number of discordant
pairs and the total number of pairs. Thus, its value ranges from
−1.0 to 1.0. Results closer to 1.0 indicate the observations of
two variables have similar rank (e.g., which in the context
of this study translates to similar rates of fault discovery),
whereas when it is closer to −1.0 when the observations of
two variables have dissimilar ranks (e.g., suggesting a negative
correlation between fault discovery rates). Following previous
work [26], we use the Kendall τb statistic as it accounts for
ties and does not require a linear relationship.

3) RQ3: Effects of Fault Properties: The goal of this
research question is to understand how different properties
of faults impact two phenomena in the context of TCP: (i) the
performance of techniques, and (ii) the utility of mutants as a
proxy for real faults (i.e., performance correlation).

The first fault property we investigated is the level of cou-
pling between real faults and mutants. In order to determine
the level of coupling for real faults to mutation operators, we
utilize Just et al.’s previous work [35], which classified the 357
real faults from the Defects4J dataset into four coupling levels:
(i) those coupled with mutants (denoted in the study using
the keyword “Couple”), (ii) those requiring stronger mutation
operators (denoted as “StrongerOP”), (iii) those requiring new
mutation operators (denoted as “newOP”), and (iv) and those
not coupled with mutants (denoted as “Limitation”) Formally
speaking, a real fault (i.e., a complex fault) is coupled with a
set of mutants (i.e., simple faults) if a test case that detects all
the mutants also detects the real fault [35]. We contacted the
authors to obtain this classification scheme, which includes
262 real faults coupled to mutants, 25 real faults requiring
stronger mutation operators, seven real faults requiring new
mutation operators, and 63 real faults not coupled to mutants.
In order to examine the impact that fault coupling has on
performance, we pruned our initial dataset from the previous
two research questions and calculated APFD(c) values for each
coupling level of real faults and for all mutants considered
in RQ2 for each subject program. In order to examine the
correlation between these APFD(c) values, we again utilize
the Kendall τb coefficient.

The second fault property we examined is the mutation
operator type. Intuitively, this investigation should help shed
light on which mutation operators are more representative of
real faults for our studied subject programs in the context
of TCP performance. We classified mutants based on their
corresponding operators, that is, the mutation faults that are
generated by the same mutation operator are classified into the
same group. We consider the 15 built-in operators in PIT [57],
and for each subject program classified all mutant versions
into groups according to these operators. For each subject
program and operator type, we then randomly sampled from
these groups until we had a set of faults corresponding to

the number of real faults existent in each subject program
respectively. We then repeat this process 100 times. If there
are not enough mutants to create 100 groups, we repeat this
process until we exhaust the mutants. In the end, for each
subject program, we derive 100 mutant groups for each type of
operator (given enough mutants), with each group containing
the same number of mutants (all of the same operator type)
as real-faults for the subject. To understand the impact that
different types of mutation operators have on the performance
of TCP techniques, we calculated the APFD(c) values based
on the new groups of mutants, and then used the Kendall τb
coefficient to understand the correlation between the APFD(c)
values calculated in terms of real faults and mutants. We also
explored the effects of mutant locations, however, we found no
significant trends. Thus, we forgo discussion of these results
and point interested readers to our attached appendix.

D. Experiment Tools and Hardware

We reimplemented all studied TCP techniques in accordance
with the technical descriptions in their corresponding papers
(see Sec. II). Three of the authors, and an external expert
on TCP, carefully reviewed the code, ensuring the reimple-
mentation is reliable. To collect coverage information, we
used the ASM bytecode manipulation and analysis toolset
[4]. In our empirical study, we chose to use statement-level
coverage information, as this allows for optimal performance
of TCP techniques [46]. Furthermore, we utilize JDT [25]
to extract textual information for each test method, which is
used by string-based and topic-based approaches. Specifically
for the topic-based approach, we use Mallet [49] to build a
latent Dirichlet allocation (LDA) topic model [5] for each
test case, after pre-processing the textual information (e.g.,
splitting, removing stop words and stemming). Following
previous research [46], we use WALA [70] to build RTA call
graphs [28] for each test method and traverse each call graph to
obtain its static coverage to implement the TCPcg techniques.

The experiments were carried out on eight servers with 16,
3.3 GHz Intel Xeon E5-4627 CPUs and 512 GB RAM, and
one server with eight Intel X5672 CPUs and 192 GB RAM.

IV. RESULTS

In this section, we describe the results of our empirical
study. Furthermore, we provide an online appendix with ad-
ditional results [47].

A. RQ1: TCP Effectiveness on Real Faults

The values of the APFD(c) metrics and the results of the
Tukey HSD test for real faults are reported at the top of Table
III. From these experimental results we make the following
observations. First, for real faults, all techniques tend to per-
form better when measured by APFD as compared to APFDc.
This is not surprising, and it is due to the incorporation of
execution cost. For some techniques, in particular TCPtotal

and TCPcg−tot, the differences between APFD and APFDc
are comparatively larger. This observation is most likely due
to the fact that these techniques always prioritize test cases

TABLE III
AVERAGE APFD & APFDC VALUES FOR ALL EIGHT TCP TECHNIQUES, FOR REAL, FULL MUTANT AND SUBSUMING MUTANT FAULT SETS, ACROSS ALL

SUBJECT PROGRAMS. ADDITIONALLY, THE GROUPING RESULTS FOR THE TUKEY HSD TEST ARE SHOWN IN CAPITALIZED LETTERS (e.g., AB).
S.MUTANTS REFERS TO SUBSUMING MUTANTS.

Static Techniques Dynamic Techniques
Faults TCPcg−tot TCPcg−add TCPstr TCPtopic TCPtotal TCPadd TCPart TCPsearch

APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc
0.594 0.480 0.597 0.591 0.696 0.594 0.7 0.635 0.61 0.419 0.583 0.454 0.657 0.677 0.6 0.556

Real A BC A ABC A ABC A AB A C A C A A A ABC
0.743 0.598 0.818 0.835 0.834 0.788 0.832 0.802 0.757 0.549 0.897 0.829 0.8 0.841 0.784 0.725

Full Mutant B BC AB A AB AB AB A B C A A AB A B ABC
0.561 0.407 0.612 0.639 0.620 0.572 0.612 0.570 0.534 0.305 0.664 0.565 0.622 0.671 0.578 0.508

S.Mutant AB BC AB A AB AB AB AB B C A AB AB A AB ABC

TABLE IV
RESULTS OF THE ANOVA ANALYSIS AND THE KENDALL τb

COEFFICIENT FOR THE OVERALL APFD(C) VALUES SHOWN IN
TABLE III.

Faults ANOVA p-value τb

APFD APFDc APFD APFDc
Real 0.011 3.22e-4 - -

Mutant 8.02e-4 3.77e-5 0.143 0.571
S.Mutant 0.011 1.38e-4 -0.071 0.643

with higher coverage first, leading to longer execution costs
for the top test cases, in turn leading to lower APFDc values.

Second, the static TCP techniques perform slightly better
overall as compared to dynamic TCP techniques for both
APFD and APFDc metrics, but these differences are not
statistically significant. To determine whether static techniques
outperformed dynamic ones to a statistically significant degree,
we performed a Wilcoxon signed rank test across the raw
APFD(c) values achieved by the collective sets of static and
dynamic techniques across all subject systems. Results indicate
that while static techniques do generally outperform dynamic
techniques, the differences are not statistically significant, and
the Cliff’s delta effect sizes are negligible to small. We provide
complete analysis results in our appendix [47].

Third, the TCPadd technique does not outperform the
TCPtot strategy, contradicting findings from past studies
where the TCPadd has been shown to perform best overall
[21], [46], [61]. Fourth, the results of the Tukey HSD test
suggest that for APFD, the performance of the TCP programs
does not vary in a statistically significant manner. However,
for APFDc, we found statistically significant differences across
techniques. It should be noted that the results of the statistical
tests are derived from a smaller dataset as compared to the
traditional method of using thousands of mutation faults, due
to the number of faults included in Defects4J.

B. RQ2: Representativeness of Mutants
The values of the APFD(c) metrics for mutants across the

different TCP techniques are also shown in Table III. From
this data, we make several notable observations. First, the
APFD and APFDc metrics calculated using the full mutant set
generally tend to overestimate absolute performance compared
to real faults by ≈ 20% on average. This finding is relevant,
as it implies that mutation-based evaluations measuring the
absolute performance of TCP techniques that do not control
for subsumed and trivial mutants tend to overestimate real-
world absolute performance of these techniques. Conversely,
there is a slight underestimation (≈ 3% on average) for the
APFD(c) values calculated using the subsuming mutant set

when compared to real faults. Moreover, the studied TCP tech-
niques perform differently across different fault sets, with the
absolute performance of techniques on both the full mutant set
and subsumed mutant set differing from absolute performance
on real faults. This is a significant finding as it suggests that,
according to results for our set of five subject programs, a
TCP approach that performs well according to mutation
analysis may not exhibit the same performance on a set of
real faults for the same program(s). As we will discuss later,
this points to the need for careful selection of mutants when
performing a mutation-based evaluation of TCP techniques in
order to ensure that the results obtained also hold for real
faults. Additionally, removing subsumed mutants should prove
beneficial in practice to avoid performance overestimation.

While the absolute performance in terms of APFD and
APFDc may not be similar when comparing performance
on mutants to performance on real faults, it is possible that
performance is positively correlated between the different fault
sets. That is, the performance of TCP techniques on real
faults relative to each other is consistent across different fault
sets. To measure this, we examine the Kendall τb correlation
coefficient across the results from the two types of faults
(shown in Table IV). Note that two rankings are considered
as independent to one another when τb is closer to zero.
Our results indicate a very weak positive correlation between
mutants and real faults when examining APFD (τb=0.143 for
all-killed mutants and for τb=-0.071 subsuming mutants) and
a medium to strong positive correlation when considering
APFDc (τb=0.571 for all-killed mutants and for τb=0.643
subsuming mutants). Removing subsumed mutants does not
impact the correlation results. This observation implies that,
in general, a mutation-based TCP performance evaluation
carried out in terms of APFDc will more strongly correlate
to performance in terms of APFDc on real faults. However,
when relying on a mutation-analysis based APFD evaluation,
as many previous studies do, there is no guarantee that the
results will correlate to similar levels of performance on real
faults. However, as we illustrate in the course of answering
RQ3, this correlation tends to vary across both the studied
techniques and mutation operators. Furthermore, the actual
rankings of different techniques across the different fault sets
can impact the significance of these results. For example, if
the weak Kendall correlation for the APFD metric is merely
due to slight shuffling of a set of consistently top-ranked
techniques, this may indicate that the relative performance
of techniques according to mutants may be closer to real
faults than implied by our correlation analysis. However, this

TABLE V
RESULTS FOR THE KENDALL τb RANK CORRELATION COEFFICIENT BETWEEN APFD(C) VALUES FOR TCP TECHNIQUES ON DETECTING MUTATION

FAULTS AND DETECTING EACH TYPE OF REAL FAULTS DESCRIBED IN SECTION III-C3.
Real Faults Chart Lang Math Time Closure Mean

APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc
Couple 0.429 0.786 -0.071 0.286 0.5 0.429 -0.143 0 0.714 0.714 0.2858 0.443

Limitation -0.214 0.214 -0.214 0.143 0 0.286 -0.071 0.143 0.5 0.286 0.0002 0.2144
StrongerOP 0.214 0.857 0.182 0.327 0 0.357 -0.286 0.5 0.714 0.571 0.1648 0.5224

NewOP 0.109 0.286 - - -0.143 0.286 - - 0.571 0.571 0.179 0.381

Couple

0.4

0.6

0.8

Limitation StrongerOP NewOP

APFD APFDc
0.2

Fig. 1. APFD(c) values for TCP techniques in terms of detecting
different types of real faults.

is not what we observe; for APFD, on average, the relative
performance ordering according to real faults indicates that
TCPtopic performs best and TCPadd performs worst. How-
ever, for both the full and subsuming mutant sets, TCPadd

performs best, representing a reversal in the ordering of the
best and worst ranked techniques. We observe similar trends
for APFDc.

C. RQ3: Effects of Fault Properties

In this subsection we investigate the effect that different
fault properties have on the performance of TCP techniques,
and on the relationship between mutants and real faults. As
stated earlier, we discuss results for real faults in terms of
different coupling levels, and mutants in terms of operators.
In the context of RQ3, we use the full mutant set for analysis
instead of subsuming mutants, due to the limited number of
subsuming mutants, particularly when grouping them based on
mutation operators. However, interested readers can find the
results for subsuming mutants in our attached appendix.

1) Effects of Coupling Between Mutants and Real Faults:
To investigate the effect that fault coupling has on the perfor-
mance of TCP across real-faults we consider four different
fault types discussed in Section III-C3. The performance
results for the APFD(c) metrics broken down by coupling level
are illustrated in Figure 1. The correlation results for APFD(c)
across subjects are given in Table V.

As Figure 1 shows, TCP techniques perform differently in
terms of detecting different types (e.g., coupling levels) of real
faults. This result yields a few notable observations. First, TCP
techniques tend to perform best (in terms of APFD and APFDc
values) on real faults that are classified as needing stronger
operators to be properly represented by mutants. This finding
is encouraging, as it highlights that the studied approaches
are capable of prioritization schemes that effectively uncover
faults which are not closely coupled to mutants. When ex-
amining the correlation results, we find that the APFD τb
coefficient values of coupled real faults are, unsurprisingly,
substantially higher than for other types of real faults. This
implies that TCP performance on real faults, which are more
tightly coupled to mutants, is more strongly correlated with

- currentPropertyNames = implicitProto.getOwnPropertyNames();
+ if (implicitProto == null) (
+ currentPropertyNames = ImmutableSet.of();
+ }
+ else {
+ currentPropertyNames = implicitProto.getOwnpropertyNames();
+ }
	 (a) Closure-2 Bug Fix.
- System.arraycopy(array2, 0, joinedArray, array2.length, array2.length)
+ try {
+ System.arraycopy(array2, 0, joinedArray, array2.length, array2.length)
+ } catch (ArrayStoreException ase) {
+ ...
+ ...
+ throw ase; // No, so rethrow original
+ }
	 (b) Lang-37 Bug Fix.

Fig. 2. Examples of bug fixing changes.

performance on mutation faults in TCP evaluations. However,
for APFDc we find that real faults requiring stronger operators
tend to exhibit the highest correlation. Finally, as Table V
shows, the correlation results vary across different subject
programs. For instance, on one hand, the τb values for Closure
are quite large across all levels of coupling, implying that TCP
performance on mutants is more indicative of performance on
real faults for this particular subject. On the other hand, the
τb values for Lang are much closer to zero.

2) Effects of Different Mutation Operators: The perfor-
mance distributions for the APFD(c) metrics across different
operators are depicted as box plots in Figure 3. The correlation
results across operators between the performance of mutants
and real faults are shown in Table VI. The observations that
can be made from this data help further explain the results of
RQ2. The performance results illustrate that the different TCP
techniques tend to exhibit slight performance variances across
different types of mutation operators, with the Switch and
VoidMethodCall operators trending toward the positive and
negative extremes respectively. This result implies that, even
if a researcher is performing only a mutation-based analysis,
the set of mutation operators selected can cause variations in
the results. More importantly, the correlation results indicate
that the degree to which performance on mutation faults
correlates to performance on real faults, in terms of APFD(c),
varies dramatically across systems as a a whole, and across
different operator types within a single subject. For instance,
when examining APFD values for specific systems, we found
that mutation-based performance for both Closure and Math
exhibits a strong positive correlation to performance on real
faults across nearly all mutation operators. At the same time,
operators such as ConstructorCall and VoidMethodCall

exhibit a negative correlation within Chart, which tends to
have a weak positive correlation overall. Overall the mutation-
based APFDc metric is more strongly coupled to real faults
than APFD, corroborating results from RQ2.

Intuitively, our findings suggest that the characteristics of a

TABLE VI
RESULTS FOR THE KENDALL τb RANK CORRELATION COEFFICIENT BETWEEN APFD(C) VALUES FOR TCP TECHNIQUES ON DETECTING REAL FAULTS

AND DETECTING EACH TYPE OF MUTATION FAULTS.
Mutation Faults Chart Lang Math Time Closure Mean

APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc APFD APFDc
NegateConditionals 0.357 0.857 -0.143 0.143 0.429 0.571 -0.214 0.286 0.643 0.643 0.214 0.500
RemoveConditional 0.5 0.857 -0.143 0.143 0.429 0.571 -0.214 0.286 0.643 0.643 0.243 0.500

ConstructorCall -0.143 0.714 0 0.286 0.5 0.714 -0.214 0.071 0.714 0.5 0.171 0.457
NonVoidMethodCall 0.214 0.786 0 0.286 0.357 0.5 -0.214 0.286 0.714 0.5 0.214 0.471

Math 0.286 0.714 -0.286 0.286 0.286 0.5 -0.071 -0.071 0.786 0.643 0.200 0.414
MemberVariable 0.214 0.929 -0.786 0.357 0.429 0.5 0.286 0.357 0.5 0.357 0.129 0.500
InlineConstant 0.286 0.929 -0.143 0.286 0.429 0.429 0 0.071 0.786 0.571 0.272 0.456

Increments 0.214 0.714 -0.214 0.143 0.286 0.571 0 0 0.786 0.714 0.214 0.428
ArgumentPropagation 0.143 0.857 0 0.214 0.357 0.286 -0.429 0.286 0.643 0.643 0.143 0.457
ConditionalsBoundary 0.357 0.786 -0.071 0.286 0.429 0.643 0.071 0.214 0.714 0.571 0.300 0.500

Switch 0.214 0.714 -0.214 -0.071 0.429 0.357 -0.214 0.214 0.786 0.429 0.200 0.329
VoidMethodCall -0.143 0.714 -0.214 0.071 0.214 0.571 -0.357 0.357 0.857 0.643 0.071 0.471

InvertNegs 0.357 0.857 0.143 0.071 0.143 0.5 -0.214 0 0.714 0.714 0.229 0.428
ReturnVals 0.357 0.857 -0.429 0.357 0.357 0.714 -0.214 0.286 0.786 0.571 0.171 0.557

RemoveIncrements 0.214 0.786 -0.143 0.071 0.429 0.429 0.143 0.071 0.714 0.714 0.271 0.414

program may influence how representative mutation-analysis
based TCP performance would be in terms of real faults.
Therefore, we examined some of the bug fixing commits for
a subject program that showed a strong correlation (Closure)
and for a program that showed negative correlation (Lang).
When looking into the fixing commits of these two subject
programs, we found that Closure, being a compiler, trends
heavily toward complex control flows managed by condition-
als, compared to Lang, which trends more towards string
and array manipulation. Two illustrative examples of bug
fixes are shown in Figure 2. The first example for Closure
(i.e., Figure 2(a)) shows that developers fixed this bug by
simply modifying conditionals. In particular, the bug shown
in Figure 2(a) is exactly the same as one of the PIT mutation
operators, i.e., the NonVoidMethodCall mutator. Bug fixing
in Lang mostly involved other more complex changes such as
adding exception handlers due to the nature of its domain (see
Figure 2(b)). This investigation suggests that TCP performance
correlations between real faults and mutants is low when
seeded mutants do not properly reflect faults occurring in a
given domain or a program.

V. THREATS TO VALIDITY

Threats to Internal Validity concern potential confounding
factors of the experiments that might introduce observed
effects. One such factor is represented by faults that were
seeded into the programs. We chose PIT to perform mutation
analysis, which contains different operators compared to other
mutation tools, such as Major [48]. While PIT features many
operators common across other tools, it is possible that dif-
ferent mutation tools might have led to different observations.
We leave exploration of additional tools as future work.

Internal validity threats also arise due to the assumptions
made about the validity of the coupling between mutants and
real faults obtained from Just et al. [35]. This is because
mutants seeded in the same code where the fault occurred
may differ from the real fault, hence leading to possible
mis-classifications. Future research could further examine the
affects of such coupling relationships to mitigate this threat.

Another potential confounding factor is the fact the studied
test suites are written by developers. However, these test

suites have been shown by prior work [35] to generally be of
high quality, exhibiting high coverage, mitigating this threat.
Additionally, threats may arise due to the utilization of the
same test suite between program versions containing real faults
and the latest program version (to which mutants were seeded).
However, previous studies illustrate that the performance of
mutation-based TCP techniques tend to be similar across
different program versions for the same test suite [30], [45].
Threats to Construct Validity concern the relation between
experimental theory/constructs, and potential effects on ob-
served results. As explained in Section III-C, in the context
of this study we re-implemented all of the TCP techniques
following the approach descriptions in their respective papers.
Our re-implementations may differ slightly from the original
versions. However, we closely followed the methodology of
the previous work, and three authors and one external TCP
expert reviewed the code to ensure a reliable implementa-
tion. Executing the studied TCP techniques on all of the
program versions was time-consuming, totaling more than five
months of computation time. To make the GA-based technique
tractable we reduced the maximum number of generations to
50. Also, to allow for a fair comparison, we used the same
GA settings for both real faults and mutants.
Threats to External Validity. We limited our focus to
eight TCP techniques, which require only source code, test
code, and coverage information to perform prioritization.
These eight TCP techniques are well-understood and widely
used/studied in recent research work [45], [46], and since we
aimed to understand how techniques differed from previous
studies when applied to real faults, this set of techniques is
suitable. We encourage researchers to extend this study to
additional TCP approaches and technique configurations.

In order to provide a rigorous experimental procedure, we
applied mutation analysis to TCP techniques in particular
experimental settings discussed in Sec. III-B and III-C. Thus,
it is possible that these results may differ for other TCP eval-
uation methodologies. However, we chose the experimental
methodology set forth in this paper due to the fact that it has
been widely used in previous studies [29], [42], [45], [46],
[50], [77] and is likely to be used in the future.

We use the Defects4J dataset to understand the effective-

APFD APFDc

NC RI

0.6

0.8

1.0

RC CC NVM ICMVM I AP CB S VMC IN RV

Fig. 3. Average APFD(c) values across different operators: NC = NegateConditional, RC = RemoveConditional, CC = ConstructorCall,
NVM = NonVoidMethodCall, M = Math, MV = MemberVariable, IC = InlineConstant, I = Increments, AP = ArgumentPropagation, CB =
ConditionalsBoundary, S = Switch, VMC = VoidMethodCall, IN = InvertNegs, RV = ReturnVals, and RI = RemoveIncrements.

ness of TCP techniques in terms of real-fault detection. It
is possible that there are different types of faults (varying
in complexity) in other subject programs written in other
program languages compared to those in Defects4J. However,
Defect4J is one of the largest and most studied [34], [35],
[63] publicly available databases of real faults, containing 357
faults extracted from real-world software systems.

We utilize Pit [57] and hence our results are representative
of a certain set of mutants. While Pit utilizes many of the same
standard operators as other tools, this study could be expanded
in the future to consider additional mutation testing tools.

VI. LESSONS LEARNED

In this section we summarize the pertinent findings of our
study into discrete learned lessons and discuss their potential
impact on future work in the TCP area.
Lesson 1: Relative Performance of TCP techniques on mutants
may not indicate similar relative performance on real faults,
depending on the subject program. Our study indicates that,
for the subject programs studied, the relative performance of
TCP techniques (following the popular methodology utilized
in our experiments) is not similar between mutants and real
faults. This indicates that a technique which outperformed
competing techniques under the experimental setting of mu-
tation analysis may not outperform competing techniques on
real faults. This highlights a potential threat to validity for
mutation-based assessments of TCP approaches, impacting
the generalizability of TCP performance comparisons to real
program faults. Future work should proceed in two directions.
First, techniques for carefully selecting mutants should be
pursued (see Lesson 3). Second, there is a clear need for
comprehensive datasets of real faults, such as Defects4J, in
order to more thoroughly evaluate TCP approaches. Therefore,
researchers should focus on developing reliable automated or
semi-automated techniques to extract and isolate real faults
from existing open source software projects, which clearly
calls for a community-wide effort.
Lesson 2: The metrics utilized in mutation-based evaluations
of TCP techniques impact the representativeness of perfor-
mance on real faults. We found that mutation-based APFD val-
ues generally exhibit only a weak positive correlation to APFD
values calculated in terms of real fault discovery, whereas
for APFDc this correlation was medium to strong. However,
such results varied across subjects programs. This is important
as it signals that when considering the extremely popular
APFD metric, mutation-based performance of a particular TCP
technique may be independent of its performance on real
faults. This means that, depending on the subject program, one

may not be able to rely upon mutation-based APFD to predict
the practical performance of TCP technique on real faults.
While one could use the more strongly correlated APFDc
metric, researchers may not always want to include execution
cost in their performance evaluation.
Lesson 3: The types of mutation operators utilized for TCP
performance evaluations must be carefully selected or derived
in order for the results to be representative of performance
on real faults. Our results indicate that correlations in TCP
performance between mutants and real faults vary both across
subject programs and across different types of mutation op-
erators within a specific subject program. This suggests that
different characteristics of subject programs most likely play a
role in determining the representativeness of certain mutation
operators for a particular subject (or domain). This is actually
a positive outcome when considering the future applicability
of mutation testing to TCP evaluations, as it shows that under
the right circumstances mutation-based TCP can, in fact, be
realistic. However, in order to properly achieve the “correct
circumstances” for mutation operators to be applied, further
research needs to be conducted. This specifically illustrates
the need for the following interconnected research threads: (i)
deriving, either manually or automatically, fault models for
specific software systems or domains; (ii) developing tailored
mutation operators based on such fault models; and (iii)
seeding mutants using rigorous statistical methods according
to observed distributions of faults. If thoroughly pursued, we
believe that research efforts directed toward these goals will
provide for future tools capable of generating mutants that are
more representative of real faults, not only in for TCP, but also
in other areas of software testing.

VII. CONCLUSION

In this work we conducted the first empirical study in-
vestigating the extent to which mutation-based evaluations of
TCP approaches are realistic. We examined the performance,
in terms of both the APFD and APFDc metrics, of eight
different TCP approaches applied to a dataset of 357 real
world faults from the Defects4J dataset and a set of over
35k mutants. Our results indicate that typical mutation-based
evaluations of TCP techniques tend to overestimate absolute
performance on real faults. Furthermore, for the APFD metric,
relative performance on mutants may not be representative of
relative performance on real faults, depending upon mutant
and program characteristics. These findings highlight the need
for future work on deriving mutation operators tailored toward
specific subject programs or domains, driving mutation-based
TCP evaluations toward being more realistic.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In 27th International Conference on Soft-
ware Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri,
USA, pages 402–411, 2005.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
mutation analysis for assessing and comparing testing coverage criteria.
IEEE Trans. Software Eng., 32(8):608–624, 2006.

[3] M. J. Arafeen and H. Do. Test case prioritization using requirements
based clustering. In Proc. IEEE International Conference on Software
Testing, Verification, and Validation, ICST 2013, pages 312–321, 2013.

[4] ASM. http://asm.ow2.org/.
[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation.

The Journal of Machine Learning Research, 3:993–1022, 2003.
[6] B. Busjaeger and T. Xie. Learning for test prioritization: An industrial

case study. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016,
pages 975–980, New York, NY, USA, 2016. ACM.

[7] C. Catal and D. Mishra. Test case prioritization: a systematic mapping
study. Software Quality Journal, 21(3):445–478, 2013.

[8] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman. An empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption. In Proceedings of the
39th International Conference on Software Engineering, ICSE ’17, pages
597–608, Piscataway, NJ, USA, 2017. IEEE Press.

[9] T. H. Chen. Studying Software Quality Using Topic Models. PhD thesis,
2013.

[10] T. Y. Chen, H. Leung, and I. Mak. Adaptive random testing. In Advances
in Computer Science-ASIAN 2004. Higher-Level Decision Making, pages
320–329. Springer, 2004.

[11] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev. Crane:
Failure prediction, change analysis and test prioritization in practice
– experiences from windows. In Proceedings of the 2011 Fourth
IEEE International Conference on Software Testing, Verification and
Validation, ICST ’11, pages 357–366, 2011.

[12] M. Daran and P. Thévenod-Fosse. Software error analysis: A real case
study involving real faults and mutations. In Proceedings of the 1996
International Symposium on Software Testing and Analysis, ISSTA 1996,
San Diego, CA, USA, January 8-10, 1996, pages 158–171, 1996.

[13] N. Dini, A. Sullivan, M. Gligoric, and G. Rothermel. The effect of
test suite type on regression test selection. In Software Reliability
Engineering (ISSRE), 2016 IEEE 27th International Symposium on,
pages 47–58. IEEE, 2016.

[14] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An empirical study
of the effect of time constraints on the cost-benefits of regression testing.
In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA,
November 9-14, 2008, pages 71–82, 2008.

[15] H. Do and G. Rothermel. A controlled experiment assessing test case
prioritization techniques via mutation faults. In 21st IEEE International
Conference on Software Maintenance (ICSM 2005), 25-30 September
2005, Budapest, Hungary, pages 411–420, 2005.

[16] H. Do and G. Rothermel. An empirical study of regression testing
techniques incorporating context and lifetime factors and improved cost-
benefit models. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2006, Port-
land, Oregon, USA, November 5-11, 2006, pages 141–151, 2006.

[17] H. Do and G. Rothermel. On the use of mutation faults in empirical
assessments of test case prioritization techniques. IEEE Trans. Software
Eng., 32(9):733–752, 2006.

[18] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case
prioritization in a junit testing environment. In 15th International
Symposium on Software Reliability Engineering (ISSRE 2004), 2-5
November 2004, Saint-Malo, Bretagne, France, pages 113–124, 2004.

[19] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S. Kanduri.
Understanding the effects of changes on the cost-effectiveness of regres-
sion testing techniques. Software testing, verification and reliability,
13(2):65–83, 2003.

[20] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying
test costs and fault severities into test case prioritization. In Proceedings
of the 23rd International Conference on Software Engineering, ICSE
’01, pages 329–338, Washington, DC, USA, 2001. IEEE Computer
Society.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case priori-
tization: A family of empirical studies. IEEE Trans. Software Eng.,
28(2):159–182, 2002.

[22] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting
a cost-effective test case prioritization technique. Software Quality
Journal, 12(3):185–210, 2004.

[23] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing
test cases for regression testing. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA 2000, Portland,
OR, USA, August 21-24, 2000, pages 102–112, 2000.

[24] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke. Empirical
evaluation of pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages 234–245, New York,
NY, USA, 2015. ACM.

[25] E. S. Foundation. Eclipse jdt http://www.eclipse.org/jdt/, 2017.
[26] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and

D. Marinov. Comparing non-adequate test suites using coverage criteria.
In Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013, pages 302–313, New York, NY, USA, 2013.
ACM.

[27] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they
to real faults? In Proceedings of the 2014 IEEE 25th International
Symposium on Software Reliability Engineering, ISSRE ’14, pages 189–
200, Washington, DC, USA, 2014. IEEE Computer Society.

[28] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph con-
struction in object-oriented languages. In Proceedings of the 12th
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’97, pages 108–124, New York,
NY, USA, 1997. ACM.

[29] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei. A unified
test case prioritization approach. ACM Trans. Softw. Eng. Methodol.,
24(2):10:1–10:31, 2014.

[30] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon. Compar-
ing white-box and black-box test prioritization. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
New York, NY, USA, 2016. ACM.

[31] M. M. Islam, A. Marchetto, A. Susi, and G. Scanniello. A multi-
objective technique to prioritize test cases based on latent semantic
indexing. In 2012 16th European Conference on Software Maintenance
and Reengineering (CSMR), pages 21–30, 2012.

[32] B. Jiang and W. Chan. Bypassing code coverage approximation
limitations via effective input-based randomized test case prioritization.
In Proc. IEEE International Conference on Computers, Software and
Applications, COMPSAC 2013, pages 190–199, 2013.

[33] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive random
test case prioritization. In ACM/IEEE International Conference on
Automated Software Engineering, ASE 2009, pages 257–266, 2009.

[34] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 437–440, New York, NY, USA, 2014.
ACM.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 654–665, New
York, NY, USA, 2014. ACM.

[36] G. M. Kapfhammer and M. L. Soffa. Using coverage effectiveness to
evaluate test suite prioritizations. In Proceedings of the 1st ACM interna-
tional workshop on Empirical assessment of software engineering lan-
guages and technologies: held in conjunction with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE)
2007, pages 19–20. ACM, 2007.

[37] J. Kasurinen, O. Taipale, and K. Smolander. Test case selection
and prioritization: Risk-based or design-based? In Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, page 10. ACM, 2010.

[38] R. Kavitha and N. Sureshkumar. Test case prioritization for regression
testing based on severity of fault. International Journal on Computer
Science and Engineering, 2(5):1462–1466, 2010.

[39] M. Kendall. A new measure of rank correlation. 1938.
[40] M. G. Kendall. A new measure of rank correlation. Biometrika,

30(1/2):81–93, 1938.

http://www.eclipse.org/jdt/

[41] B. Korel, L. H. Tahat, and M. Harman. Test prioritization using system
models. In Software Maintenance, 2005. ICSM’05. Proceedings of the
21st IEEE International Conference on, pages 559–568, Sept 2005.

[42] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. Prioritizing test
cases with string distances. Automated Software Engineering, 19(1):65–
95, 2012.

[43] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression test
case prioritisation. IEEE Trans. Software Eng., 33(4):225–237, 2007.

[44] J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization:
Continuous prioritization for continuous integration. In Proceedings of
the 40th International Conference on Software Engineering, page to
appear, 2018.

[45] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang.
How does regression test prioritization perform in real-world software
evolution? In In Proc. of the ACM/IEEE International Conference on
Software Engineering, ICSE’16, 2016.

[46] Q. Luo, K. Moran, and D. Poshyvanyk. A large-scale empirical
comparison of static and dynamic test case prioritization techniques. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 559–570,
New York, NY, USA, 2016. ACM.

[47] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta. Online appendix.
http://www.cs.wm.edu/semeru/data/ICSME18-TCP-Study/.

[48] Major. http://mutation-testing.org/.
[49] Mallet. http://mallet.cs.umass.edu/.
[50] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A

static approach to prioritizing junit test cases. IEEE Trans. Softw. Eng.,
38(6):1258–1275, Nov. 2012.

[51] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino. Fast
approaches to scalable similarity-based test case prioritization. In Pro-
ceedings of the 40th International Conference on Software Engineering,
page to appear, 2018.

[52] R. Nelson. Kendall tau metric. Encyclopedia of Mathematics, 2011.
[53] C. D. Nguyen, A. Marchetto, and P. Tonella. Test case prioritization

for audit testing of evolving web services using information retrieval
techniques. In Proc. ICWS, pages 636–643, 2011.

[54] M. Papadakis, S. Donghawn, S. Yoo, and B. Doo-Hwan. An empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, page
to appear, Piscataway, NJ, USA, 2018. IEEE Press.

[55] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon. Threats
to the validity of mutation-based test assessment. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 354–365, New York, NY, USA, 2016. ACM.

[56] M. Papadakis, C. Henard, and Y. L. Traon. Sampling program inputs
with mutation analysis: Going beyond combinatorial interaction testing.
In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ICST ’14, pages 1–10, Washington,
DC, USA, 2014. IEEE Computer Society.

[57] PIT. http://pitest.org/.
[58] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression

testing: an empirical study of sampling and prioritization. In Proceedings
of the 2008 international symposium on Software testing and analysis,
pages 75–86. ACM, 2008.

[59] G. Report. http://google-engtools.blogspot.com/2011/06/testing-at-
speed-and-scale-of-google.html.

[60] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case
prioritization: an empirical study. In IEEE International Conference on
Software Maintenance, ICSM 1999, pages 179–188, 1999.

[61] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Trans. Software Eng., 27(10):929–
948, 2001.

[62] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information
retrieval approach for regression test prioritization based on program
changes. In Proc. of the ACM/IEEE International Conference on
Software Engineering, ICSE’15, 2015.

[63] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on, pages 201–
211. IEEE, 2015.

[64] A. M. Smith and G. M. Kapfhammer. An empirical study of incorpo-
rating cost into test suite reduction and prioritization. In Proceedings
of the 2009 ACM symposium on Applied Computing, pages 461–467.
ACM, 2009.

[65] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In ISSTA, pages 97–106, 2002.

[66] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test
case prioritization using topic models. Empirical Software Engineering
Journal, EMSE, 19(1):182–212, 2014.

[67] P. Tonella, P. Avesani, and A. Susi. Using the case-based ranking
methodology for test case prioritization. In IEEE International Con-
ference on Software Maintenance, ICSM 2009, pages 123–133, 2006.

[68] J. Tukey. Comparing individual means in the analysis of variance.
Biometrics, 5(2):99–114, 1949.

[69] S. Varun Kumar and M. Kumar. Test case prioritization using fault
severity. IJCST, 1(1), 2010.

[70] WALA. https://github.com/wala/WALA.
[71] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time

aware test suite prioritization. In ISSTA, pages 1–11, 2006.
[72] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen.

Multi-objective test prioritization in software product line testing: An
industrial case study. In Proceedings of the 18th International Software
Product Line Conference - Volume 1, SPLC ’14, pages 32–41, New
York, NY, USA, 2014. ACM.

[73] S. Wang, J. Nam, and L. Tan. QTEP: quality-aware test case prioritiza-
tion. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, Septem-
ber 4-8, 2017, pages 523–534, 2017.

[74] D. Xu and J. Ding. Prioritizing state-based aspect tests. In Proc.
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2010, pages 265–274, 2010.

[75] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Softw. Test., Verif. Reliab., 22(2):67–120, 2012.

[76] D. You, Z. Chen, B. Xu, B. Luo, and C. Zhang. An empirical study
on the effectiveness of time-aware test case prioritization techniques. In
Proceedings of the 2011 ACM Symposium on Applied Computing, pages
1451–1456. ACM, 2011.

[77] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based
and random mutant selection: Better together. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 92–102. IEEE, 2013.

[78] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the
gap between the total and additional test-case prioritization strategies.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 192–201, 2013.

[79] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing pro-
gram edits based on spectrum information. In 27th IEEE International
Conference on Software Maintenance, ICSM 2011, pages 23–32. IEEE,
2011.

[80] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei. Prioritizing JUnit
test cases in absence of coverage information. In IEEE International
Conference on Software Maintenance, ICSM 2009, pages 19–28, 2009.

	I Introduction
	II Background & Related Work
	II-A TCP Problem Formulation
	II-B Studied TCP Techniques
	II-C Threats to the Validity of Mutation-Based TCP Performance Evaluations
	II-D Studies Examining the Relationship Between Mutants and Real Faults

	III Empirical Study
	III-A Research Questions (RQs):
	III-B Study Context
	III-C Methodology
	III-C1 RQ1: TCP Effectiveness on Real Faults
	III-C2 RQ2: Representativeness of Mutants
	III-C3 RQ3: Effects of Fault Properties

	III-D Experiment Tools and Hardware

	IV Results
	IV-A RQ1: TCP Effectiveness on Real Faults
	IV-B RQ2: Representativeness of Mutants
	IV-C RQ3: Effects of Fault Properties
	IV-C1 Effects of Coupling Between Mutants and Real Faults
	IV-C2 Effects of Different Mutation Operators

	V Threats to Validity
	VI Lessons Learned
	VII Conclusion
	References

