

A Dataset from Change History to Support Evaluation
of Software Maintenance Tasks

Bogdan Dit, Andrew Holtzhauer, Denys Poshyvanyk

Computer Science Department
The College of William and Mary

Williamsburg, VA, USA
{bdit, asholtzh, denys}@cs.wm.edu

Huzefa Kagdi

Department of Electrical Engineering and Computer Science
Wichita State University
Wichita, KS 67260-0083

kagdi@cs.wichita.edu

Abstract—Approaches that support software maintenance need
to be evaluated and compared against existing ones, in order to
demonstrate their usefulness in practice. However, oftentimes the
lack of well-established sets of benchmarks leads to situations
where these approaches are evaluated using different datasets,
which results in biased comparisons. In this data paper we
describe and make publicly available a set of benchmarks from
six Java applications, which can be used in the evaluation of
various software engineering (SE) tasks, such as feature location
and impact analysis. These datasets consist of textual description
of change requests, the locations in the source code where they
were implemented, and execution traces. Four of the benchmarks
were already used in several SE research papers, and two of them
are new. In addition, we describe in detail the methodology used
for generating these benchmarks and provide a suite of tools in
order to encourage other researchers to validate our datasets and
generate new benchmarks for other subject software systems.
Our online appendix: http://www.cs.wm.edu/semeru/data/msr13/

Index Terms—Generate Benchmarks, datasets, feature
location, impact analysis

I. INTRODUCTION

Techniques that support software maintenance tasks, are
empirical by nature, thus demonstrating that a technique
produces better results than existing techniques requires them
to be evaluated and compared against one another. However,
an unbiased evaluation and comparison is not always possible,
due to the lack of well-established sets of benchmarks. This
leads to situations where techniques are evaluated using
different datasets, making their comparison problematic. For
example, a recent survey on feature location techniques showed
that out of the 60 papers that evaluated their proposed feature
location techniques, only three of them (5%) used the same
datasets in their evaluation [1]. In the other 95% of cases the
techniques were compared using different datasets, which
affects the fair comparison between techniques.

In this data paper, we want to address this problem and
provide six datasets from four open-source Java applications,
which can be used as benchmarks in the evaluation of various
software maintenance tasks, such as feature location, impact
analysis, developer recommendations, and traceability link
recovery. Our datasets contain textual descriptions of change
requests and locations in the source code where the change

requests were addressed. These datasets are ideal for evaluating
techniques based on Information Retrieval (IR). In addition, we
provide execution traces that were collected based on the
description of the change requests. These traces could be used
in techniques that combine IR and dynamic information [2].

Among these six datasets that we make publicly available,
four of them were already evaluated in a number of research
papers related to feature location [3, 4, 5, 6, 7, 8], impact
analysis [9], developer recommendations [10] and traceability
link recovery [11]. The two remaining datasets (ArgoUML
0.24 and ArgoUML 0.26.2) are new.

In addition, we describe in detail the methodology used for
generating these datasets from the historical data of the
software systems (Section III), as well as any limitations
associated with the process of generating this data (Section VI).
We also provide a suite of Java tools that instantiate some steps
of the methodology, which can be used to generate datasets for
new software systems (Section IV).

By providing the methodology and tools, we offer other
researches the possibility to verify our datasets and encourage
them to generate new benchmarks for other software systems.

We refer the interested reader to visit our online appendix
in order to get access to the datasets, the methodology, tools,
and a detailed description of the data format.

II. DATASETS

These datasets contain static, textual, and dynamic
information about the software systems, which were generated
by analyzing two primary sources of information: (i) issue
tracking systems (ITSs) and (ii) source code repositories.

A. Glossary of Artifacts

Dataset (or benchmark): is a collection of artifacts
derived from the ITS and source code repositories and is
referred by the name and version of the system (e.g., jEdit 4.3).

Issue: is the generic term given to change requests, such as
bug reports, feature requests, or any other type of tasks
submitted to an ITS (e.g., Bugzilla, Trac, etc.)

IssueID: is the ID (i.e., numerical value, such as 123) of an
issue, which is automatically assigned by the ITS.

GoldSetIssueID: is the set of unique method names that were
modified when the issue IssueID was implemented in the
system. In other words, it contains the names of the methods

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

131

that were changed when a bug was fixed, or when a feature was
added to the system. The method names in the gold set are fully
qualified (i.e., they contain the package name, class name,
method name and signature).

TraceIssueID (or Execution Trace for IssueID): represents an
execution trace that was collected by exercising the scenario
presented in the description of the issue IssueID. The execution
trace is characterized by a list of methods that were executed
when the user attempted to (i) reenact the steps that lead to the
buggy behavior described in IssueID or (ii) exercise a feature
described in IssueID.

Marked Trace: is a trace where the user has control over
the beginning and the end of the trace recording process.

Full Trace: is an execution trace that records executed
methods from the start of the application until the application is
closed. Full traces usually capture more information than
marked traces.

QueryIssueID: represents the textual description of the issue
IssueID, and consists of the title and description of the IssueID.

Corpus: is a collection of textual documents (e.g., contents
of files, classes or methods). For our datasets, we refer to a
corpus as the collection of all the method contents for a
particular version of the software system.

B. Description of the Datasets

The six datasets that we are making publicly available
contain in total 633 issues, 633 execution traces and 4,363 gold
set methods and are summarized in Table 1.

The first three datasets (ArgoUML0.22, 0.24 and 0.26.2)
are generated from ArgoUML, a popular UML editor. The
other three datasets (JabRef 2.6, jEdit 4.3 and muCommander
0.8.5) were generated from JabRef, a manager for BibTeX
references, jEdit, a popular text-editor for programmers, and
muCommander, a cross-platform file manager.

The columns from Table 1 are enumerated and described
next, and exemplified on the first dataset. The first column
represents the name and version of the dataset (e.g., ArgoUML
0.22), which was generated by analyzing the SVN commits of
ArgoUML submitted between version 0.20 and 0.22 (see
column 2). For this dataset, there were 91 issues identified (see
column 3), which contain a total of 701 gold set methods (see
column 5). The type of execution traces collected is full traces
(see column 4). Version 0.22 of ArgoUML has 149 KLOC
(lines of code) spreading across 1,439 files and 11,000 methods
(see columns 6, 7 and 8 respectively).

III. METHODOLOGY FOR GENERATING THE DATASETS

This section describes the methodology used for generating
the datasets. The steps are as follows:

A. Choose the Software System

The first step consists of choosing a Java software system
(e.g., jEdit) with the following characteristics: (i) uses SVN as
the source code repository, (ii) has an ITS that keeps track of
the change requests, (iii) a subset of SVN log messages are
referencing IssueIDs, and optionally, (iv) the system allows
collecting execution traces (i.e., the system is not a library that
would make it difficult for a user to interact with it in order to
collect execution traces). The last requirement is optional, and
is only needed for generating datasets that contain dynamic
information in the form of execution traces.

Note that the choice of Java systems was restricted by the
fact that our tools for (i) generating gold sets, (ii) generating the
corpus, and (iii) collecting traces work only with Java systems.

B. Choosing the SVN Commits

Choose the period of time between two major releases for
the system (e.g., jEdit v4.2 and jEdit v4.3). In the following, we
will refer to the earlier version of the system as the previous
release (e.g., jEdit version 4.2), and to the older version as the
current release (e.g., jEdit version 4.3).

For each SVN commit submitted between the previous and
current release, we analyzed its log message (see Section III.C)
and its change set (see Section III.D).

C. Choosing the Issues

For each SVN Commit, its SVN log message was parsed in
order to identify the IssueIDs. The subset of SVN commits that
contained IssueIDs in their SVN log message (called
SVNCommitsMapped) were mapped to the issue IssueID from
the ITS. For example, if SVN commit #123 contained the log
message “fix for bug #45678”, the issue #45678 (from the ITS)
was mapped to the SVN commit #123. We manually verified
each mapping to ensure the correctness of the data and to
discard SVN commits that contain numbers that do not
represent IssueIDs (e.g., "Eliminated a small code duplication
found in r10817", "[...] viewtopic.php?f=4&t=413"). In
addition, we also included the cases where an IssueID was
mapped to multiple SVN commits (i.e., the change request
represented by the IssueID was implemented across multiple
SVN commits).

D. Generating the Gold Sets

For each SVN commit from SVNCommitsMapped (e.g.,
#123), we analyzed its associated source code files. More
specifically, the version of each modified file (e.g., #123) was
compared against the previous version of the file (e.g., #122 or
earlier) in order to identify the methods that were modified

TABLE 1 DESCRIPTION OF THE DATASETS. THE COLUMNS REPRESENT THE DATASET NAME (SYSTEM AND VERSION NUMBER), THE MAJOR RELEASES

CORRESPONDING TO THE INTERVAL FOR ANALYZING THE SVN DATA, THE NUMBER OF ISSUES, THE TYPE OF EXECUTION TRACES (MARKED OR FULL), THE TOTAL

NUMBER OF GOLD SET METHODS IN THE ENTIRE DATASET, THE NUMBER OF LINES OF CODE, FILES AND METHODS FOR THE SYSTEM USED TO BUILD THE CORPUS
Dataset Period Issues Trace Type # Gold Set Met. KLOC Files Methods

ArgoUML 0.22 0.20-0.22 91 Full 701 149 1,439 11,000
ArgoUML 0.24 0.22-0.24 52 Full 357 155 1,480 11,464
ArgoUML 0.26.2 0.24-0.26.2 209 Full 1,560 186 1,752 14,597
JabRef 2.6 2.0-2.6 39 Full 280 74 579 4,607
jEdit 4.3 4.2-4.3 150 Marked 748 104 503 6,413
muCommander 0.8.5 0.8.0-0.8.5 92 Full 717 77 1,069 8,187

132

during the SVN commit. These methods are part of the gold set
associated with the IssueID (e.g., #45678) the SVN commit is
mapped to (i.e., #123). The details of the tool used for
generating these gold sets are presented in Section IV.

E. Generating the Corpus

The corpus of the current release was generated using the
CorpusGenerator tool (see Section IV), which parses all the
Java files associated with that release and extracts as
documents all the contents associated with a method (i.e.,
javadoc comments, modifies, type, name, signature and body).

F. Generating the Execution Traces

For each issue generated in Section III.C, we identified the
candidates suitable for generating execution traces on the
current release. We generated the execution traces by
reproducing the scenario presented in the description of the
issue. In some cases, the steps to reproduce the bug or feature
are enumerated in a straightforward way, whereas in other
cases these steps had to be inferred from the description
(because they are not explicitly stated). Issues for which we
could not collect an execution trace (i.e., the symptoms to
reproduce the buggy behavior are not described or cannot be
inferred) were discarded. The execution traces were collected
using either the Java Platform Debugger Architecture (JPDA)
or the Eclipse Test & Performance Tools Platform (TPTP). The
traces collected with JPDA (e.g., for jEdit) did not contain any
method signatures and they are marked traces. The traces
collected using TPTP contained the method signatures and they
are full traces. Section VI discusses the decision of choosing
the current release for generating the execution traces.

G. Cleanup

Not all the issues and gold sets generated in the previous
steps became part of the final dataset. Some of the artifacts that
did not adhere to a set of standards were discarded. For
example, we only kept issues for which their gold sets had at
least one method in the corpus of methods, and at least one
method in the execution trace.

Methods that appear in the gold set may not necessarily
appear in the corpus, due to the inherent process of refactoring
that a software system undergoes between two consecutive
releases. For example, a method foo.A.a() that was modified in
an SVN commit (e.g., #123), and appears in the gold set of
issue #45678, may not necessarily appear in the corpus, if the
system experienced refactorings, such as the method name was
renamed, its signature was changed, the class name was
renamed, the class was moved in other packages, or the method
was deleted or merged with other methods. Our tools do not
automatically keep track of all the changes to the fully qualified
name of methods and this is left for future work.

In an initial attempt to address these limitations, we used a
simple process, where we manually modified the fully qualified
name from the gold set to reflect the name from the corpus. For
example, if a large number of methods from the gold set (e.g.,
foo.A.a(), foo.A.b(), foo.A.c(), foo.A.d(), etc.) did not appear in
the corpus because the class foo.A was renamed to
foo.ARenamed, we manually renamed the methods in the gold

set to foo.ARenamed.a(), foo.ARenamed.b(), and so on. This
manual process was applied only on a handful of gold sets that
were identified during quality control of ensuing that at least
one gold set method appears in the corpus. We acknowledge
that this anecdotal manual process should have been replaced
with a more thorough automatic approach, one which keeps
track of all the refactorings during two software releases, but
this endeavor is left for future work.

IV. TOOLS

We provide the following suite of Java tools that could help
researchers generate new datasets for other systems, by
following the methodology described in Section III. In
addition, we provide Matlab implementations for two IR
techniques, namely VSM and LSI.

DownloadSVNCommits is a tool based on the SVNKit
library, which extracts all the pertinent information related to
the SVN commits between the specified previous and current
releases: (i) the SVN log message (which will be parsed for
issues) and (ii) the content of the files at SVN revision N and
N-1 (these files will be analyzed for extracting the gold set).

ConvertJPDATraces and ConvertTPTPTraces are two
tools that extract the list of methods that were executed for
each type of execution trace.

GoldSetGeneratorFromSVNCommits uses the Eclipse
Abstract Syntax Tree (from Eclipse's Java Development Tools)
to automatically generate a list of methods that were changed
between two versions of a java file (i.e., the version associated
with the current SVN commit and its previous version). The
tool only takes into account semantic changes to the code, and
does not add to the gold sets methods that experienced
formatting changes (e.g., indentation, adding blank lines,
formatting comments).

CorpusGenerator uses the same underlying technology as
GoldSetGeneratorFromSVNCommits to generate a corpus
consisting of all the methods of a software system. In addition,
this tool can also generate corpora for software systems at class
or file-level granularity.

CorpusPreprocessor preprocesses a corpus produced by
CorpusGenerator, by eliminating non-literals, splitting
identifiers, stop word removal and stemming.

CorpusConverter converts a preprocessed corpus
generated by CorpusPreprocessor to a term by document
matrix that can be used as input for IR techniques, such as
VSM and LSI.

VSM and LSI are two Matlab scripts that use VSM and
LSI to compute the similarities between a query and the
methods of a system (i.e., the corpus).

V. DESCRIPTION OF SCHEMA

This section describes the format of the data. Each dataset
contains the following files and folders:

GoldSets: a folder with files named GoldSet[IssueID].txt.
Each file contains the gold set methods, one per line. A gold set
method is the fully qualified name of a method (e.g.,
foo.A.a(int)).

133

Traces: a folder with files named trace[IssueID].trcxml
(TPTP format) or Trace[IssueID].log (JPDA format). Each file
represents an execution trace collected for issue [IssueID]. The
online appendix contains more details about the trace format.

Queries: a folder where each issue [IssueID] has two files
named ShortDescription[IssueID].txt (i.e., title) and
LongDescription[IssueID].txt (i.e., the description).

listOf[IssueType]IssueIDs.txt: is a file containing the list
of IssueIDs for the dataset, one per line. The [IssueType]
represents the type (e.g., bug, feature, patch) that was assigned
to the issue in the ITS. The IssueIDs correspond to the
[IssueIDs] from file names from the GoldSets, Traces and
Queries folders.

CorpusMethods-<dataset>.corpusRaw and
CorpusMethods-<dataset>-AfterSplitStopStem.txt: are two
files containing the un-preprocessed and preprocessed corpora
respectively. Each line of these files is a document representing
the content of a method.

CorpusMethods-< dataset >.mapping: is a file containing
the fully qualified names of the methods that have a
correspondence in the preprocessed corpus file (i.e., the method
name from line i corresponds to the method on line i from the
file CorpusMethods-<dataset>-AfterSplitStopStem.txt).

IssuesToSVNCommitMapping.txt: is a file containing the
IssueID and the list of SVN commits that map to it.

VI. LIMITATIONS AND DESIGN DECISIONS

Some of the methods from the gold sets do not have a
correspondence in the corpus. This is due to the methodology
for generating the data and the refactoring process between two
consecutive software releases (see Section III.G). In addition,
the SVN commits that do not explicitly include in their log
messages the IssueIDs they addressed (i.e., the log messages
lack the link to the ITS), are not included in the dataset.

In our datasets, we do not exclude from the gold sets the
methods that were modified at one point between two releases,
but which due to subsequent refactorings did not appear in the
these releases. We leave this information in the gold sets for
researchers that might need it for some tasks that would not
require a corpus for the evaluation. Moreover, the solution that
requires minimum effort to bypass this discrepancy between
the gold set methods and the methods corpus requires filtering
the gold set methods from the results, as was done in all the
approaches that used our datasets [3, 4, 5, 6, 7, 8, 9, 10, 11].

Due to the refactorings between two consecutive software
releases, some methods may not appear in the previous release
(e.g., if they were added or renamed) or the current release as
well (e.g., if they were renamed). We chose the current release
for generating the corpus and the execution traces because even
though the methods that were changed in order to fix the bugs
submitted between these releases have similar chances of being
present in the previous release or current release (i.e., due to
refactorings), the methods that were added in order to
implement the features introduced in the current release have
zero chance of being present in the previous release but have a
very high chance of being present in the current release. Thus
we used one release to capture both the added features and the

locations of the methods responsible for the buggy behavior as
described in the bug description. If other researchers would
require the use of the previous release in their evaluation, they
could generate the corpus for the previous release using the
CorpusGenerator tool, and filter from the gold sets the
methods that do not appear in that corpus.

The quality of the execution traces might have been
impacted by the quality of the steps to reproduce. For some
issues, the steps to reproduce the bug or feature are described in
an unambiguous way, whereas in other cases the description is
open to interpretation. Due to the stochastic nature of the
process of manually collecting execution traces, other
researchers could generate different traces.

Despite all these limitations that are inherent from the
process of generating the data and from the quality of available
sources of information, our datasets can be used to support
various software maintenance tasks, such as feature location [3,
4, 5, 6, 7, 8], impact analysis [9], developer recommendations
[10] and traceability link recovery [11].

ACKNOWLEDGMENT

This work is supported in part by the NSF CCF-0916260
and NSF CCF-1016868 awards. Any opinions, findings and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature
Location in Source Code: A Taxonomy and Survey," JSEP, pp. to
appear, doi: 10.1002/smr.567, 2012.

[2] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature
Location via Information Retrieval based Filtering of a Single
Scenario Execution Trace," in ASE, 2007, pp. 234-243.

[3] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, "Can Better
Identifier Splitting Techniques Help Feature Location?," in ICPC,
2011, pp. 11-20.

[4] B. Dit, M. Revelle, and D. Poshyvanyk, "Integrating Information
Retrieval, Execution and Link Analysis Algorithms to Improve
Feature Location in Software," ESE, vol. 18, pp. 277-309, 2013.

[5] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H.
Etzkorn, and N. A. Kraft, "Configuring Latent Dirichlet Allocation
based Feature Location," ESE, pp. to appear, doi: 10.1007/s10664-
012-9224-x, 2012.

[6] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk,
and A. De Lucia, "How to Effectively Use Topic Models for
Software Engineering Tasks? An Approach based on Genetic
Algorithms," in ICSE, 2013, pp. to appear

[7] S. Davies, M. Roper, and M. Wood, "Using Bug Report Similarity
to Enhance Bug Localisation," in WCRE, 2012, pp. 125-134.

[8] L. R. Biggers and N. A. Kraft, "A Comparison of Stemming
Algorithms for Text Retrieval Based Feature Location,"
http://software.eng.ua.edu/reports/SERG-2012-03, 2012.

[9] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated
Impact Analysis for Managing Software Changes," in ICSE, 2012,
pp. 430-440.

[10] M. Linares-Vasquez, H. Dang, K. Hossen, K. Kagdi, M. Gethers,
and D. Poshyvanyk, "Triaging Incoming Change Requests: Bug or
Commit History, or Code Authorship?," ICSM, 2012, pp. 451-460.

[11] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, "Trustrace: Mining
Software Repositories to Improve the Accuracy of Requirement
Traceability Links," TSE, doi: 10.1109/TSE.2012.71, 2012.

134

