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ABSTRACT
Mutation testing has shown great promise in assessing the e�ec-
tiveness of test suites while exhibiting additional applications to
test-case generation, selection, and prioritization. Traditional mu-
tation testing typically utilizes a set of simple language speci�c
source code transformations, called operators, to introduce faults.
However, empirical studies have shown that for mutation testing
to be most e�ective, these simple operators must be augmented
with operators speci�c to the domain of the software under test.
One challenging software domain for the application of mutation
testing is that of mobile apps. While mobile devices and accom-
panying apps have become a mainstay of modern computing, the
frameworks and patterns utilized in their development make testing
and veri�cation particularly di�cult. As a step toward helping to
measure and ensure the e�ectiveness of mobile testing practices,
we introduce MD����+, an automated framework for mutation
testing of Android apps. MD����+ includes 38 mutation operators
from ten empirically derived types of Android faults and has been
applied to generate over 8,000 mutants for more than 50 apps.
Video URL: https://youtu.be/yzE5_-zN5GA
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1 INTRODUCTION
Mobile devices have become a mainstay of the modern computing
landscape. The increasing popularity of these devices is driven
primarily by a rich ecosystem of applications, commonly referred to
as “apps". Strong user demand for mobile apps has driven increased
competition on storefronts such as Google Play [10] and Apple’s
App Store [4]. These competitive marketplaces necessitate that
mobile developers devote time to extensively test and validate their
apps to ensure a positive user experience, as new app releases have
been shown to a�ect users’ perception via marketplace ratings [21].
Android is currently the most popular OS in the world [1], and
hence garners a large amount of interest from developers.

However, e�ectively testing Android apps is di�cult, as devel-
opers face constraints speci�c to the domain of mobile software
including change-prone APIs [5, 16], platform fragmentation [12],
and a lack of automated testing tools that meet developer needs [19].
Furthermore, when devising testing strategies or writing test cases,
their e�ectiveness needs to be evaluated. To this aim, mutation
analysis has been de�ned as a process for evaluating the e�cacy of
a test suite and functions by injecting small changes, meant to rep-
resent common bugs, into a “correct” program and then evaluating
the number of injected faults uncovered by the test suite [8, 11]. The
higher the ratio of uncovered bugs, ormutants, the more e�ective a
test suite is said to be. However, mutation analysis typically relies
on a concept called the coupling e�ect that states that “complex
faults are coupled to simple faults in such a way that a test data set
that detects all simple faults in a program will detect most complex
faults” [23]. The validity of this e�ect has come under scrutiny from
the software testing research community [2, 3, 7, 15, 20], and while
studies have generally indicated a correlation between mutants and
real faults, they also point out that non-negligible portion of real
faults do not e�ectively map to mutants [15]. The number of simple
mutants mapping to real faults in the mobile domain is likely to
be lower, due to heavy usage of APIs and frameworks that enable
the varied feature sets of mobile devices. Thus, in order to develop
an e�ective mutation testing tool for Android, one must take into
account the software domain, and model operators according to
faults that naturally occur in mobile software development.

In this paper, we describeMD����+, a mutation testing frame-
work for Android apps that aims to support developers in writing
mobile tests.MD����+ includes 38 Android and Java speci�c mu-
tation operators that were designed according to an empirically
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derived taxonomy of common, naturally occurring faults in An-
droid applications [17]. The main contributions ofMD����+ can
be summarized as follows:
• A set of empirically derived mutation operators designed to sim-
ulate commonly observed faults in Android apps;

• An e�cient, automated methodology for deriving a Potential
Fault Pro�le (PFP) from subject apps, dictating possible locations
for mutant injection;

• A process for applying operator transformations to locations
dictated by the PFP to create mutant apps;

• Built-in extensibility that facilitates new operator de�nitions.

2 APPROACH
In order to ensure that MD����+ is an e�ective, practical, and
�exible/extensible tool for mutation testing, it takes into account
the following design considerations: (i) an empirically derived set
of mutation operators; (ii) a design embracing the open/closed
principle (i.e., open to extension, closed to modi�cation); (iii) visitor
and factory design patterns for deriving the Potential Failure Pro�le
(PFP) and applying operators, (iv) parallel computation for e�cient
mutant seeding. MD����+ is written in Java and available as an
open source project [18]. In the following sections, we describe
MD����+ according to its work�ow described in Figure 1.

2.1 Implemented Operators
As mentioned in Section 1, in order to create a mutation testing
framework for Android, mutation operators must be de�ned ac-
cording to naturally occurring faults to ensure a strong coupling
between operators and faults likely to befall an Android project. To
this end, the authors undertook an extensive empirical study fol-
lowing a procedure inspired by open coding [22]. More speci�cally,
the authors analyzed 2,007 documents, assigning a label describing
an observed bug, from the following sources: (i) bug reports of
open source Android apps, (ii) bug-�xing commits of open source
Android apps, (iii) Stack-Over�ow discussions, (iv) exception hi-
erarchies of Android APIs, (v) bugs described in previous studies,
and (vi) reviews from Google Play. The open-coding procedure
was supported by a custom designed web-application, where each
document was tagged by at least two authors, and labeling con�icts
were resolved. For the complete methodology, we refer readers to
our previous technical paper [17].

The study described above resulted in a taxonomy of faults for
Android apps that spans 14 di�erent categories. We implemented
38 operators corresponding to ten di�erent categories, excluding
certain categories of operators such as hardware con�gurations, as
they do not map well to the process of mutation testing. A detailed
list and description of all implemented operators is available on the
MD����+ website [18].

2.2 Derivation of the Potential Fault Pro�le
In the context ofMD����+, we de�ne a PFP that stipulates locations
in analyzed apps—which can correspond to source code statements,
XML tags, or locations in other resource �les—that coincide with po-
tential fault locations, given the empirically derived taxonomy [17].
Consequently, the PFP stipulates the locations where our de�ned
mutation operators can be applied. To extract the PFP,MD����+
statically analyzes a target mobile app, looking for locations where
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Figure 1: Overview tool Work�ow forMD����+
operators can be implemented. The locations are detected auto-
matically by parsing XML �les in the case of resources or through
Abstract Syntax Tree (AST) based analysis for Java code.

For implemented operators targeting one of the Android resource
XML �les (i.e., archives in the /res folder), the structure of each
XML �le is analyzed and a pattern matching process for di�erent
attributes within the XML is used. However, for operators that
are applied to the Java source code, a two-phase AST-based and
text-based analysis is utilized that is capable of identifying the
location of target API calls. The identi�cation of API call sites
is implemented utilizing the visitor design pattern, allowing for
extensible, decoupled operations to be performed on the AST of
a target app. This helps to ensure that MD����+ is capable of
supporting additional operators in the future that may require more
advanced AST analysis. After the AST-based location of speci�c API
calls, a �ne-grained, text-based pattern matching is performed on
identi�ed API calls to derive the precise textual location where the
mutation operator transformation will be applied. The end result of
the PFP derivation process is a list stipulating all potential injection
points in code of the Android-speci�c mutation operators.

2.3 Mutant Creation
Given an automatically derived PFP for an app and the catalog of
Android-speci�c operators, MD����+ generates a mutant for each
location in the PFP. This process is performed using text or AST
manipulation rules speci�c to each implemented operator. Thus, for
each location related to an operator, the text/AST transformation
is applied to the speci�ed location in either the code or .xml �le.

Due to the event driven nature of Android applications, testing
is generally performed at the GUI-level and is centered around app
use-cases [19]. Therefore, in order to operationalizeMD����+ to
�t in a typical testing work�ow, the mutated applications must be
compilable to an .apk �le that can be run on an emulator or real
device. Thus, during the mutant creation process,MD����+ creates
a project-level clone of a target and applies a single mutation to
a speci�ed location in the cloned project, resulting in one mutant
project for each seeded instance of a mutation operator. It is impor-
tant to note that the cost of applying the transformations to the
cloned projects is trivial in practice, and a majority of the execution
time cost is related to the cloning of the app project, and is thus
I/O bound. To ensure the cloning and mutant generation process
proceeds as e�ciently as possible,MD����+ implements an option
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to parallelize the process, utilizing the multi-core architecture of
most modern hardware. The end result of the mutation creation
process is the set of cloned mutant projects and a log that delin-
eates the operator and location of injection for each created mutant.
Currently, we do not o�er a universal interface for the compilation
of mutants, as the parameters and build systems used by Android
apps can vary dramatically. However, the compilation process can
be easily scripted using the CLI support o�ered by ant, gradle,
and the Android SDK1.

2.4 Tool Usage and Extensibility
MD����+ is implemented as a Java command-line utility in which
the user can select the speci�c set of mutation operators to be
applied during mutant generation, as well as an option for enabling
multi-threading. A R����� and user guide can be found on the
project repository, which is accessible from the tool website [18].

Given that the Android platform is prone to rapid evolution [5,
16], it is important that MD����+ allows for easy modi�cation/ex-
tension of the operators list, in order to keep pace with rapid evo-
lution. To add a new operator to MD����+, there are two major
components that must be implemented: (i) an operator locator/de-
tector, and (ii) the operator transformation rules. If a proposed
operator applies to the source code of an application, then either
the target API-call of the operator must be added to an existing AST
visitor or a new visitor to identify the AST pattern required by the
operator must be de�ned. Next, an operator speci�c pattern locator
must be implemented to derive the precise operator location after
API-calls in question have been detected via AST-analysis. To allow
for streamlined extensibility,MD����+ o�ers a generic Locator
interface that includes a findExactLocations() method that
can be implemented to support additional operators. An example
of this interface implemented for the BuggyGUIListener opera-
tor is given in Listing 1. This locator simply returns the start and
end of the API-call location passed in the MutationLocation ob-
ject so that it can be manipulated later. Note, that this is a simple
example, and most of MD����+’s pre-de�ned operators need to
parse particular properties or patterns from identi�ed API calls.
If the proposed operator applies to the resource .xml, MD����+
implements a TextBasedDetector abstract class that can be
extended to account for matching the patterns of xml attributes.

Listing 1: Example of Operator Locator
1 public class BuggyGUIListenerLocator implements Locator {
2
3 private void findExactLocation(MutationLocation loc) {
4 //Fix start column
5 loc.setStartColumn(loc.getStartColumn()+1);
6 //Build exact mutation location
7 loc.setEndColumn(loc.getStartColumn()+loc.

getLength());
8 }
9 }

Once the precise locator/detector for a proposed mutation oper-
ator has been implemented, the actual transformation rule must be
delineated so that it can be applied to any detected injection points
during theMD����+ analysis. To facilitate this process,MD����+
includes a MutationOperator interface and implements the fac-
tory design pattern for managing and instantiating operators. To

1https://developer.android.com/studio/build/building-cmdline.html

add an additional transformation rule for a desired operator, the
performMutation()method of the interfacemust be implemented
according to the MutationLocation. An example of theNullInp
utStream operator that sets an inputStream to null before it
is closed is shown in Listing 2.

Listing 2: Example of Operator De�nition
1 public class NullStream implements MutationOperator{
2 @Override
3 public boolean performMutation(MutationLocation

location) {
4 ObjectMutationLocation mLocation = (

ObjectMutationLocation) location;
5 List<String> newLines = new ArrayList<String>();
6 List<String> lines = FileHelper.readLines(

location.getFilePath());
7 for(int i=0; i < lines.size(); i++){
8 String currLine = lines.get(i);
9 //Null object
10 if(i == location.getLine()){
11 String newLine = mLocation.getObject() +

" = null;";
12 newLines.add(newLine);
13 }
14 newLines.add(currLine);
15 }
16 FileHelper.writeLines(location.getFilePath(),

newLines);
17 return true;
18 }
19 }

3 EVALUATION
3.1 Study Context
To evaluate MD����+, we conducted a study with the following
goals: (i) understand and compare the applicability of MD����+
and other currently available mutation testing tools to Android
apps; (ii) to understand the underlying reasons for non-compilable
or non-executable (i.e., trivial) mutants. To accomplish this, we
compareMD����+ with two popular open source mutation testing
tools (Major [14] and PIT [6]), which we adapted to be applicable
to Android apps, and with one context-speci�c mutation testing
tool for Android called muDroid [9]. We chose these tools because
of their diversity (in terms of functionality and mutation opera-
tors), their compatibility with Java, and their representativeness
of tools working at di�erent representation levels: source code,
Java bytecode, and smali bytecode (i.e., Android-speci�c bytecode
representation). The modi�cations to the PIT and Major tools can
be accessed using our replication package [18]. To compare the
applicability of each mutation tool, we used the Androtest suite of
apps [24], which includes 68 Android apps from 18 Google Play
categories. The mutation testing tools exhibited issues in 13 of the
considered 68 apps, i.e., the mutant-injection process rendered them
non-compilable. Thus, in the end, we considered 55 subject apps in
our study. For more information see our replication package [18].

To quantitatively assess the applicability and e�ectiveness of the
considered mutation tools to Android apps, we de�ned three met-
rics: Total Number of Generated Mutants (TNGM), Non-Compilable
Mutants (NCM), and Trivial Mutants (TM). In this paper, we con-
sider non-compilable mutants as those that are syntactically incor-
rect and cause compilation/assembly errors, and trivial mutants as
those that are killed arbitrarily by most test cases (e.g., crashing on
launch). The trivial mutant study was supported by a large-scale
dynamic analysis framework [17].
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Figure 2: Non-compilable & trivial mutants per app.
3.2 Study Results
Figure 2 reports the results of (i) the percentage of non-compilable
mutants (NCM), (ii) the percentage of trivial mutants (TM), and
(iii) the total number of generated mutants per app. On average,
167, 904, 2.6k+, and 1.5k+ mutants were generated by MD����+,
Major, PIT, and muDroid, respectively for each app. MD����+ had
an average runtime of 19 seconds per app on server-class hardware.
While the number of mutants generated is high for other tools, this
is mostly due to the fact they implement far more general opera-
tors with a higher number of potential injection points. However,
MD����+’s operators are more speci�c, and coupled to features that
may or may not be implemented by a given app, resulting in fewer,
but stronger, mutants. The average percentage of non-compilable
mutants (NCM) generated by MD����+, Major and muDroid over
all the apps is 0.56%, 1.8%, and 53.9%, respectively, while no NCM
are generated by PIT due to its mutant assembly process (Figure 2a).
Thus,MD����+ achieves the lowest ratio of non-compilable mu-
tants by a statistically signi�cant margin (Wilcoxon paired signed
rank test p-value< 0.001 for Major and muDroid – adjusted with
Holm’s correction [13], Cli�’s d=0.59 - large for Major, and Cli�’s
d=0.35 - medium for muDroid), allowing for a mutation testing pro-
cedure more capable of evaluating the e�cacy of a set of tests . The
overall rate of NCM is very low for MD����+, and most instances
pertain to edge cases requiring more robust static analyses.

All four tools generated trivial mutants, and the mean percent-
age of their distribution over all apps for MD����+, Major, PIT,
and muDroid is 2.42%, 5.4%, 7.2%, and 11.8%, respectively (Fig-
ure 2b). MD����+ generates signi�cantly fewer TM than muDroid
(Wilcoxon paired signed rank test adjusted p-value=0.04, Cli�’s
d=0.61 - large) and PIT (adjusted p-value=0.004, Cli�’s d=0.49 -
large), while there is no statistically signi�cant di�erence with Ma-
jor (adjusted p-value=0.11). While these percentages may appear
small, the raw values show that TMs can comprise a large set of
instances for tools that can generate thousands of mutants per app.
For example, for the Translate app, 518 out of the 1,877 mutants
generated by PIT were TM. For the same app, muDroid creates 348
TM out of the 1,038 it generates. The biggest underlying reason
for TM inMD����+ results from null objects or references in the
MainActivity, causing a crash on startup. Future improvements
to the tool could avoid mutants seeded in components related to
the MainActivity.

4 DEMO REMARKS & FUTUREWORK
In this demo, we have presented MD����+, a mutation testing tool
for Android applications that supports 38 empirically derived muta-
tion operators, automates the process of detecting potential mutant
locations and generating mutants, and facilitates the addition of
new operators and the maintenance of existing operators through
an extensible architecture.MD����+ was evaluated against other
popular mutation testing tools for the Java language and was shown
to generate fewer non-compilable and trivial mutants. In the future,
we plan to add to the functionality of MD����+ by allowing users
to stipulate speci�c activities for mutant injection and supporting
the increasingly popular Kotlin language.
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