
On Learning Meaningful Assert Statements for Unit Test Cases
Cody Watson

Washington and Lee University
Lexington, Virginia
cwatson@wlu.edu

Michele Tufano
Microsoft

Redmond, Washington
michele.tufano@microsoft.com

Kevin Moran
William & Mary

Williamsburg, Virginia
kpmoran@cs.wm.edu

Gabriele Bavota
Università della Svizzera italiana (USI)

Lugano, Switzerland
gabriele.bavota@usi.ch

Denys Poshyvanyk
William & Mary

Williamsburg, Virginia
denys@cs.wm.edu

Abstract
Software testing is an essential part of the software lifecycle and
requires a substantial amount of time and e�ort. It has been esti-
mated that software developers spend close to 50% of their time on
testing the code they write. For these reasons, a long standing goal
within the research community is to (partially) automate software
testing. While several techniques and tools have been proposed
to automatically generate test methods, recent work has criticized
the quality and usefulness of the assert statements they generate.
Therefore, we employ a Neural Machine Translation (NMT) based
approach called A���� (AuTomatic Learning of Assert Statements)
to automatically generate meaningful assert statements for test
methods. Given a test method and a focal method (i.e., the main
method under test), A���� can predict a meaningful assert state-
ment to assess the correctness of the focal method. We applied
A���� to thousands of test methods from GitHub projects and it
was able to predict the exact assert statement manually written
by developers in 31% of the cases when only considering the top-
1 predicted assert. When considering the top-5 predicted assert
statements, A���� is able to predict exact matches in 50% of the
cases. These promising results hint to the potential usefulness of
our approach as (i) a complement to automatic test case generation
techniques, and (ii) a code completion support for developers, who
can bene�t from the recommended assert statements while writing
test code.
CCS Concepts
• Software Testing → Unit Tests; • Arti�cial Intelligence →
Machine Translation.

ACM Reference Format:
Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys
Poshyvanyk. 2020. On Learning Meaningful Assert Statements for Unit
Test Cases. In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3377811.3380429

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380429

1 Introduction
Writing high-quality software tests is a di�cult and time-consuming
task. To help tame the complexity of testing, ideally, development
teams should follow the prescriptions of the test automation pyra-
mid [8], which suggests �rst writing unit tests that evaluate small,
functionally discrete portions of code to spot speci�c implementa-
tion issues and quickly identify regressions during software evolu-
tion. Despite their usefulness, prior work has illustrated that once
a project reaches a certain complexity, incorporating unit tests re-
quires a substantial e�ort in traceability, decreasing the likelihood
of unit test additions [16]. Further challenges exist for updating
existing unit tests during software evolution and maintenance [16].

To help address these issues the software testing research com-
munity has responded with a wealth of research that aims to help
developers by automatically generating tests [9, 24]. However, re-
cent work has pointed to several limitations of these automation
tools and questioned their ability to adequately meet the software
testing needs of industrial developers [5, 31]. For example, it has
been found that the assert statements generated by state-of-the-art
approaches are often incomplete or lacking the necessary com-
plexity to capture a designated fault. The generation of mean-
ingful assert statements is one of the key challenges in au-
tomatic test case generation. Assert statements provide crucial
logic checks in a test case to ensure that the program is function-
ing properly and producing expected results. However, writing or
generating e�ective assert statements is a complex problem that
requires knowledge pertaining to the purpose of a particular unit
test and the functionality of the related production code. Thus, an
e�ective technique for the generation of assert statements requires
predicting both the type and logical nature of the required check,
using source and test code as contextual clues for prediction.

To help advance techniques that aid developers in writing or
generating unit tests, we designed A����, an approach for auto-
matically generating syntactically and semantically correct unit
test assert statements using Neural Machine Translation (NMT).
A���� generates models trained on large-scale datasets of source
code to accurately predict assert statements within test methods.
We take advantage of the deep learning strategy of NMT, which
has become an important tool for supporting software-related tasks
such as bug-�xing [7, 12, 20, 36], code changes [35], code migration
[21, 22], code summarization [18, 19, 39], pseudo-code generation
[23], code deobfuscation [13, 38] and mutation analysis [37]. To
the best of our knowledge, this is the �rst empirical step toward

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

evaluating an NMT-based approach for the automatic generation of
assert statements. Speci�cally, we embed a test method along with
the context of its focal method [29] (i.e., a declared method, within
the production code, whose functionality is tested by a particular
assert statement) and we "translate" this input into an appropriate
assert statement. Since our model only requires the test method
and the focal method, we are able to aid developers in automatic
assert generation even if the project su�ers from a lack of initial
testing infrastructure. Note that our approach is not an alternative
to automatic test case generation techniques [9, 24], but rather,
a complementary technique that can be combined with them to
improve their e�ectiveness. In other words, the automatic test case
generation tools can be used to create the test method and our
approach can help in de�ning a meaningful assert statement for it.

To train A����, we mined GitHub for every Java project making
use of the JUnit assert class. In total we analyzed over 9k projects to
extract 2,502,623 examples of developer-written assert statements
being used within test methods. This data was used to give the
NMT model the ability to generate assert statements that closely
resemble those created by developers. Therefore, not only do we
enable e�ciency within the software testing phase but we also facil-
itate accuracy and naturalness by learning from manually written
assert statements. After we extracted the pertinent test methods
containing assert statements from the Java projects, we automati-
cally identi�ed the focal method for each assert statement based on
the intuition from Qusef et al. [29]. We hypothesize that combining
the test method and the focal method should provide the model
with enough context to automatically generate meaningful asserts.

We then quantitatively and qualitatively evaluated our NMT
model to validate its usefulness for developers. For our quantitative
analysis, we compared the models generated assert statements with
the oracle assert statements manually written by developers. We
considered the model successful if it was able to predict an assert
statement which is identical to the developer-written one. Our
results indicate that A���� is able to automatically generate asserts
that are identical to the ones manually written by developers in
31.42% of cases (4,968 perfectly predicted assert statements) when
only considering the top-1 predicted assert. When looking at the
top-5 recommendations, this percentage rises to 49.69% (7,857).

For our qualitative analysis we analyzed “imperfect predictions”
(i.e., predictions which can di�er semantically or syntactically as
compared to the assert manually written by developers) to under-
stand whether they could be considered an acceptable alternative to
the original assert. We found this to be true in the 10% of cases we
analyzed. Finally, we computed the edit distance between the im-
perfect predictions and original asserts in order to assess the e�ort
required for a developer to adapt a recommended assert statement
into one she would use. We show that slight changes to the “imper-
fect” asserts can easily convert them into a useful recommendation.
To summarize, this paper provides the following contributions:

• We introduce A����, a NMT-based approach for automati-
cally generating assert statements. We provide details per-
taining to the mining, synthesizing, and pre-processing tech-
niques to extract test methods from the wild, and to train
and test A����;

• An empirical analysis of A���� and its ability to use NMT to
accurately generate a semantically and syntactically correct
assert statement for a given test method;

• A quantitative evaluation of the model, and a detailed com-
parison between modeling raw and abstracted test methods;

• A publicly available replication package [4] containing the
source code, model, tools and datasets discussed in this paper.

2 Related Work & Motivation
While several automated tools such as Evosuite [10], Randoop [24]
and Agitar [3] have been proposed to automatically generate test
methods, these tools embed their own methods for synthesizing
assert statements. Evosuite, one of the most popular automated
test generation tools, uses a mutation-based system to generate
appropriate assert statements. In particular, it introduces mutants
into the software and attempts to generate assert statements able
to kill these mutants. Evosuite also tries to minimize the number of
asserts while still maximizing the the number of killed mutants [10].

Randoop is another automated test generation tool that cre-
ates assertions with intelligent guessing. This technique applies
feedback-directed random testing by analyzing execution traces of
the statement it creates. Essentially, a list of contracts, or pieces of
logic that the code must follow, are used to guide the generation
of assert statements. These contracts are very similar to user de-
�ned assert statements. However, the contracts only provide the
logic. The Randoop program creates a syntactically correct assert
statement that tests the user’s provided logic pertaining to the test
method. Di�erently from Evosuite and Randoop, A���� applies
a deep learning-based approach, with the goal of mimicking the
behavior of expert developers when writing assert statements.

Recent research has evaluated the ability of state-of-the-art au-
tomated techniques for test generation to capture real faults [5, 31].
The recent study conducted by Shamshiri et al. [31] highlights the
importance of high-quality, complex assert statements when detect-
ing real faults. The authors compare the abilities of both exceptions
and asserts as fault �nding mechanisms. They note that three auto-
mated approaches (Evosuite, Randoop, Agitar) detect more faults
through the use of an assert statement, however, insu�ciencies in
the automatically generated asserts led to many bugs going unde-
tected [31]. Thus, this work makes two important conclusions: (i)
assert statements are an important component of automated test
case generation techniques, as they are the main vehicle through
which faults are detected; (ii) the current quality of assert state-
ments generated by automated testing techniques are often not of
high enough quality to detect real faults.

A complimentary study, performed by Almasi et al. [5], tested
Evosuite and Randoop’s ability to detect 25 real faults in an indus-
trial software system. The study found that Evosuite was able to
detect 56.4% and Randoop was able to detect 38.0% of the faults
within that system. Of particular note was the author’s qualitative
evaluation, which showed that nearly half of the undetected faults
could have been detected with a more appropriate assert statement.
Additionally, the authors solicited feedback from developers, asking
"How can the generated tests be improved?". The general consen-
sus among the respondents was that automated testing strategies
failed to generate meaningful assert statements. The authors also

On Learning Meaningful Assert Statements for Unit Test Cases ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

GitHub

Test
Methods

Datasets

Mine JUnit
test methods

2

1
Spoon
Framework

Focal
Methods

Create Test
Method
Context

3

Filtering

4

Abstraction

5

Raw Source
Code

Abstract
Code

RNNs (Encoder-Decoder)

CopyA

ht

xt

A

ht

xt

A!n.A

ht

xt

A

ht

xt

6 7

Figure 1: Overview of ATLAS Work�ow

presented hand-written test methods to developers for comparison,
and they commented that "the assertions are meaningful and useful
unlike the generated ones". These �ndings demonstrate a clear
need for automated techniques that generate meaningful assert
statements to complement existing test generation approaches.

One of the limitations that tools such as Evosuite, Randoop and
Agitar have is that they rely on heuristics or "intelligent" random-
ness in order to generate assert statements. This type of generation
does not take into account the learn-able components of test and
focal methods, and thus leads to more simplistic asserts. Therefore,
we leverage a NMT-based DL technique to generate asserts that can
test the complexities contained within the context of the test and
focal method. This strategy results in an assert which possesses the
ability to accurately evaluate the logic of the focal method, leading
to more useful unit tests and a higher quality test suite.

3 ATLAS: Learning Asserts via NMT
We provide an overview of the A���� work�ow for learning assert
statements via NMT in Fig. 1. Our approach begins with the mining
and extraction of test methods from Java projects. To do this, we
mine GitHub projects that use the JUnit testing framework (Sec.
3.1). From those projects, we mine all test methods denoted with
the @Test annotation as well as every declared method within the
project (Sec. 3.2). We then �lter this data, identify the appropriate
focal method context, and generate pairs containing the contextual
test method (i.e., the test method augmented with information about
the focal method it tests) and the relevant assert statement (Sec. 3.3
& Sec. 3.4). We refer to these pairs as Test-Assert Pairs (TAPs). Next,
we generate two datasets of TAPs: (i) Raw Source Code, where
TAPs are simply tokenized; (ii) Abstract Code, where we abstract
the TAPs through our abstraction process (Sec. 3.5). Finally, we train
two RNN encoder-decoder models; one using the copy mechanism
trained on the Raw Source Code TAPs, and another using only the
attention mechanism trained on the Abstract Code TAPs (Sec. 3.6).

3.1 GitHub Mining
Our main motivation toward studying Java projects that use the
JUnit framework is applicability. As of August 2019 the TIOBE
Programming Community Index indicated Java as the most popular

programming language [2]. In addition, a study done by Oracle
in 2018, found that JUnit was the most popular Java library [28].
Hence, curating a dataset of projects that use Java and JUnit lends
to the potential for impact on real-world software development.

We identi�ed GitHub projects using the JUnit testing frame-
work. Since client projects can use JUnit by declaring a dependency
through Apache Maven [1], we started by using the GitHub search
API to identify all Java projects in GitHub having at least one pom
�le needed to declare dependencies toward Maven libraries. This
resulted in the identi�cation of 17,659 client projects, using 118,626
pom �les and declaring ⇠1.1M dependencies in total. We down-
loaded all the identi�ed pom �les and mined them to identify all
client projects declaring a dependency toward JUnit version 4 and
all its minor releases. These dependencies can be easily identi�ed
by looking in the pom �le for artifacts having the junit groupId,
junit artifactId, and a version starting with “4.”. Using this process,
we collected a total of 9,275 projects. Note that we decided to focus
on JUnit v.4 since, in the mined dataset of pom �les, we found that
the majority of them had a dependency towards this version.

3.2 Method Extraction
After mining these projects fromGitHub, we downloaded the source
code and extracted the relevant test methods using Spoon [26]. This
framework allows for source code analysis through the creation
of a meta-model where the user can access program elements. To
access relevant methods, we extract methods beginning with the
@Test annotation, which is inherent to the JUnit framework. After
extracting the test methods, we extract every method declared
within the project, excludingmethods from third party libraries. The
extracted methods comprise a pool, from which we can determine
the focal method of interest for a particular test method. The reason
we only consider methods declared within the project is two-fold.
First, most assert statements are evaluating the internal information
of the project itself rather than information taken from third party
libraries or external packages. Second, it would require a substantial
e�ort to retrieve the method bodies and signatures from all the
third party libraries and external packages. Since our goal is to learn
appropriate assert statements for a given testmethod and its context,
any test method without an assert statement has been discarded.
Also, since this is the �rst work in the literature applying NMT to
automatically generate assert statements, we decided to focus on
test methods having a single assert statement and, thus, we exclude
those implementing multiple asserts. While we acknowledge that
this is a simpli�cation of the problem we tackle, we preferred to
�rst investigate the “potential” usefulness of NMT in a well-de�ned
scenario in which, for example, it is safe to assume that the whole
test method provides contextual information for the unique assert
statement it contains. This assumption is not valid in the case of
multiple asserts, and instead requires the development of techniques
which are able to link parts of the test method body to the di�erent
asserts in order to understand the relevant context for each of them.
This is part of our future work. Overall, we collected 188,154 test
methods with a single assert statement.

3.3 Identifying Focal Methods
Our next task is to identify the focal method that the assert state-
ment, within the test method, is testing. To accomplish this we

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

implement a heuristic inspired by Qusef et al. [29]. We begin by
extracting every method called within the test method. The list of
invoked methods is then queried against the previously extracted
list of methods de�ned inside the project, considering the complete
method signature. We then assume that the last method call before
the assert is the focal method of the assert statement [29]. In some
instances, the assert statement contains the method call within its
parameters. In these cases, we consider the method call within the
assertion parameters as the focal method. It may appear problem-
atic that we use the line we attempt to predict in order to extract the
focal method (since, in theory, the line to generate should not exist).
However, in a real usage scenario, we assume that the developer can
provide the focal method to our model (i.e., she knows the method
she wants to test). Since identifying the focal method manually for
a large number of assert statements is unreasonable, we used the
heuristic previously described in place of manual identi�cation of
the focal method. We note this as a limitation but �nd it reasonable
that either a developer or an automated test generation strategy
would provide this information to our approach.

3.4 Filtering
In this work, we are attempting to generate semantically and syn-
tactically correct assert statements from the test method and focal
method context. Thus, we are creating a model which must learn
relationships from source code. Modeling this type of data presents
certain challenges, such as the open vocabulary problem and the
“length of the input” problem [17]. Usually, these problems are
tackled by limiting the vocabulary and the input length so that
the model can adequately learn [32]. We employ similar solutions
when training our model. We �lter the data in three distinct ways:
i) excluding test methods longer than 1,000 tokens; ii) �ltering test
methods that contain an assert statement which requires the syn-
thesis of unknown tokens; and iii) removing duplicate examples
within the dataset. Every �ltering step helps to address NMT-related
challenges and have been used in previous approaches that take
advantage of this deep learning based strategy [7, 17, 36].

Our �rst �ltering step is fairly straightforward: we remove all
test methods that exceed 1,000 tokens. The second �ltering step
removes test methods in which the appropriate assert statement
requires the synthesis of one or more unknown tokens. This means
that the syntactically and semantically correct assert statement
requires a token that cannot be found in the vocabulary or in the
contextual method (i.e., test method + focal method). Indeed, there
is no way to synthesize these tokens when the model attempts to
generate a prediction.We further explain this problem as well as our
developed solution in Section 3.4.1. Lastly, our third �ltering step
aims at removing duplicated instances, ensuring that every contex-
tual method and assert statement pair in our dataset is unique.

3.4.1 Vocabulary We have alluded to the open vocabulary problem
which is an inherent limitation of NMT. This issue arises because
developers are not limited in the number of unique tokens they
can use. They are not limited to, for example, English vocabulary,
but also create “new” tokens by combining existing words (e.g., by
using the CamelCase notation) or inventing new words to com-
prise identi�ers (e.g., V0_new). For this reason, the source code
vocabulary frequently needs to be arti�cially truncated. To deal

with this problem, we studied the tokens distribution in our dataset,
observing that it follows Zipf’s law, as also found by previous work
analyzing open source software lexicons [27]. This means that the
dataset’s tokens follow a power-law like distribution with a long
tail, and that many of the TAPs in our dataset can be successfully
represented by only considering a small subset of its 695,433 unique
tokens. Based on analyzing the data and on previous �ndings in the
literature [6], we decided to limit our vocabulary to the 1,000 most
frequent tokens. This allows us to successfully represent all tokens
for 41.5% of the TAPs in our dataset (i.e., 204,317 out of 491,649).

This �ltering step aimed at removing instances for which the
model would need to generate an unknown token. This can be for-
mally de�ned as follows: Given a contextual method (i.e., the test
method tm and the corresponding focal method f m), we remove
TAPs for which the anticipated assert to generate contains a token
t such that t < { V�lobal [Vtm [Vf m }, where V represents the
vocabulary. We refer to Vtm [Vf m as the contextual method. Each
�ltering step was due to concrete limitations of state-of-the-art
NMT models. In numbers, starting from ⇠ 750 thousand test meth-
ods having a single assert, ⇠ 2.5 thousand tests are removed due to
their excessive length, and ⇠ 280 thousand due to unknown tokens.
Thus, ⇠ 37% of the single assert test methods are removed.

3.5 Test-Assert Pairs and Abstraction
The next step of our approach consists of preparing the data in such
a manner that it can be provided as input to A����’s NMT model.
This process involves: i) the concatenation of the focal method to
the test method in order to create the Test-Assert Pair (TAP); ii)
the tokenization of the TAP; and iii) the abstraction of the TAP.
Starting from the �rst point, it is important to note that not every
test method will inherently contain a focal method being tested.
However, for the test methods that do posses a focal method, we
append its signature and body to the end of the test method. While
comments and whitespaces are ignored, we do not remove any
other token from either the test or focal method.We then proceed to
remove the entire assert statement from the test method, replacing
it with the unique token "AssertPlaceHolder". Therefore, the �rst
part of a TAP consists of the concatenated test and focal method,
and the second part consists of the assert statement to generate.

We generate two separate datasets of TAPs. The �rst uses the
raw source code to represent the test and the focal method. The
second dataset consists of abstracted TAPs, in which the source code
tokens are abstracted to limit the vocabulary and to increase the
possibility of observing recurring patterns in the data. As previous
studies have shown [36], this can lead to an increase in performance
without losing the ability to automatically map back the abstracted
tokens to the raw source code.

Our abstraction process tokenizes the input, determines the type
for each individual token, replaces the raw tokenwith its abstraction
and �nally creates a map from the abstracted tokens back to the raw
ones. Each TAP is abstracted in isolation and has no a�ect on the
way other TAPs are abstracted. We start by using the javalang tool
to tokenize the input, which allows us to analyze the type of token.
This tool transforms the Java method into a stream of tokens, which
is then parsed by the same tool to determine their type (e.g.,whether
a token represents an identi�er, a method declaration, etc.) [33]. We
use these types in order to create an expressive representation that

On Learning Meaningful Assert Statements for Unit Test Cases ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Test method + focal method

Abstracted test method + focal method Abstracted assert statement

Abstracted test method + focal
method with idioms

Abstracted assert
statement with idioms

shouldCreateRedMana () {
 mage.Mana mana = mage.Mana.RedMana (1);
 “<AssertPlaceHolder>” ;
} getRed () { return red ; }

org.junit.Assert.assertEquals(2,
mana.getRed())

METHOD_0 () { IDENT_0.IDENT_1 IDENT_2 OP_0
IDENT_0.IDENT_1.METHOD_1 (INT_0);
STRING_0; } METHOD_3 () { return IDENT_3 ;}

METHOD_0 () { IDENT_0.IDENT_1 IDENT_2 OP_0
IDENT_0.IDENT_1.METHOD_1 (1); STRING_0; }
METHOD_3 () { return IDENT_3 ;}

IDENT_4.IDENT_5.IDENT_6.METHOD_2(INT_1,
 IDENT_2.METHOD_3())

org.junit.Assert.assertEquals(2,
 IDENT_2.METHOD_3())

Assert statement

Learning Process

Figure 2: Overview of the abstraction process

maintains the structure of the code. In total, there are 13 di�erent
types of tokens that we use as part of our abstraction process
(complete list in our replication package [4]). When we encounter
one of these types, we replace the raw source code token with an
abstraction term that indicates the type and number of occurrences
of that type of token up to that moment. In other words, we use
a numerical value to di�erentiate tokens of the same type. For
example, suppose we encounter a token that is determined to be a
method call. This token is replaced with the termMETHOD_0, since
this is the �rst type of that token we have encountered. The next
time we encounter a new method call in the same stream of tokens,
it would be assigned the term METHOD_1. In the event where the
same token appears multiple times within the TAP, it is given the
same abstraction term and numerical value. This means that if the
same method is invoked twice in the test or in the focal method
and it is represented with the term METHOD_0, the abstraction
will contain “METHOD_0” twice. Since all TAPs are abstracted in
isolation, we can reuse these terms when abstracting a new TAP,
thus limiting the vocabulary size for our NMT model.

In addition to the abstraction terms that replace the raw source
code tokens, we take advantage of idioms in order to create an
abstraction that captures more semantic information. The inclusion
of idioms can also help contextualize surrounding tokens, since
some abstracted tokens may be more likely to appear around a
particular idiom. In addition, idioms help to prevent the exclusion
of a TAP due to the synthesis of an unknown token. For instance,
consider the example of abstraction shown in Figure 2. In the middle
of the �gure it is possible to see that INT_1, IDENT_4, IDENT_5
and IDENT_6 only appear in the abstracted assert statement, but do
not appear in the abstracted test and focal method. If we only relied
on the abstraction, we would be unable to resolve these tokens that
are unique to the predicted assert statement. Therefore, we keep
the raw value of common idioms (i.e., the top 1,000 tokens in our
dataset in terms of frequency) in our abstracted representation, as
shown in the bottom part of Figure 2.

Overall, the vocabulary of the Abstract TAPs comprises 1,000
idioms plus ⇠100 typi�ed IDs, while the vocabulary of the Raw
Source Code TAPs contains 1,000 tokens.

3.6 Sequence to Sequence Learning
Our approach applies sequence-to-sequence learning through a
recurrent neural network (RNN) encoder-decoder model to auto-
matically learn assert statements within test methods. This model

h1 h2 hn

RNN Cell
(LSTM)

x1 x2 <end> <start> y1 ym

ci

s1 s2 sm

RNN Cell
(LSTM)

[ci, si]

So!max

test/focal method assert statement

Encoder RNN A"ention Decoder RNN

..

..

..

..

..

..
Copy

Mechanism

Figure 3: The RNN bidirectional encoder decoder model

is inspired by Chen et al. [7], which attempts to predict a single line
of code that has a predetermined place holder within the method.
The goal of this deep learning strategy is to learn a conditional dis-
tribution of a variable length sequence conditioned on a completely
separate variable length sequence P(�1,�2, . . . ,�m |x1, x2, . . . , xn).
Where n andm may di�er. During training, the model’s encoder is
fed the tokenized input sequence of the test method plus the context
of the focal method as a single stream of tokens (x1, . . . , xn). The
assert statement, which is our target output sequence, has been re-
moved and replaced with a specialized token. The decoder attempts
to accurately predict the assert (�1, . . . ,�m) by minimizing the er-
ror between the decoder’s generated assert and the oracle assert
statement. This is accomplished by using the negative log likeli-
hood of the target tokens using stochastic gradient descent [15].
An overview of an RNN encoder-decoder can be seen in Figure 1.

3.7 Encoder
The encoder is a single layer bi-directional RNN, which is com-
prised of two distinct LSTM RNNs. This bidirectionality allows
the encoder to consider both the tokens that come before and the
tokens that come after as context for the token of interest. The
encoder takes a variable length sequence of source code tokens
X = (x1, x2, . . . , xn) as input. From these tokens, the encoder pro-
duces a sequence of hidden states (h1,h2, . . . ,hn) generated from
LSTM RNN cells. These cells perform a series of operations to prop-
agate relevant information, including previous hidden states, to the
next cell. Due to the bidirectionality of the encoder, there exists a
sequence of hidden states when considering the token sequence
from left to right

�!
hi = f (xi ,hi�1) and right to left

 �
hi = f (xi0 ,hi0+1).

For our model, each hidden state can be formally described as the
non-linear activation of the current sequence token and the pre-
viously synthesized hidden state. Once the hidden state for each
directional pass is found, they are concatenated to derive the �-
nalized hidden state hi . The sequence of resulting hidden states is
propagated through the model as the context vector. The encoder
also applies the regularization technique of dropout at a rate of 0.2.

3.8 Attention Mechanism
The context vector C, commonly referred to as an attention mecha-
nism, is computed as a weighted average of the hidden states from
the encoder C = Õn

i=1 �ihi . In this equation � represents a vector
of weights used to denote the in�uence of di�erent parts of the
input sequence. In this manner, the model can pay greater attention

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

Test method + focal method
shouldParseVersion() {subject.parse(“--
version”); “<AssertPlaceHolder>”;}
isPrintVersionMode(){return
printVersionMode;}

org.junit.Assert.assertTrue(subject.
isPrintVersionMode())

Assert statement

Vocabulary

v1

v3

v5

v11

< subject, assertTrue, assert, org>

< Assert,), “--version”, junit >

< parse,), assertEquals, Assert >

< Assert, junit, assert, UNK >

.

.

..

.. ..

..

.

. Copied from
test method

Copied from
vocabulary

Figure 4: Copy Mechanism Example

to particular tokens of the input sequence when attempting to pre-
dict the output token �i . The weights which in�uence the attention
mechanism are trained over time to help identify the patterns of
contribution from di�erent input tokens.

3.9 Decoder and Copy Mechanism
The decoder is a double layer LSTM RNN that learns to take a
�xed length context vector and translates it into a variable length
sequence of output tokens. Given a previous hidden state hî�1, the
previous predicted token �î�1 and the context vector C the decoder
generates a new hidden state that can be used to predict the next
output token. As done for the encoder, we apply regularization
to the decoder by using dropout at a rate of 0.20, and the Adam
optimizer for learning with a starting learning rate of 0.0001:

hî = f (hî�1,�î�1, C)

The decoder generates a new hidden state each time it predicts the
next token in the sequence until a special stop token is reached.
The hidden states are generated using the equation above. However,
these hidden states are also used by the copy mechanism to help
predict the appropriate output token. In particular, the copy mecha-
nism works to calculate two separate probabilities. The �rst, is the
probability that the next predicted token in the output sequence
should be taken from the vocabulary. The second, is the probabil-
ity that the next predicted token in the output sequence should
be copied from the input sequence. With the ability to consider
copying tokens from the input sequence to the output sequence,
we can arti�cially extend the vocabulary of the encoder-decorder
RNN model for the raw dataset. Each sequence inferred from the
model now has the ability to consider any predetermined vocabu-
lary token, in addition to any token from the input sequence. The
downside is that the copy mechanism is a trainable extension of
the model, that learns which input tokens should be copied over.
The bene�t is that the model can better deal with rare tokens that
would otherwise not appear in the vocabulary.

To further demonstrate how the copy mechanism works, con-
sider Figure 4. In this example, we see the vocabulary tokens pre-
dicted for each time step �t . For the purpose of this example we do
not consider the translation of the separator tokens. However, in
a real scenario, our model would predict these tokens in identical
fashion. The �rst predicted token for the output sequence is the org
token, which is copied from the vocabulary. This process is repeated
for the junit token, the Assert token and would continue for all
further tokens but the last one (i.e., isPrintVersionMode). The last
token is not found anywhere in the vocabulary. At time step �11
the model recommends the UNK token to indicate that the highest

probability token does not exist within the de�ned vocabulary. In
this case, the copy mechanism is used to determine which input
token has the highest probability to be the predicted token. In the
case shown in the example, the context appended from the focal
method contains this token and it is copied to the output sequence.
Without the copy mechanism, there would have been no way to
resolve this example and it would have been discarded. It is im-
portant to note that the copy mechanism is trained along with the
network and requires no e�ort on the end users.

Also, note that the copy mechanism is only applied to the raw
dataset of source code tokens. The reasoning is that after abstracting
the source code, all tokens are available within the vocabulary.
Therefore, the probability that a predicted token would be outside
of the vocabulary, and within the input sequence, is 0%, rendering
the copy mechanism useless. Rather, our abstraction process serves
as a pseudo copy mechanism of typi�ed IDs. Consider the previous
example in Figure 2 where isPrintVersionMode was not found
anywhere in the vocabulary. In our abstraction process, this token
is abstracted into METHOD_1 and since METHOD_1 is a term
contained within our vocabulary the model has no problem in
predicting this token in the output assert statement. Then, when
we map the abstracted assert statement back to raw source code, we
replace METHOD_1 with the token isPrintVersionMode without
relying on the copy mechanism.

4 Experimental Design
The goal of our study is to determine if A���� can generate mean-
ingful, syntactically and semantically correct assert statements for
a given test method and focal method context. Additionally, it is
important for our approach to be lightweight in order to require
as little overhead as possible if, for example, it is combined with
approaches for the automatic generation of test cases.

The context of our study is represented by a dataset of 158,096
TAPs for the abstracted dataset and 188,154 TAPs for the raw dataset.
These datasets are further broken down into 126,477 TAPs for train-
ing, 15,809 TAPs for validation, and 15,810 TAPs for testing in the
abstract dataset. Likewise, we had 150,523 TAPs for training, 18,816
TAPs for validation and 18,815 TAPs for testing in our raw dataset.
The di�erences in number of examples between the two datasets is
due exclusively to the removal of duplicates. Since the abstracted
model reuses typi�ed IDs, there is a greater chance for the dupli-
cation of TAPs within the abstracted dataset. Our evaluation aims
at answering the research questions described in the following
paragraphs.

RQ1: Is ATLAS able to generate assert statements resem-
bling thosemanuallywritten be developers?Weassesswhether
A���� is a viable solution for generating semantically and syntacti-
cally correct assert statements. Therefore, we perform experiments
on real-world test methods and determine if our model can pre-
dict the appropriate assert statement. We use both datasets (i.e.,
raw source code and abstracted code) to train the encoder-decoder
recurrent neural network model. During training, we use our vali-
dation set to determine the optimal parameterization of the NMT
model (complete list of used parameters available in [4]). We then
evaluate the trained model on the test set, which contains examples
previously unseen in both the training set and the validation set.

On Learning Meaningful Assert Statements for Unit Test Cases ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

We begin training our model on TAPs, feeding the model the test
method and associated focal method context. We train our model
until the evaluation on the validation set shows that the models
parameterization has reached a (near-)optimal state (i.e., the model
is no longer improving the calculated loss for data points outside
the training set). This is a common practice to prevent the e�ects
of over�tting to the training data. Our training phase results in two
separate models, one for predicting raw source code assert state-
ments and the other for predicting abstracted asserts. Remember
that when working with raw source code, we also implement the
copy mechanism, which is not used for abstracted code. In total, the
abstract model trained for 34 hours while the raw model trained
for 38 hours. The di�erence in training time can be attributed to
the use and training of the copy mechanism in conjunction with
the lack of abstraction.

Once the model is trained, inference is performed using beam
search [30]. The main intuition behind beam search decoding is
that rather than predicting at each time step the token with the
best probability, the decoding process keeps track of k hypotheses
(with k being the beam size). Thus, for a given input (i.e., test
method + focal method), the model will produce k examples of
assert statements. We experiment with beam sizes going from k = 1
to k = 50 at steps of 5.

Given the assert statements predicted by our approach, we con-
sider a prediction as correct if it is identical to the one manually
written by developers for the test method provided as input. We
refer to these asserts as “perfect predictions”. When experimenting
with di�erent beam sizes, we check whether a perfect prediction
exists within the k generated solutions. We report the raw counts
and percentages associated with the number of perfect predictions.

Note that, while the perfect predictions certainly represent cases
of success for our approach, this does not imply that the “imperfect
predictions” all represent failure cases (i.e., the generated asserts are
not meaningful). Indeed, for the same test/focal method, di�erent
assert statements could represent a valid solution. Therefore, we
sample 100 “imperfect predictions” and manually analyze them to
understand whether, while di�erent from the original assert state-
ments written by the developer, they still represent a meaningful
prediction for the given test method. In particular, we split the
“imperfect predictions” into four sets based on their BLEU-4 score
[25] value. The BLEU score is a well-known metric for assessing
the quality of text automatically translated from one language to
another [25]. In our case, the two “languages” are represented by i)
the test method and the focal method, and ii) the generated assert
statement. We use the BLEU-4 variant, meaning that the BLEU
score is computed by considering the 4-grams in the generated text,
as previously done in other software-related tasks in the literature
[11, 14]. The BLEU score ranges between 0% and 100%, with 100%
indicating, in our case, that the generated assert is identical to the
reference one (i.e., the one manually written by developers). We
use the BLEU score ranges 0-24, 25-49, 50-74 and 75-99 to split the
imperfect predictions. Then, we randomly selected 25 instances
from each set and the �rst author manually evaluated them to
determine if the generated assert statement is meaningful in the
context of the related test/focal methods. To avoid subjectiveness
issues, the 100 instances were also randomly assigned to four other
authors (25 each) who acted as second evaluator for each instance.

Con�icts (i.e., cases in which one of the two evaluators classi�ed
the assert statement as meaningful while the other did not) arose
in a single case that was solved through an open discussion. We
report the number of meaningful assert statements we found in
the manually analyzed sample as empirical evidence that imperfect
assert statements could still be useful in certain cases. Note that,
while there might be authors’ bias in assessing the meaningfulness
of the “imperfect” assert statements (i.e., authors may tend to be
too positive in evaluating the meaningfulness of the asserts), we
make our evaluation publicly available in the replication package
[4], to allow the reader to analyze the performed classi�cation.

RQ2: Which types of assert statements is ATLAS capable of
generating? After obtaining the perfect predictions from RQ1, we
analyze the types of assert statements our model can generate. In
particular, we analyze the taxonomy of assert statements generated
by our approach in the context of perfect predictions to determine
the types of assert statements the model is able to correctly predict.
We then report the raw counts and the percentages for each type
of assert statement the model can perfectly predict.

Note for this evaluation, we only report results for k = 1, since
we found that already with this beam size the model was able to
generate all types of assert statements in the used dataset.

RQ3: Does the abstraction process aid in the prediction
of meaningful assert statements? Remember that while our ab-
straction model generates abstracted asserts, we can map them back
to the raw source code at no cost to the developer. Thus, we can
check whether the generated assert is a perfect prediction, as we do
for the raw source code. Besides comparing the performance of the
two models, we also analyze whether they produce complementary
results by computing the following overlap metrics:

ppR\A =
|ppR \ ppA |
|ppR [ppA |

ppR\A =
|ppR \ ppA |
|ppR [ppA |

ppA\R =
|ppA \ ppR |
|ppR [ppA |

The formulas above use the following metrics: ppR (ppA) rep-
resents the set of perfect predictions generated using the raw (ab-
stracted) source code dataset; ppR\A measures the overlap between
the set of perfect predictions generated by using the two datasets;
ppR\A measures the perfect predictions generated on the raw source
code but not when using abstraction (vice versa for ppA\R).

RQ4: What is the e�ect of using the copy mechanism in
our model? With the addition of the copy mechanism we can
perfectly predict assert statements which contain tokens only found
in the input sequence and not in the vocabulary. Here we want
to quantify the e�ect of the copy mechanism and see how many
assert predictions we would be capable of producing without its
usage. Therefore, we analyze the perfect prediction set from the
raw source code model. If the perfect prediction contains a token
not found in the vocabulary, then we know that its generation was
possible due to the usage of the copy mechanism. We report the
raw counts and percentages of the number of assert statements that
were resolved thanks to the use of the copy mechanism.

RQ5: Does ATLAS outperform a baseline, frequency-based
approach? As output of RQ2 we de�ned a taxonomy of assert
statements that our approach is able to correctly generate in the
perfect predictions. We noted that there are eight types of assert

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

Table 1: Prediction Classi�cation

Beam Size Raw Model Abstract Model
Peferct Prediction

Percentage
Perfect Prediction

Counts
Perfect Prediction

Percentage
Perfect Prediction

Counts
1 17.66% 3323 31.42% 4968
5 23.33% 4390 49.69% 7857
10 24.73% 4654 55.73% 8812
15 25.53% 4805 58.76% 9291
20 25.88% 4871 60.43% 9554
25 26.19% 4929 61.75% 9764
30 26.43% 4973 62.73% 9918
35 26.63% 5012 63.68% 10068
40 26.81% 5045 64.38% 10179
45 26.91% 5064 64.81% 10247
50 27.01% 5083 65.31% 10327

statements that the model is capable of generating. However, the
model also predicts the variables and method calls contained within
the assert statement. Therefore, we want to determine if the most
frequently used assert statements found within our dataset (e.g.,
assert(true)), could be used to create a frequency-based approach
that outperforms our learning-based approach.

We analyze the duplicated assert statements generated in our
perfect prediction set. This means that the model generated the
same (correct) assert statement for di�erent test methods provided
as input. It is important to highlight here that while the same
assert statement can be used in di�erent test methods, this does not
imply that we have duplications in our datasets. Indeed, while the
same assert statement can be used in di�erent TAPs, the test/focal
methods are guaranteed to be unique.

The developed frequency-based approach takes the most com-
monly found assert statements and applies them as a solution for a
given test method. In particular, we take the top k most frequent
assert statements and test if any of them represents a viable so-
lution for each test method in the test set. In this evaluation we
set the same k for both approaches (i.e., the frequency-based and
the learning-based ones). For example, assuming k = 5, this means
that for the frequency-based approach we use the �ve most fre-
quent assert statements as predictions, while for the learning-based
approach we set beam size to �ve. We report the raw counts of
the frequency-based approach as compared to our NMT-based ap-
proach. We compare the two approaches at k = 1, 5, 10.

RQ6: What is the inference time of the model? Our last re-
search question speaks to the applicability and ease of use of our
model. When developing test cases within a software project, it
is unreasonable to expect the developer to spend a considerable
amount of time to set up and run an inference of the model. There-
fore, we performed a timing analysis to assess the time needed to
generate assert statements for a variety of beam sizes. In particular,
we used k = 1 to k = 50 with an increment of 5 to test the trade
o� between the timing of the model’s inference and the increased
prediction results of the model.

We record the results in number of seconds and map the in-
creased performance against the increased time. We do not con-
sider the time it may take for a developer to look at all resulting
predictions of assert statements for di�erent beam sizes. Note that
we do not consider the training time since this is a one time cost
that does not a�ect the usability of the approach.

0

25

50

Ed
it

 O
pe

ra
ti

on
s

Raw Code

0

25

50

Ed
it

 O
pe

ra
ti

on
s

Raw Code Abstracted Code

Figure 5: Edit Distance between Imperfect Predictions and
Ground Truth (Truncated tail of higher edit distances)

5 Experimental Results
RQ1 & RQ3 & RQ4: Ability to generate meaningful assert
statements, comparison between raw and abstracted dataset,
and usefulness of copy mechanism. Table 1 shows the perfect
prediction rate for both the “raw model” and the “abstract model”
for beam sizes 1 and 5-50 at increments of 5 (RQ1 & RQ3). As ex-
pected, the perfect prediction rate increases using larger beam sizes,
with a plateau reached at beam size 20 (i.e., only minor increases in
performance are observed for larger beam sizes).

When using beam size equal to 1 for the model trained/tested
with the raw dataset, our approach generates 17.66% perfect predic-
tions, resulting in over 3.3k correctly generated assert statements.
The average BLEU score for the asserts predicted when only consid-
ering the top recommendation (i.e., beam size = 1) is 61.85. We also
found that the copy mechanism helps the raw model in generating
perfect predictions (RQ4). Indeed, we determined howmany perfect
predictions require the use of the copy mechanism, �nding that,
when using beam size equals 1, our approach is able to perfectly pre-
dict 3323 examples by using the copy mechanism, and 2439 when
only relying on the vocabulary. This means that the copy mech-
anism is responsible for resolving 884 perfect predictions, which
constitutes 4.69% of the perfect prediction rate.

For the abstract model, the percentage of perfect predictions goes
up to 31.42% (⇠5k correctly generated asserts). Here the average
BLEU score is 68.01. Note that we mention the BLEU scores for
completeness, but do not perform a full evaluation using this metric.

Of particular note is the substantial bump in perfect predictions
that we obtain as result of increasing the beam size to �ve for both
models, especially for the abstracted one. For the latter, in 49.69% of
test/focal methods provided as input, one of the generated asserts is
identical to the one manually written by the developer (for a total of
7.9k perfectly predicted asserts). This indicates the potential of our
approach in an automatic “code completion” scenario, in which the
developer could easily pick one of the �ve recommended asserts.

As mentioned in Section 4, we also analyze the complementarity
of the perfect predictions generated by the raw and the abstracted
models when using beam size equals 1. In terms of overlap (i.e.,
ppR\A) we found that only 117 examples were captured and per-
fectly predicted by both models. Also, 3206 (39.2%) of the perfect
predictions are only generated by the rawmodel (ppR\A), while 4851
(59.3%) can only be obtained by using the abstracted model (ppA\R).
This shows a surprising complementarity of the two models, that
are able to learn di�erent patterns in the data. The combination of

On Learning Meaningful Assert Statements for Unit Test Cases ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Perfect Prediction Generated by the Abstract Model

1. METHOD_0 () { org . IDENT_0 . IDENT_1 . conf . IDENT_2 IDENT_3 = new org . IDENT_0 . IDENT_1 . conf . METHOD_1 () ; IDENT_3 . setName (org . IDENT_0 . IDENT_1 . conf . IDENT_4 . IDENT_5) ; "<AssertPlaceHolder>" ; } getName () { return name ; }

2. org . junit . Assert . assertEquals (org . IDENT_0 . IDENT_1 . conf . IDENT_4 . IDENT_5 , IDENT_3 . getName ())

Perfect Prediction Unabstracted

3. testName () { org . kefirsf . bb . conf . NamedValue namedValue = new org . kefirsf . bb . conf . NamedValue () ; namedValue . setName (org . kefirsf . bb . conf . NamedValueTest . NAME) ; "<AssertPlaceHolder>" ; } getName () { return name ; }

4. org . junit . Assert . assertEquals (org . kefirsf . bb . conf . NamedValueTest . NAME , namedValue . getName ())

Figure 6: Example of a Perfect Prediction Made by the Abstract Model, and its unabstructed mapping to actual code

these two di�erent representations, for example by using a model
with two encoders (one per representation) and a single decoder,
may be an interesting direction for future work.

However, the overall higher performance in both BLEU score
and perfect prediction rate of the abstract model shows that it is
better able to translate a meaningful assert statement from the test
and focal method context. This is likely due to the di�erent way
in which the two models see the out-of-vocabulary tokens. In the
raw dataset they are all represented as unknown tokens, while
in the abstracted dataset they are represented with the associated
type (e.g., METHOD, VAR, INT, etc.). When dealing with out-of-
vocabulary tokens, this helps the abstracted model in learning
patterns such as: a "METHOD" token is likely to follow a "VAR"
and a "." token. For the raw model, this only results in observing
“UNK . UNK”, hindering its ability to learn meaningful patterns in
these cases. Due to the better performance ensured by the abstract
model, the subsequent analyses are performed using this model.

Here, we discuss an interesting example generated by our ab-
stracted model. Figure 6 presents the abstracted contextual method
in line 1 and the abstracted assert statement in line 2. Lines 3 and 4
are the result of the unabstraction process, where we map back the
abstracted tokens into raw source code. In this example, the test
method is creating a new object namedValue and setting the NAME
attribute of this object. The test method contains the method call
getName, which our heuristic identi�es as the focal method and is
appended to the end of the test method. The model then generates
an assert statement that compares the NAME attribute of the new
object with the results from the getName method call. Indeed, the
model learns the relationship between the test and focal method in
order to generate a meaningful assert statement which appropri-
ate tests the method’s logic. This assert statement is a nontrivial
example of the model determining what type of assert statement to
generate, as well as the appropriate parameters the assert statement
should contain.

Concerning the manual inspection of the 100 “imperfect predic-
tions”, we found that 10% of them can represent a valuable assert
statement for the provided contextual method, despite them being
di�erent from the asserts manually written by developers. Note
that, while a 10% might look like a “negative” result, it is impor-
tant to understand that these results are in addition to the already
perfectly predicted assert statements. The full evaluation of the
100 cases is available in our replication package [4]. Here we dis-
cuss a representative example, for a provided test/focal method,
where our approach generated the assert statement assertSame-
(input,result) while the assert manually written by the devel-
oper was assertEquals(�Blablabla�,result). The input ob-
ject is present in the test method, and contains indeed the value
"Blablabla". Basically, our model generated an “easier to maintain”
assert, since changes to the value assigned to the input objects

Table 2: Types of Predicted Assert Statements

Assert Type Count Total in Dataset
assertEquals 2518 7923
assertTrue 973 2817

assertNotNull 606 1175
assertThat 250 1449
assertNull 238 802
assertFalse 232 1017

assertArrayEquals 102 311
assertSame 49 314

Table 3: Learning Based vs. Frequency Based

Beam Size Number of Perfect Predictions
Frequency Model Abstract Model

1 455 4968
5 970 7857
10 1299 8812

do not require changes to the assert statement. Concerning the
di�erence between assertSame and assertEquals, the former
compares two objects using the == operator, while the latter uses
the equals method that, if not overridden, does also perform the
comparison using the == operator.

Althoughwe have shown that ourmodel can producemeaningful
results outside of the perfect predictions, we wanted to understand
“how far” are the imperfect predictions from the manually written
assert statements. Therefore, for each imperfect prediction gener-
ated by the abstract model with k = 1, we computed the number
of tokens one needs to change, add, or delete to convert it into the
manually written assert. We found that by only changing one token
it is possible to convert 23.62% of the imperfect assert statements
(i.e., 3660 instances) into perfect predictions. Also, the median of
3 indicates that in half of the cases, changing only three tokens
would be su�cient. Note that the average number of tokens in the
generated assert statements is 17.1. Figure 5 shows the distribution
of edit changes needed for the imperfect predictions to become
perfect predictions.

Summary for RQ1, RQ3, & RQ4. A����’s abstracted model is
able to perfectly predict assert statements (according to a devel-
oper written ground truth) 31.42% and 49.69% of the time for
top-1 and top-5 predictions respectively. Conversely, the model
operating on raw source code with the copy mechanism achieved
a perfect prediction rate of 17.66% and 23.33% for top-1 and top-5
predictions respectively. This indicates the abstracted model per-
forms better overall. However, we also found that models had a
relatively high degree of orthogonality, with 39.2% of all perfect
predictions generated by the raw model, and 59.3% generated
by the abstracted model, illustrating that the copy-mechanism
allowed for the prediction of a unique set of assert statements.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

RQ2: Which types of assert statements is ATLAS capable
of generating?We also analyzed the types of JUnit4 assert state-
ments that were perfectly predicted. Here we use the 4,968 perfect
predictions generated using the abstract model and beam size equals
one. Table 2 shows that our approach was able to correctly predict
eight di�erent types of assert statements, with assertEquals and
assertTrue being the most commonly predicted type of assert
statement. Note that some JUnit4 assert types (e.g., assertNotSame
and assertFail) are not generated by our model because they
were not present in our dataset.

As it can be seen in Table 2, the distribution of assert statements
we are able to predict is similar to the one of the assert statements in
the entire dataset. This result mitigates the possible threat that our
approach is only successful in generating a speci�c type of assert
statement. Indeed, as shown in Table 2, the lack of a uniform distri-
bution of data points in the dataset from which A���� is learning
seems to be the main reason for the skewed distribution of correctly
predicted asserts. The main exception to this trend is represented
by the assertThat statements. We hypothesize that assertThat
statements are more di�cult to predict due to the nature of the
assert itself. These types of asserts compare a value with a matcher
statement, which can be quite complex, since matcher statements
can be negated, combined, or customized. Despite the complexities
of assertThat statements, the model is still able to perfectly predict
17.2% of the ones seen in the testing set.

Summary for RQ2.We found that assertEquals was the most
common type of assert generated, matching the distribution we
were learning from. Our analysis showed that A���� is capable
of learning every type of assert statement found in developer
written test cases.

RQ5: DoesATLASoutperformabaseline, frequency-based
approach? In this research question we explore whether our ab-
stract model outperforms a baseline, frequency-based approach
(see Section 4). Table 3 shows the results of this comparison. We
note that our DL-based approach outperforms the frequency based
approach at each experimented beam size. The di�erence in terms
of performance is substantial, resulting in 6.8 (beam size=10) to
10.9 (beam size=1) times more perfect predictions generated by our
approach. For example, when only considering the top candidate
assert statement for both techniques, A���� correctly predicts 4968
assert statements, as compared to the 455 of the frequency-based
model. The achieved results indicate that A���� is in fact learning
relationships based on hierarchical features and not being over-
whelmed by repetitive assert statements. We also want to note that
A���� encompassed a majority of the assert statements found by
the frequency based baseline. Therefore, we do not combine a fre-
quency based approach withA���� and believe our implementation
to be superior on its own.

Summary for RQ5. A���� is able to signi�cantly outperform a
frequency-based baseline prediction technique by a factor of 10.

RQ6: What is the inference time of the model? Our last
research question assesses the time required by our approach to
generate meaningful assert statements. Given the previously dis-
cussed performance of the experimented models, we computed

0.25

0.20

0.15

0.10

0

Beam Size

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
in

 S
ec

on
ds

Figure 7: Seconds per Assert Generation
the generation time on the abstract model. It is important to note
the reported time does not include the code abstraction nor the
mapping of the prediction back to source code, although these op-
erations are typically more e�cient than inference. Figure 7 shows
the increase in time based on the number of solutions the model
generates. These timings concern the generation of assert state-
ments for 15,810 test/focal methods provided as input. The reported
time is in seconds per provided input, and includes the generation
of all assert statements in the given beam size. For example, assum-
ing a beam size of 5, it would take around 0.14 seconds to generate
all 5 predictions for a particular test/focal method. These results
were computed using a single consumer-grade NVIDIA RTX GPU.

Summary for RQ6.We found that with a beam size of 5, we can
generate all predictions in 0.14 seconds per test method + focal
method pairing. When increasing beam size, we �nd that the time
needed to generate assert statements appears to scale linearly.

6 Threats to Validity
Construct validity threats concern the relationship between the-
ory and observation, and are mainly related to sources of impre-
cision in our analyses. We automatically mined and parsed the
TAPs used in our study. In this process, the main source of noise is
represented by the heuristic we used to identify the focal method
for a given assert statement. As said, in a real usage scenario, this
information could be provided by the developer who wrote the
test or by the automatic test case generation tool. Despite the pres-
ence of introduced noise, our approach was still able to generate
meaningful asserts, con�rming the robustness of our NMT model.

Internal validity threats concern factors internal to our study
that could in�uence our results. The performance of our approach
depends on the hyperparameter con�guration, that we report in our
online replication package [4]. However, given how computationally-
expensive the hyperparameter search was, we did not investigate
the impact of the copy mechanism across all con�gurations.

External validity threats concern the generalizability of our
�ndings. We did not compare ATLAS with state-of-the-art test case
generation techniques using the heuristics described in Section 2 to
de�ne appropriate asserts. This comparison would require a manual
evaluation of the correctness of the asserts generated by ATLAS and
by the competitive techniques for automatically generated tests,
likely on software of which we have little knowledge (assuming
Open-Source projects). Furthermore, we would have to make the
subject systems executable (e.g., as required by EvoSuite) which is

On Learning Meaningful Assert Statements for Unit Test Cases ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

known to be di�cult. Hence, this would not allow us to scale such an
experiment to the size of our current evaluation. Indeed, our main
goal was to empirically investigate the feasibility of a learning-based
approach for assert statement generation. Comparing/combining
the two families of approaches is part of our future work. Finally, we
only focused on Java programs and the JUnit framework. However,
ATLAS’s learning process is language-independent and its NMT
infrastructure can easily be ported to other programming languages.

7 Conclusion and Future Work
In this work, we mined over 9k GitHub projects to identify test
methods with their related assert statements. We then used a heuris-
tic to identify the focal method associated with an assert statement
and generated a dataset of Test-Assert Pairs (TAPs), composed by
i) an input sequence of the test and focal method, and ii) a target
sequence reporting the appropriate assert statement for the input
sequence. We used these TAPs to create a NMT-based approach,
called ATLAS, capable of learning semantically and syntactically
correct asserts given the context of the test and focal methods.

We found that the model was capable of successfully predicting
over 31% of the assert statements developers wrote by only using
the top-ranked prediction. When looking at the top-5 predictions
the percentage of correctly generated assert statements grew up
to ⇠50%. We also showed that among the “imperfect predictions”,
meaning the scenario in which ATLAS generates assert statements
di�erent from the ones manually written by developers, there are
assert statements that either represent a plausible alternative the
the one written by the developer or can be converted into the latter
by just modifying a few tokens (3 in 50% of cases). Finally, some
of the limitations of our approach, as well as the extensive empirical
study we conducted, provide us with a number of lessons learned
that can drive future research in the �eld:
Raw code vs. Abstracted code: Our results show that through the
abstraction mechanism, applications of NMT on code can ensure
better performance, as already observed in previous studies [35–37].
More interestingly, we found that the two code representations are
quite complementary, and allow our approach to generate di�erent
sets of “perfect predictions”. This points to the possibility of combin-
ing the two representations into a single model that could bene�t
from an architecture having two encoders (one per representation)
and a single decoder.
On the possibility of generating multiple assert statements:
We investigated this research direction while working on ATLAS.
The main problem we faced was the automatic identi�cation of
the part of test method body that it is relevant for a given assert.
Indeed, while with a single assert we can assume that the whole
method body is relevant, this is not the case when dealing with
multiple asserts. Here, a possible heuristic could be to consider
the statements preceding the assert statement a1, but coming after
the previous assert a0, as relevant for a1. However, it is unlikely
that the statements coming before a0 are totally irrelevant for a1.
Another possibility we considered was to apply backward slicing
on each assert statement but, unfortunately, this resulted in scala-
bility issues and in (well-known) problems related to the automatic
compilation of open source projects [34]. Approaching this problem
is a compelling direction for future work.

Integrating a learning-based approach in tools for automatic
test case generation: As discussed earlier, we foresee two possi-
ble usages for ATLAS. First, it can be used as a code completion
mechanism when manually writing unit tests in the IDE. Second,
it could be combined with existing tools for automatic test case
generation [3, 10, 24]. We currently lack empirical evidence to sub-
stantiate any claim on the e�ectiveness of ATLAS in improving
automatically generated tests, which would be an important �rst
step prior to integration. Additionally, before combining ATLAS
with existing tools, it is necessary to deeply understand the cases
in which the two families of approaches (i.e., the ones integrated in
the test case generation tool and the learning-based one) succeed
and fail. In this way, learning-based approaches could be used only
when needed (i.e., when the standard approach implemented in
the test case generation tools is likely to fail), thus increasing the
e�ectiveness of the generated tests. Studying and comparing the
strengths and weakness of the two families of techniques is part of
our future research agenda.

The automatic generation of meaningful assert statements is a
compelling problem within the software engineering community.
We showed that a learning-based approach could help aid in this
problem, and opened a complementary research direction to the one
already adopted in automatic test case generation tools [3, 10, 24].

Acknowledgments
This work is supported in part by the NSF CCF-1927679 and CCF-
1815186 grants. Bavota acknowledges the �nancial support of the
Swiss National Science Foundation for the project CCQR (SNF
Project No. 175513).

References
[1] [n.d.]. Apache Maven. https://maven.apache.org
[2] [n.d.]. TIOBE Index for August 2019. https://www.tiobe.com/tiobe-index/
[3] [n.d.]. Utilizing Fast Testing to Transform Java Development into an Agile, Quick

Release, Low Risk Process. http://www.agitar.com/
[4] 2019. ATLAS Anonymous Online Appendix: https://sites.google.com/view/atlas-

nmt/home.
[5] M. Almasi et al. [n.d.]. An Industrial Evaluation of Unit Test Generation: Finding

Real Faults in a Financial Application. In ICSE-C’17. https://doi.org/10.1109/ICSE-
SEIP.2017.27

[6] Zimin Chen et al. 2019. SequenceR: Sequence-to-Sequence Learning for End-
to-End Program Repair. CoRR abs/1901.01808 (2019). arXiv:1901.01808 http:
//arxiv.org/abs/1901.01808

[7] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. CoRR abs/1901.01808 (2019). http:
//arxiv.org/abs/1901.01808

[8] Mike Cohn. 2009. Succeeding with Agile: Software Development Using Scrum (1st
ed.). Addison-Wesley Professional.

[9] Gordon Fraser et al. [n.d.]. EvoSuite: automatic test suite generation for object-
oriented software. In ESEC/FSE’11. 416–419. https://doi.org/10.1145/2025113.
2025179

[10] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). ACM, Szeged, Hungary, 416–419. https://doi.org/10.
1145/2025113.2025179

[11] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2016). ACM, New York, NY,
USA, 631–642. https://doi.org/10.1145/2950290.2950334

[12] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to Generate
Corrective Patches using Neural Machine Translation. CoRR abs/1812.07170
(2018). arXiv:1812.07170 http://arxiv.org/abs/1812.07170

[13] Alan Ja�e, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bog-
dan Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk

Machine Translation Approach. In Proceedings of the 26th Conference on Pro-
gram Comprehension (ICPC ’18). ACM, New York, NY, USA, 20–30. https:
//doi.org/10.1145/3196321.3196330

[14] S. Jiang, A. Armaly, and C. McMillan. 2017. Automatically Generating Commit
Messages from Di�s Using Neural Machine Translation. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE) (ASE’17). 135–
146. https://doi.org/10.1109/ASE.2017.8115626 ISSN:.

[15] Jeannette Kiefer and Jacob Wolfowitz. 1952. Stochastic Estimation of the Maxi-
mum of a Regression Function.

[16] C. Klammer et al. 2015. Writing unit tests: It’s now or never!. In ICSTW’15. 1–4.
https://doi.org/10.1109/ICSTW.2015.7107469

[17] Philipp Koehn and Rebecca Knowles. 2017. Six Challenges for Neural Machine
Translation. CoRR abs/1706.03872 (2017). arXiv:1706.03872 http://arxiv.org/abs/
1706.03872

[18] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A Neural Model for
Generating Natural Language Summaries of Program Subroutines. In Proceedings
of the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 795–806. https://doi.org/10.1109/ICSE.2019.00087

[19] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based Commit Message Generation:
How Far AreWe?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE 2018). ACM, New York, NY, USA, 373–384.
https://doi.org/10.1145/3238147.3238190

[20] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: Learning to Repair Compilation Errors. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). ACM,
New York, NY, USA, 925–936. https://doi.org/10.1145/3338906.3340455

[21] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2013. Lexical
Statistical Machine Translation for Language Migration. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 651–654. https://doi.org/10.1145/2491411.2494584

[22] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2014. Migrating
Code with Statistical Machine Translation. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion 2014). ACM,
New York, NY, USA, 544–547. https://doi.org/10.1145/2591062.2591072

[23] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-code
from Source Code Using Statistical Machine Translation. In Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’15).
IEEE Press, Piscataway, NJ, USA, 574–584. https://doi.org/10.1109/ASE.2015.36

[24] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random
testing for Java. In OOPSLA’07. 815–816. https://doi.org/10.1145/1297846.1297902

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (ACL ’02).
311–318.

[26] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2016. SPOON: A Library for Implementing Analyses and Transfor-
mations of Java Source Code. Softw. Pract. Exper. 46, 9 (Sept. 2016), 1155–1179.
https://doi.org/10.1002/spe.2346

[27] D. Pierret and D. Poshyvanyk. 2009. An empirical exploration of regularities
in open-source software lexicons. In 2009 IEEE 17th International Conference on
Program Comprehension. 228–232. https://doi.org/10.1109/ICPC.2009.5090047

[28] Yolande Poirier. [n.d.]. What are the Most Popular Libraries Java Developers
Use? Based on Github’s Top Projects. https://blogs.oracle.com/java/top-java-
libraries-on-github

[29] Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia. 2010. Recovering traceabil-
ity links between unit tests and classes under test: An improved method. In 26th
IEEE International Conference on Software Maintenance (ICSM 2010), September
12-18, 2010, Timisoara, Romania. 1–10.

[30] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 419–428. https://doi.org/10.1145/2594291.2594321

[31] Sina Shamshiri. 2015. Automated Unit Test Generation for Evolving Software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing (FSE’15). ACM, Bergamo, Italy, 1038–1041. https://doi.org/10.1145/2786805.
2803196

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. CoRR abs/1409.3215 (2014). arXiv:1409.3215
http://arxiv.org/abs/1409.3215

[33] Chris Thunes. 2019. c2nes/javalang. https://github.com/c2nes/javalang
[34] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,

Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. [n.d.]. There
and back again: Can you compile that snapshot? Journal of Software: Evo-
lution and Process 29, 4 ([n. d.]), e1838. https://doi.org/10.1002/smr.1838
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1838

[35] Michele Tufano, Jevgenija Pantiuchina, CodyWatson, Gabriele Bavota, and Denys
Poshyvanyk. 2019. On Learning Meaningful Code Changes via Neural Machine
Translation. CoRR abs/1901.09102 (2019). arXiv:1901.09102 http://arxiv.org/abs/
1901.09102

[36] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. An Empirical Investigation into Learning
Bug-�xing Patches in the Wild via Neural Machine Translation. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE 2018). ACM, New York, NY, USA, 832–837. https://doi.org/10.1145/3238147.
3240732

[37] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Learning How to Mutate Source Code from
Bug-Fixes. CoRR abs/1812.10772 (2018). arXiv:1812.10772 http://arxiv.org/abs/
1812.10772

[38] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering
Clear, Natural Identi�ers from Obfuscated JS Names. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM,
New York, NY, USA, 683–693. https://doi.org/10.1145/3106237.3106289

[39] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to mine parallel natural language/source code corpora from stack
over�ow. 388–389. https://doi.org/10.1145/3183440.3195021

