Toward Deep Learning Software Repositories

Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk
Department of Computer Science
College of William and Mary
Williamsburg, Virginia 23187-8795
Email: {mgwhite, cvendome, mlinarev, denys}@cs.wm.edu

Abstract—Deep learning subsumes algorithms that automat-
ically learn compositional representations. The ability of these
models to generalize well has ushered in tremendous advances
in many fields such as natural language processing (NLP).
Recent research in the software engineering (SE) community
has demonstrated the usefulness of applying NLP techniques to
software corpora. Hence, we motivate deep learning for software
language modeling, highlighting fundamental differences between
state-of-the-practice software language models and connectionist
models. Our deep learning models are applicable to source
code files (since they only require lexically analyzed source
code written in any programming language) and other types
of artifacts. We show how a particular deep learning model
can remember its state to effectively model sequential data,
e.g., streaming software tokens, and the state is shown to be
much more expressive than discrete tokens in a prefix. Then we
instantiate deep learning models and show that deep learning
induces high-quality models compared to n-grams and cache-
based n-grams on a corpus of Java projects. We experiment
with two of the models’ hyperparameters, which govern their
capacity and the amount of context they use to inform predictions,
before building several committees of software language models
to aid generalization. Then we apply the deep learning models to
code suggestion and demonstrate their effectiveness at a real SE
task compared to state-of-the-practice models. Finally, we propose
avenues for future work, where deep learning can be brought to
bear to support model-based testing, improve software lexicons,
and conceptualize software artifacts. Thus, our work serves as
the first step toward deep learning software repositories.

Keywords—Software repositories, machine learning, deep learn-
ing, software language models, n-grams, neural networks

I. INTRODUCTION

The field of natural language processing (NLP) has devel-
oped many prominent techniques to support speech recogni-
tion [1] and statistical machine translation [2], among many
other applications. One critical component to many of these
techniques is a statistical language model, and the most
prevalent class of statistical language models is simple Markov
models called n-gram models (or “n-grams”) [3]. n-grams are
useful abstractions for modeling sequential data where there
are dependencies among the terms in a sequence. A corpus
can be regarded as a sequence of sequences, and corpus-
based models such as n-grams learn conditional probability
distributions from the order of terms in a corpus. Corpus-
based models can be used for many different types of tasks
like discriminating instances of data or generating new data
that are characteristic of a domain.

The terms in a sequence can represent different entities
depending on the domain. In software engineering (SE), se-
quential data emerge from countless artifacts, e.g., source code
files and execution traces, where the terms (or “words”) can

be software tokens or method calls, and the sequences (or
“sentences”) can be lines of code or method call sequences.
While software tokens and method calls characterize two
different lexicons, statistical language models such as n-grams
can be applied to corpora from each domain because the
models represent simple arrangements of terms. Consequently,
models like n-grams can be used to predict the next term in a
sequence [4].

Recent research in the SE community has examined and
successfully applied n-grams to formal languages, like pro-
gramming languages, and SE artifacts [S]-[13]. The breadth of
these applications in SE research and practice underscores the
importance of the ability to effectively learn from sequential
data in software repositories. However, there is an apparent
discrepancy between the representation power of models like
n-grams for reaping information from repositories and the
expressiveness that is produced and archived in repositories.
Consider the characteristics of modern software repositories
and the requirements that these characteristics impose on mod-
els. Software repositories are massive depots of unstructured
data, so good models require a lot of capacity to be able
to learn from the voluminous scale rather than saturate after
observing a fraction of the data that are available. Specifically,
the kind of conceptual information that is buried in software
repositories is very complex, requiring expressive models to
manage this complexity. Moreover, software artifacts are laden
with semantics, which means approaches that depend on
matching lexemes are suboptimal. Finally, practical SE tasks
require a lot of context—much more than short lists of the
last two, three, and four terms in a sequence—whether the
task is developing a feature or reproducing an issue. Capacity,
expressiveness, semantics, and context are key concerns when
mining sequential SE data and inducing software language
models in particular. Nonetheless, n-grams have limited ef-
fective capacity [14]. They are not expressive, because they
are simply smoothed counts of term co-occurrences [15].
They have trouble with semantics and generalizing beyond
the explicit features observed in training [16]-[18]. Lastly,
language models, including software language models, based
on n-grams are quickly overwhelmed by the curse of dimen-
sionality [16], so the effective amount of context is limited.

How can we improve the performance at SE tasks (e.g.,
code suggestion) based on software language models? In order
to improve the quality of software language models, we must
improve the representation power of the abstractions we use,
so the goal of this paper is to marry deep learning and software
language modeling. The purpose of applying deep learning to
software language modeling is to improve the quality of the
underlying abstractions for numerous SE tasks, viz. code sug-
gestion [5], [12], deriving readable string test inputs to reduce

human oracle cost [7], predicting programmer comments to
improve search over code bases and code categorization [8],
improving error reporting [10], generating feasible test cases to
improve coverage [11], improving stylistic consistency to aid
readability and maintainability [13], and code migration [19]—
[21]. Thus, we make the following contributions:

e We introduce deep learning to SE research, specifically,
software language modeling. Deep learning, a nascent
field in machine learning, will provide the SE commu-
nity with new ways to mine and analyze sequential data
to support SE tasks.

e We motivate deep learning algorithms for software lan-
guage modeling by clearly distinguishing them from
state-of-the-practice software language models.

e We show that deep learning induces high-quality soft-
ware language models compared to state-of-the-practice
models using an intrinsic evaluation metric [4]. Then we
demonstrate its effectiveness at a practical SE task.

e Our work is the first step in a new space of models
and applications. While we focus on applying one deep
architecture to one SE task, we believe deep learning is
teeming with opportunities in SE research. We identify
several avenues for future work, which highlight dif-
ferent ways that deep learning can be used to support
practical SE tasks.

Sec. II will review background on software language mod-
eling and deep learning for NLP. This section will define all the
keywords (e.g., deep architecture, deep learning, deep software
language model) and affirm the purpose of introducing these
state-of-the-art approaches to SE research. Sec. III will pin-
point how this new class of software language models is poised
to perform better at SE tasks by emphasizing their capacity and
expressiveness, as well as their ability to model semantics and
consider rich contexts. Sec. IV will use perplexity (PP), an
intrinsic evaluation metric, to compare the quality of this new
class of software language models to a state-of-the-practice
baseline, and Sec. V will measure the models at a real SE task.
Sec. VI will discuss threats to the validity of our work. Sec. VII
will describe several avenues for future work. One avenue
proposes using deep software language models to support
objectives other than code coverage in model-based testing.
Another avenue proposes using deep software language models
to improve software lexicons. Sec. VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we present background on statistical lan-
guage models and preliminary research applying these models
to software corpora. We focus on how current approaches
to software language modeling can be improved, laying the
foundation for Sec. III, where we show how deep learning can
realize these improvements. Then we define all the keywords
associated with deep learning, before presenting preliminary
research applying deep learning to NLP.

A. Statistical Language Models

A statistical language model is a probability distribution
over sentences in a language [4]. This ostensibly simple

abstraction is remarkably effective for NLP tasks such as
speech recognition and statistical machine translation. In sta-
tistical language modeling, our goal is to find a tractable
representation of a sentence s by way of the joint distribution:

p(s) = [[plwilwi™) = [[plwilwi=}). M
=1 i=1

In practice, we generalize the model’s maximum likelihood
estimates using one of many smoothing techniques [22]. Es-
sentially, these probabilistic automata (i.e., n-grams) measure
the degree of membership of every conceivable sentence in
the language. Sentences frequently observed—in a generative
sense—in the training corpus are judged to be more fluent
than sentences observed less frequently (or not at all). In other
words, we expect a good model to assign a high probability
to a representative test document, or, equivalently, in-domain
out-of-sample cases should have low cross entropy,

1 & i
H,(s) ~ - > logy plwiwi=)).)
=1

Cross entropy is an empirical estimate of how well a language
model predicts terms in a sequence [9]. Likewise, PP = 2/»
estimates the average number of tokens at each point in the test
document [9]. In language modeling, PP is a proxy for quality,
and—as noted by Tu et al. [12]—good quality language models
show great promise in SE applications. Our goal is to propose
powerful abstractions novel to software language modeling
using PP as empirical validation of their efficacy and capacity
to support SE tasks.

B. Applications of Statistical Software Language Models

Hindle et al. [5] demonstrated that language models over
software corpora emit a “naturalness” in the sense that real
programs written by real people have useful statistical prop-
erties, encapsulated in statistical language models, that can
leverage SE tasks. This work was an important first step in
applying natural language abstractions to software corpora, but
n-grams are simple approaches that do not have the capacity
to learn representations that reliably generalize beyond the
explicit features in a training corpus [17]. Furthermore, these
models build limited domain abstractions, and they are quickly
overwhelmed by the curse of dimensionality [5], [16], [23]-
[25]. The expectation in software language modeling research
is that performance at SE tasks will improve with models
more sophisticated than n-grams [5]. The purpose of our
work is to introduce compositional representations that are
designed to process data in stages in a complex architecture.
Each stage transforms internal representations as information
flows from one layer of the architecture to the next [26]. The
feature spaces in a deep learning model are fundamentally
different than the conditional probability tables that constitute
an n-gram model, and the power lies in the fact that these
representations generalize well [26], [27].

Allamanis and Sutton [9] estimated an n-gram from a
software corpus with more than one billion tokens, but we
regard the massive scale as an organic smoothing technique.
The model’s effectiveness is still subject to token distances in
the corpus, where clues behind the n-gram’s relatively short
prefix (or “history”) are elided from the model’s context [16],

[25], [28]. Moreover, the massive scale does not truly solve the
problem of considering tokens’ semantic similarity [16], [25],
[28]. The approach for software language modeling that we
present in Sec. III is designed to consider an arbitrary number
of levels of context, where context takes on a much deeper
meaning than concatenated tokens in a prefix. In our work, the
deep learning model encodes context in a continuous-valued
state vector, encapsulating much richer semantics. Finally,
Allamanis and Sutton [9] conducted experiments where they
collapsed the vocabulary by having the tokenizer replace
identifiers and literals with generic tokens, which was a novel
way to measure the model’s performance on structural aspects
of the code. However, we regard this approach as feature
engineering. In this case, the token types in the corpus are
engineered to solve the specific problem of modeling syntax.
But the essence of deep learning, which underpins our work,
is to design approaches that can automatically discover these
feature spaces [26], [29] to—for instance—capture regularities
at the syntactic, type, scope, and semantic levels [5].

Although Allamanis’ giga-token model over source code
demonstrated improvements in quality, a drawback to esti-
mating n-grams over a massive corpus is losing resolution in
the model. Good resolution yields regularities “endemic” to
particular granularities, e.g., methods, classes, or modules. Of
course, if the training corpus is too small, then the language
model will be brittle for any practical application [14], [30].
A cache-based language model [31], [32] is designed to solve
this optimization problem by interpolating a static model with
a dynamic cache component. Recently, Tu et al. [12] applied
cache models to software corpora:

p(wi|w2:}l+1,0) = apN(wi|w§:}l+1)+ch(wi|w§:}l+1) (3)

where 0 < «,f and a + 8 = 1, ¢ is the list of n-grams
that are stored in the cache, py is a static n-gram model,
and pc is a dynamic cache model. The cache component
encapsulates endemic and specific patterns in source code.
While the cache component is a mechanism for capturing
local context, the context we recur in a deep learning model
will be an expressive continuous-valued state vector, which
is capable of characterizing domain concepts [16], [26] rather
than simply storing auxiliary conditional probability tables like
pc. Consequently, cache-based language models still suffer
from the inability to understand semantic similarity, because
they are fundamentally look-up tables, whereas deep learning
models induce similar representations for token types used in
similar ways [15].

C. Artificial Neural Networks

Connectionism includes an expansive and deep body of
knowledge that pervades artificial intelligence, cognitive psy-
chology, neuroscience, and philosophy, and a rigorous treat-
ment is well beyond the scope of this paper. Connectionist
models comprise neuron-like processing units, and each unit
has an activity level computed from its inputs [33]. In a
feed-forward topology, information in the artificial neural
network flows from input units through hidden units to output
units along connections with adjustable weights. A neural
network architecture specifies intrinsic characteristics such as
the number of units in the input, hidden, and output layers
as well as the number of hidden layers in the network. A

deep architecture comprises many hidden layers. Supervised
learning algorithms discriminatively train [34] the weights to
achieve the desired input-output behavior [35], so the hidden
units automatically learn to represent important features of
the domain [33]. This process of training the weights in a
deep architecture is known as deep learning, and we refer
to software language models based on deep learning as deep
software language models. Accordingly, deep learning mod-
els, including deep software language models, comprise mul-
tiple levels of nonlinear transformations [26]. The canonical
learning algorithm for neural networks is the back-propagation
procedure [35], which allows an arbitrarily connected neural
network to develop internal representations of its environ-
ment [35]. These neural activation patterns, or distributed
representations [36], harness formidable and efficient internal
representations of domain concepts. Units can “participate” in
the representation of more than one concept, which gives way
to representational efficiency (where different pools of units
encode different concepts) and aids generalization [26], [37].

A simple two-layer feed-forward neural network, with
one hidden layer and one output layer, cannot reliably learn
beyond first-order temporal dependencies [38]. This architec-
ture can be augmented with a short-term memory by recurring
the hidden layer, which encapsulates the network’s state, back
to the input layer. The directed cycle provides context for the
current prediction, and this continuous-valued state vector is
fundamentally different than a discrete token in an n-gram’s
history. We can provide more context by extending the recur-
rence and considering an arbitrary number of levels of context.
From a temporal perspective, this recurrent neural network
(RNN) can be viewed as a very deep neural network [23],
[39]-[42], where depth is the length of the longest path from
an input node to an output node, and the purpose of the depth
in this case is to reliably model temporal dependencies. The
depth of a RNN is evident when you unfold the recurrence
in time and measure the path from any unit in the deepest
state vector to any output unit. Deep architectures like RNNs
lie at the forefront of machine learning and NLP, but we
are not indiscriminately introducing complexity. We expect
these approaches will yield tremendous advances in SE as they
already have in other fields.

D. Applications of Neural Network Language Models

Connectionist models for NLP go back at least as far as
Elman [43], who used them to represent lexical categories,
and Miikkulainen and Dyer [44], who developed a mechanism
for building distributed representations for communication in
a parallel distributed processing network. Bengio et al. [16]
proposed a statistical model of natural language based on
neural networks to learn distributed representations for words
to allay the curse of dimensonality: One training sentence
increases the probability of a combinatorial number of similar
sentences [16]. Sequences of words were modeled by agglu-
tinating the word representations of consecutive words in the
corpus into a single pattern to be presented to the network.
Bengio also constructed model ensembles by combining a
neural network language model with low-order n-grams and
observed that mixing the neural network’s posterior distribu-
tion with an interpolated trigram improved the performance.
This work also measured the performance of the model after
adding direct connections from nodes in the projection layer

to output nodes, but the topology of this network does not
constitute a deep architecture. This model represents history by
presenting n-gram patterns to the network, whereas our work
is based on a network which considers an arbitrary number of
contextual levels to inform predictions.

Our primary related work is the work by Mikolov [25],
who excised the projection layer in Bengio’s architecture [16]
and added recurrent connections [45] from the hidden layer
back to the input layer to form a RNN. Representing context
with recurrent connections rather than patterns of n-grams
is what distinguishes Mikolov’s recurrent architecture from
Bengio’s feed-forward architecture. Mikolov reported improve-
ments using RNNs over feed-forward neural networks [25]
and implemented a toolkit [46] for training, evaluating, and
using RNN language models. The package implements several
heuristics for controlling the computational complexity of
training RNNs [47]. Recently, Raychev et al. [48] proposed a
tool based in part on Mikolov’s package, RNNs, and program
analysis techniques for synthesizing API completions.

III. A DEEP SOFTWARE LANGUAGE MODEL

In this section, we specify a deep architecture for software
language modeling and pinpoint how this new class of models
is poised to improve the performance at SE tasks that use
language models. We begin with the ubiquitous two-layer feed-
forward neural network. As noted in Sec. II, these models
cannot reliably learn beyond first-order temporal dependencies,
so Elman networks augment the architecture with a short-term
memory mechanism [43]. RNNs extend Elman networks by
considering an arbitrary number of levels of context. RNNs
are state-of-the-art models for NLP, but they are expensive
to train, so a number of heuristics have been developed to
control the complexity [47]. One heuristic is designed to
reduce the complexity of computing the posterior distribution
for each training example by factorizing the output layer and
organizing the tokens into classes [49], [50]. Another heuristic
involves training a maximum entropy model with a RNN
by implementing direct connections between input units and
output units [47].

Feed-forward networks. A pattern is presented to a feed-
forward neural network by setting the value of each unit in the
network’s input layer x to the pattern’s corresponding value.
For instance, given a software corpus C of lexically analyzed
tokens, we can represent a token w in the vocabulary V¢ using
one-hot encoding! and set w; = x;. The token is projected onto
a feature space F by an affine transformation p; = a;;x; +b;.
This transformation (or “pre-activation”) is a fundamental
point of divergence from models like n-grams. Then each p;
is transformed by a differentiable, nonlinear function f such
that z; = f(p;) where z; are the units that comprise the
hidden layer z. The size of z (i.e., |z|) is an example of a
“hyperparameter” [26], and adjusting this hyperparameter will
regulate the model’s capacity such that models with larger
hidden layers yield more capacity [51], [52]. Practical choices
for f include the logistic sigmoid, the hyperbolic tangent, and
the rectifier [53]. These “activation” functions enable highly
nonlinear and supremely expressive models [23].

'In a one-hot encoded vector, one component is equal to one, and every
other component is equal to zero, e.g., w = (0,...,0,1,0,...,0).

After learning weights from x to z, when a fresh token
is presented to the network, the units z; will fire with vary-
ing intensities—analyzing the learned features—and ascribe
a point in F to the token, effectively inducing clusters of
examples in F. These clusters enable a connectionist soft-
ware language model to generalize beyond simple Markov
chains in C like n-grams and model semantics. The hidden
units are transformed g, = fj;z; (omitting all bias terms
going forward) and activated by a function g in the output
layer y such that y, = g(qx). For multinomial classification
problems, such as predicting the next token in source code,
the softmax function activates values in the output layer
such that p(yg|w) = g(gr). In software language modeling,
propagating a token w(t) from x through z to y yields a
posterior distribution over V¢, and the model predicts the next
token w(t + 1) in a sequence:

w(t+1) = argr}:laxp(ykIw(t))- “)

We require an algorithm for learning 6 = {a, 8} from C, i.e.,
maximizing the likelihood function,

C]

£(0) = [p(w(t + Dw(t).6). ©)

Equivalently, we can minimize the negative log-likelihood by
training 6 using stochastic gradient descent [54]. For each
w € C, we compute the gradient of the error in the output
layer, using a cross entropy criterion, and propagate this error
back through the network [35], using the chain rule to evaluate
partial derivatives of the error function with respect to the
weights, before updating the weights. Overfitting is a concern
since these models have the capacity to learn very complex
representations, so 6 is typically regularized [16], [18], [25].

Elman networks. The immediate concern with the model
(Eq. (4)) is the inability to reliably learn beyond first-order
temporal dependencies. n-grams encode “temporal” dependen-
cies by learning tables of smoothed conditional probability dis-
tributions over a large number of prefixes. On the other hand,
connectionist models can represent histories much more com-
pactly. Specifically, an Elman network [43] augments a feed-
forward network with a simple short-term memory mechanism.
The short-term memory is realized by copying the hidden state
z(t—1) back to the input layer x(¢) and learning more weights
v to influence the hidden activations. This recurrence provides
context for the current prediction. Thus, the input layer = in
an Elman network is essentially a concatenation of w(t) and
z(t — 1), ie., z;(t) = (w(t),z(t — 1));. In a feed-forward
network, the pre-activation in z took the form p; = aj;x;,
but after recurring the state vector, the pre-activation in z
takes the form pj(t) = aﬂwi(t) + ’)/ijj(t — 1) = Oéjillii(t),
where « is simply a concatenation of a;; and 7;;, and the
model becomes § = {«, 8}. The cost of learning an additional
O(m?) parameters, where m = |z|, is met with improved
representation power over sequences of software tokens.

Recurrent networks. A RNN (Fig. 1) extends the memory
bank in an Elman network for an arbitrary number of levels
of context—though there may be practical limits to the depth
of the recurrence [55]. Therefore, because of the gradient
problem, we typically truncate the back-propagation through
time procedure [56]. Parenthetically, there are other ways

w(l) w(2) w3) w4) w®) w6) w@) w®)

int [] list = null 7 </s>

Fig. 1. RNN UNFOLDED IN TIME. The depth of a RNN is evident when
the recurrence is unfolded in time. Time steps correspond to software tokens
w(t) in a corpus, where w(0) = <s>. Each node in the figure represents a
vector of units. White nodes are one-hot token representations; gray nodes are
continuous-valued, hidden states; black nodes represent posterior distributions
over the vocabulary. Units in the state vectors (gray nodes) compute their
activation as a function of the current token and the previous state. Regarding
the depth in this notional model, y(8) is a function of w(8), z(7), yet z(7) is
a function of w(7), z(6), etc. Hence, predictions are informed by processing
data in the past using multiple levels of nonlinear transformations.

to control this problem [25], [57], [58], but we omit these
implementation details here. As the error is back-propagated
through time in a RNN, each level of temporal context
has an abating amount of influence on training 7, which is
shared across time. This weight sharing yields an efficient
representation compared to n-grams—which are hampered
by the curse of dimensionality as they try to encode deeper
contexts—and persisting a sequence of state vectors is much
more expressive, in terms of discriminative power, than hard-
coded prefixes. Interestingly, if 7 is the number of time steps
the error is back-propagated through time, the network is
still capable of learning information longer than 7 steps [25].
However, while a RNN is capable of learning powerful repre-
sentations, it has some computationally expensive components,
e.g., the posterior distribution in the output layer. Massive
software repositories have a daunting challenge that arguably
far exceeds the same problem in natural languages (including
highly inflective natural languages), which is the size of the
vocabulary. Computing the softmax function over extremely
large vocabularies |C| X € times, where ¢ is the number of
training epochs, is nontrivial. One solution to controlling this
complexity is to factorize the output layer [3], [17], [50],
[59]. Using class-based output layers has been shown to yield
15-30 times speed-up [25]. Direct connections are another
implementation detail designed to improve performance. Ben-
gio et al. [16] implemented direct connections from units
in the projection layer to output units. The authors reported
the connections did not help the model generalize from their
relatively small corpus, but the connections did help reduce
the training time. Mikolov [47] proposed direct connections
from input units to output units and cast these connections
as a maximum entropy model which can be trained with the
neural network using stochastic gradient descent. The only
change to the model specification is the addition of a term
in the output pre-activation to account for the connections.
The direct connections are reported to have yielded significant
performance gains with respect to PP and word error rate [25].

Now, we are ready to present a deep architecture for
software language modeling, specified in Eq. (6)—(8), without

TABLE 1. STATISTICS ON THE CORPORA USED FOR THE STUDY

Corpus Projects Tokens Unique
Training 732 4,979,346 90,415
Development 125 1,000,581 19,816
Testing 173 1,364,515 32,124
Total 1,030 7,344,442 125,181

implementation details like class-based output layers and direct
connections for clarity:

zi(t) = (w(t), z(t = 1)); ©)
zj(t) = flajizi(t)) (7
Y (t) = 9(Brjz;(t)) ®
where a = concatenate(a,), f(u;) = sigmoid(u;), and

g(ug) = softmax(uy). The model is similar to Eq. (4), except
we present more than the current token to the network, i.e.,
x(t) rather than simply w(t). For example, in Fig. 1, the input
layer x(5) comprises the two red nodes (Eq. (6)), « con-
catenates the linear transformations represented by the dashed
arrows, and the network computes (Eq. (7)—(8)) a posterior
distribution (blue node). The argument of the maximum of this
distribution is the network’s prediction, which (in this case)
should be the Java literal null.

IV. EMPIRICAL VALIDATION

The goal of our empirical study was to evaluate the effec-
tiveness and expressiveness of deep software language models
with the purpose of providing better abstractions for software
language modeling and its associated SE tasks. We used PP, an
intrinsic evaluation metric that estimates the average number
of tokens to choose from at each point in a sequence, as the
criterion. We began by computing the PP of several different
n-gram configurations by varying the order n and adding a
dynamic cache component to establish a state-of-the-practice
baseline in software language modeling. Then we instantiated
several deep software language models and computed the
PP of these models with varying amounts of capacity and
context over the same software corpus. Next, we selected the
most performant architectures and interpolated several model
instances to aid generalization and assess the performance
of committees of software language models. Finally, deep
software language models are capable online learners, so we
also measured the performance of models that learned as they
tested on out-of-domain samples.

A. Methodology and Data Collection

To build the corpora for our study, we used the JFlex
scanner generator [60], which was packaged with a full Java
lexical analyzer, to tokenize the source code in a repository
of 16,221 Java projects cloned from GitHub. We augmented
the production rules in the lexer since it originally did not
support Java annotations. After tokenizing the files in each
project, we sampled projects from the repository without
replacement, querying enough projects to gather over seven
million tokens. Then we randomly partitioned the projects
into mutually exclusive training, development, and testing
sets where approximately five million tokens were allotted
for training, one million tokens for development, and one

=)

0
2 3 4 5 6 7 8 9

Fig. 2. PP V. ORDER. PP of back-off (red) and interpolated (blue) models
at different orders (from two to nine). The 5-gram and 8-gram were the top
performing back-off and interpolated models, respectively.

million tokens for testing. The purpose of a training set is
to learn a useful representation of the domain. For example,
a high-quality software language model is useful, because
it can effectively predict the next token in a sequence. In
a supervised setting, the training set couples input and its
corresponding target to guide the form of the representation. To
learn a good model, the supervised learning algorithm presents
a token w(t) to the model and, in the case of deep software
language models, the back-propagation through time algorithm
(with a gradient descent step) trains the model using the next
token w(t + 1) in the sequence. Generally, the purpose of
a development set is to govern hyperparameters such as the
learning rate in gradient searches. The model is evaluated
on the development set after each training epoch, and its
relative performance on the development set can be used to
judge convergence. It is important to note that data in the
development set are not used to learn any of the model’s
parameters. For example, in the case of deep software language
models, none of the weights are modified as the model is
evaluated on the development set. Once the model is trained,
it can be evaluated on a testing set. Notably, by partitioning
the projects into mutually exclusive training, development, and
testing sets, all of our experiments simulated new project set-
tings (or “greenfield development”) [12]. Training and testing
on distinct domains presents unique challenges for corpus-
based models like software language models [12].

For each set of projects, we removed blank lines from
the files and randomly agglutinated the source files to form
a training corpus, a development corpus, and a testing corpus.
Tab. I lists summary statistics for each corpus, including the
number of projects used to form each corpus, the total number
of tokens in each corpus, and the number of unique tokens in
each corpus. The total unique tokens denotes the number of
unique tokens in a concatenated corpus of all three corpora.
From these corpora, we used standard text normalization
techniques that are used in the NLP community [25]. We
used regular expressions to replace integers, real numbers,
exponential notation, and hexadecimal numbers with a generic
<num> token. After replacing numbers, we replaced singletons
in each corpus as well as every token in the development
and testing corpora that did not appear in the training corpus
with <unk> to build an open vocabulary system [4] with a
vocabulary size of 71,293.

B. State-of-the-Practice Software Language Models

In practice, n-grams’ maximum likelihood estimates are
discounted [22], and the probability mass gleaned from the
observed n-grams is redistributed using either back-off [61] or
interpolation [62]. We used SRILM [63] to estimate back-off

30

20
10 50 100 500

Fig. 3. PP V. CACHE SIZE. PP of 5-gram back-off (red) and interpolated 8-
gram interpolated (blue) models with unigram caches varying in size from 10
to 10,000. The 100-token cache yielded the best result for each model type.

=)

1000 5000 10000

and interpolated n-grams, from our training corpus, varying
the order from two to nine. Each model was smoothed using
modified Kneser-Ney [22] with an unknown token and no cut-
offs. Fig. 2 plots PP versus order for each model. The models’
results on the test corpus are virtually indistinguishable for
this dataset, and both models appear to saturate near order
five. This saturation is consistent with other studies on similar
corpora [5]. With respect to PP, the most performant back-off
model was the 5-gram (PP = 19.8911) and the most perfor-
mant interpolated model was the 8-gram (PP = 19.9815). We
augmented each of the models with a unigram cache, varying
the size of the cache from 10 to 10,000. The dynamic unigram
cache model was linearly interpolated with the static n-gram
model using a mixing coefficient of 0.05. Fig. 3 plots PP versus
unigram cache size for both models. The 100-token unigram
cache component effectively improves the performance for
both the 5-gram back-off model (PP = 12.3170) and the
interpolated 8-gram model (PP = 12.2209). These performance
gains from using a dynamic cache component are consistent
with previous empirical studies [12].

We used the interpolated 8-gram model with a 100-token
unigram cache (PP = 12.2209) as the baseline.

C. State-of-the-Art Software Language Models

After computing a baseline using state-of-the-practice soft-
ware language models, we configured a RNN. These models
have expansive design spaces spanned by several hyperpa-
rameters. We chose to measure the performance by varying
the size m of the hidden layer and the number of steps T
in the truncated back-propagation through time algorithm. To
train and test RNNs, we used the RNNLM Toolkit [46]. We
instantiated 10 models with the same random seed, but we
varied m from 50 to 500 units with sigmoid activations.> For
each model, we truncated the back-propagation through time
algorithm at 7 = 10 levels, updating the context every 10
iterations, and factorized the output layer into 268 classes.
We used the default starting learning rate of 0.1 and the
default /5 regularization parameter of 1076. The learning
rate was annealed during training by monitoring the model’s
performance on the development set: After each training
epoch, PP on the development set was computed to govern the
learning rate schedule [46]. Finally, to determine the number
of direct connections from input nodes to output nodes, we
built a frequency distribution of the token types in the training

2While the RNNLM Toolkit uses si gmoid activations, the toolkit implements
a simple mechanism to control the gradient problem by limiting the maximum
size of gradients of errors that get accumulated in the hidden units [25].

LevelsE5H10M15020
30

20
n .
0

50

Fig. 4. PP V. HIDDEN SIZE AND DEPTH. PP of RNNs with hidden layers
varying in size. Initially, we fixed the number of levels of context at 10. Then,
for each 200 < m < 400, we varied the number of levels of context.

350 400 450 500

300

100 150 200 250

corpus. We found that 995 token types covered 80.0% of
the tokens in the training corpus, so we set the number of
direct connections equal to 1,000. Fig. 4 plots PP versus m,
where the deep models are shown to outperform—without a
dynamic auxiliary component like a cache during testing—
the baseline on this dataset, with the best results between
200 and 400 units. Next, we selected the five models with
m between 200 and 400. For each model, we varied the
number of levels of context 7 = 5,15, 20, keeping the same
configuration for every other parameter. Fig. 4 plots PP for
each 200 < m < 400 at four different values for 7. For our
dataset, the most performant models in our (m, 7) design space
were (300, 20) (PP = 10.1960) and (400, 5) (PP = 10.1721).

Deep learning (PP = 10.1721) beat the baseline.

D. Committees of Deep Software Language Models

Neural network language models are initialized with small
random weights. Different instantiations will likely lead to
models finding different local minima on the error surface,
and models converging to different local minima may have
different perspectives on the task. Therefore, we can construct
committees of software language models by simply averaging
p(y|z) for each model instance [64]. Bengio et al. [16] reported
performance gains by combining a neural network language
model with an interpolated trigram, and the authors noted
the performance gains suggest that the models make errors
in different places. Likewise, Schwenk and Gauvain [18]
interpolated neural network language models with back-off
models to improve the performance in a speech recognition
system. Mikolov [25] reported performance gains by com-
bining several RNN language models. We instantiated five
RNN-(300, 20) models and five RNN-(400, 5) models with
different random seeds. Tab. II lists the results of combining
several software language models on our dataset, e.g., RNN-
(300, 20)-1,2 denotes the linear interpolation of two RNN-
(300, 20) models—one model instantiated with random seed
1 and the another instantiated with random seed 2—where the
coefficients in the mixture are 0.50. A/ denotes an interpolated
8-gram model with a 100-token unigram cache. So, RNN-
(300, 20)-1,2,3,4,5,N represents the combination of five deep
models and an interpolated n-gram model, where the combi-
nation of deep models has a weight of 0.60 in the mixture
and the m-gram has a weight of 0.40. The top performing
committee, RNN-(300, 20)-1,2,3,4,5,N/, achieves PP = 7.8512,
which is equivalent to a cross-entropy score of 2.9729 bits.
Recall these performance scores are computed using a training
corpus of 732 randomly chosen projects, and the test corpus is

TABLE II. COMMITTEES OF SOFTWARE LANGUAGE MODELS

Committee Coefficients PP

RNN-(300, 20)-1,2 0.50 9.6467
RNN-(300, 20)-1,2,3 0.33 9.5060
RNN-(300, 20)-1,2,3,4 0.25 9.4549
RNN-(300, 20)-1,2,3,4,5 0.20 9.3534
RNN-(300, 20)-1,2,3,4,5N 0.60 7.8512
RNN-(400, 5)-1,2 0.50 9.5775
RNN-(400, 5)-1,2,3 0.33 9.9305
RNN-(400, 5)-1,2,3,4 0.25 9.6265
RNN-(400, 5)-1,2,3,4,5 0.20 9.5326
RNN-(400, 5)-1,2,3,4,5.N 0.60 7.9346

another random collection of 173 out-of-domain projects. The
committee improves the performance as compared to instances
of each model, e.g., RNN-(300, 20)-1 (PP = 10.1960) and N’
(PP = 12.2209).

Constructing committees of deep software language
models can aid generalization and improve performance.

E. Deep Software Language Models Online

Cache-based language models separate static concerns
from dynamic concerns using a convex combination of com-
ponents, where a large static model is interpolated with a
small dynamic model. In software language modeling, this
small dynamic model has been used to capture local patterns
in source code [12]. Neural network language models are
capable of learning online by back-propagating the error for
each test document and performing a gradient search thereby
enabling adaptation. Tab. III lists the results of evaluating
models online on our dataset. RNNs denotes a static model;
RNNd denotes a dynamic model; RNNc denotes a committee
of static and dynamic models using the corresponding mixture
coefficient. A/ denotes an interpolated 8-gram model with
a 100-token unigram cache as above. For example, RNNs-
(300, 20)-5 denotes a static model with 300 hidden units and 20
levels of context instantiated with random seed 5, and RNNd-
(300, 20)-5 denotes a similarly configured model that learns
as it tests. RNNc-(300, 20)-5 denotes a committee comprising
the static and dynamic models whose votes are weighted by
the coefficients. The static and dynamic models were equally
weighted in our experiments. Evaluating models online, where
the deep software models can learn as they test, significantly
improved the performance on our dataset.

For deep software models online (PP = 3.5958), the
cross entropy scores are on the order of two bits.

When deep software language models are online, they can be
incrementally trained. Thus, in new project settings, online
learners are able to automatically adapt as the project is being
developed. In the committee of static and dynamic models, the
static component can be regarded as weak prior knowledge
of the domain in new project settings, and the dynamic
component acts as an incremental learner, which adapts as
the project is being developed. Although the dynamic models
performed noticeably better on our dataset, one potential

TABLE III. ONLINE MODELS

Model Coefficients PP

RNNs-(300, 20)-5 - 10.1686
RNNd-(300, 20)-5 - 3.6518
RNNc-(300, 20)-5 0.50 3.9856
RNNs-(400, 5)-1 - 10.1712
RNNd-(400, 5)-1 - 3.5958
RNNc-(400, 5)-1 0.50 3.7480

benefit of sacrificing some of the performance gain by using a
committee is that static models can serve as anchors and help
prevent the model from being “poisoned,” i.e., degenerated by
learning unreliable information online.

V. CASE STUuDY: CODE SUGGESTION

In Sec. IV, our intrinsic evaluation compared the quality of
deep software language models to state-of-the-practice models.
In this section, we conduct an extrinsic evaluation [4] to mea-
sure the performance of deep software language models at a
real SE task, code suggestion, and we show that deep learning
improves the performance at an SE task based on software
language models. A code suggestion engine recommends the
next token given the context [5], [12]. The goal of the study
was to measure the accuracy of deep software language models
for code suggestion with the purpose of providing better tools
and automated techniques to aid software development and
maintenance. The context of the study consisted of the same
corpora listed in Tab. I. The quality focus concerned code
suggestion of tokens in the testing corpus. We examined the
following research questions:

RQ1 Do deep learning models (Sec. III) significantly
outperform state-of-the-practice models (Sec. II) at
code suggestion on our dataset?

Are there any distinguishing characteristics of the
test documents on which the deep learning models
achieve considerably better performance as com-
pared to state-of-the-practice models?

RQ2

RQ1. We used Top-k accuracy to compare deep soft-
ware language models to state-of-the-practice models at code
suggestion. Top-k accuracy has been used in previous code
suggestion studies [5], [12]. Tab. IV lists our Top-k results,
where k = 1,5, 10, for the most performant static and dynamic
models of each model type. The deep learning models appear
to outperform the n-grams at each level, so we designed
comparative experiments to measure the statistical significance
of our results. The treatments in our experimental design
were the language models. The experimental units were the
sentences in the test corpus, and the responses were the Top-
k scores. The null hypothesis stated there was no difference
in performance. The (two-tailed) research hypothesis stated
there was a difference in performance. We tested these hy-
potheses at o = 0.05 using the Wilcoxon test [65], a nonpa-
rameteric test, to determine whether the reported differences
were statistically significant. Comparing the best deep software
language model (RNNd-(300, 20)-5) to the best n-gram model
(interpolated 8-gram), we found p < 2.2 x 10716 < 0.05 = «
in all three cases (i.e., Top-1, Top-5, and Top-10); therefore,
we rejected the null hypothesis, suggesting that a statistically

TABLE IV. ToP-K ACCURACY (%)
Model Top-1 Top-5 Top-10
Interpolated 8-gram 49.7 71.3 78.1
Interpolated 8-gram 100-cache 4.8 69.5 78.5
RNNs-(400, 5)-1 61.1 78.4 81.4
RNNd-(300, 20)-5 72.2 88.4 92.0

significant difference existed. We interpreted the difference as
deep learning realizing an improvement at the code suggestion
task. Regarding the effect size (Cliff’s §), we observed a
medium effect size for Top-1, a large effect size for Top-5,
and a medium effect size for Top-10.

Deep learning significantly outperformed n-grams at
code suggestion on our dataset.

RQ2. After assessing the significance of applying deep
learning to a real SE task, we conducted an exploratory
study on the performance results. We began by sorting all the
sentences in the test corpus by their Top-10% (according to
the n-gram), i.e., the ratio of the number of tokens (including
</s>) in the sentence suggested in the Top-10 divided by
the total number of tokens in the sentence. We observed that
the sentences at the top of the list with low Top-10 scores
were relatively short in length. Some of these sentences only
comprised annotations (e.g., @Before and @Test) and others
only comprised keywords (e.g., else, try, and finally). Given
the poor performance of n-grams on these test documents, we
were interested in comparing the performance of deep software
language models on these sentences. We designed another
set of experiments to compare the performance of the two
models; however, in these experiments, the experimental units
were sentences of length one, two, or three, respectively. Each
experiment compared the models’ Top-k performances at each
sentence length. The null hypothesis for each comparative
experiment stated there was no difference in performance. The
(two-tailed) research hypothesis stated there was a difference
in performance. We tested these hypotheses as above. All
comparisons yielded statistically significant differences, where
p < 2.2 x 10716 < 0.05 = o; therefore, we rejected the null
hypothesis (for each comparison) and interpreted the difference
as improved performance. Regarding the effect size (Cliff’s §),
we only found large effect sizes for Top-5, where the sentence
length was equal to two, and for Top-10, where the sentence
length was equal to two or three.

Our results show that deep learning improves the perfor-
mance at a SE task based on software language models. More-
over, there may be interesting cases in software corpora where
deep learning outperforms models like n-grams. Sentences
of length one or two tokens are arguably more germane to
software corpora than natural language corpora.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship
between theory and observation and relate to possible mea-
surement imprecisions when extracting data used in a study. In
mining the Git repositories and collecting the projects for our

analysis, we relied on both the GitHub API and the git utility.
These tools are under active development with a community
supporting them. Additionally, the GitHub API is the primary
interface to extract project information. We cannot exclude
imprecisions due to the implementation of such an API.

Threats to internal validity can be related to confounding
factors internal to a study that could have affected the results.
In our study, we relied on RNNLM to train and evaluate
deep software language models. While RNNLM is a reliable
implementation that has been used in a number of NLP
experiments [46], [47], [49], it is still an evolving project.
However, our results and trends are in line with those that
have been obtained in the field of NLP; thus, we are confident
that the results are reliable.

Threats to external validity represent the ability to gen-
eralize the observations in a study. We do not claim that
the obtained results can be observed across other repositories
or projects, especially projects written in other programming
languages. Additionally, our dataset is representative of only
repositories hosted on GitHub, so we do not claim that the
results generalize to all Java projects. GitHub’s exponential
growth and popularity as a public forge indicates that it
represents a large portion of the open source community. While
GitHub contains a large number of repositories, it may not
necessarily be a comprehensive set of all open source projects
or even all Java projects. However, we analyzed the diversity
of the projects from the proposed metrics in Nagappan et
al. [66] and compared our dataset to the projects available on
Boa [67] and found 1,556 projects out of the 16,221 projects.
We also analyzed the diversity of the 1,030 tokenized projects
in our training, development, and test corpora, and we were
able to match 128 projects. Our entire dataset had a diversity
score of 0.3455, and the subset that we used to conduct
our language modeling experiments had a diversity score of
0.2208. According to our dimensions, these values suggest
that approximately 10% of our entire dataset covers one-third
of the open source projects, and approximately 10% of our
corpus covers one-fifth of open source projects. In our diversity
analysis, we considered six metrics: programming languages,
developers, project age, number of committers, number of re-
visions, and number of programming languages. For the entire
dataset, we had scores of 0.45, 0.99, 1.00, 0.99, 0.96, and 0.99,
respectively. For the study corpora, we had scores of 0.38, 0.98,
1.00, 0.98, 0.92, and 1.00, respectively. These results indicate
that both our dataset and our corpora have high-dimensional
diversity coverage for the relevant dimensions to our study.
Since we consider only Java projects, it is expected that our
representativeness would be rather low in the programming
languages dimension. Thus, our results are representative of
a proportion of the open source community; in particular,
we have high coverage within our key dimensions. Further
evaluation of projects across other open source repositories and
other programming languages would be necessary to validate
our observations in a more general context. It is also important
to note that we only consider open source projects.

VII. AVENUES FOR FUTURE WORK

There are two principal research components in our future
work on deep software language modeling and, generally,
using deep learning to mine sequential SE data. One research

component examines extensions of the models. One set of
extensions involves search problems, such as hyperparameter
optimization, designed to improve deep learning-based ap-
proaches (e.g., our deep software language models) for mining
sequential SE data. Another set of extensions involves entirely
new architectures and models, such as stacked RNNs [57]
and recursive neural networks [68], for mining sequential SE
data. The other research component examines applications
of deep architectures to SE tasks. We present three of these
applications, informally organized according to features—from
(concrete) token types to (abstract) conceptualizations. The
first application, model-based testing, is an example of an SE
task that can benefit from our deep software language models,
where the raw features do not have to be words per se. As we
noted in Sec. I, the nature of the terms depends on the domain,
and this application supports that claim. The next application,
software lexicon, shows that deep software language models
are not simply useful for their high-quality output. We can
also use their internal representations and feature detectors
to support SE tasks. Thus, the same model that serves as
a code suggestion engine can also be used to improve the
software lexicon. Finally, while RNNs are deep in time, our last
application, conceptualizing software artifacts, suggests that
deep learning can be used to learn hierarchies of features to
gradually abstract SE artifacts from token streams to useful
concepts to support software maintenance and evolution.

Hyperparameter Optimization. Deep architectures com-
prise multiple levels of nonlinear transformations. Different
subspaces in a deep architecture are trained as information
flows forward and supervision propagates back through the
network, but models like RNNs entail a considerable number
of hyperparameters for governing different facets of the archi-
tecture, e.g., the size of the hidden layer, the number of levels
before truncating the back-propagation through time algorithm,
the number of classes for partitioning token types in the output
layer, the learning rate, and the amount of regularization. We
believe this translates to an expansive design space with new
and important search problems for SE research to optimize
these complex architectures over SE datasets for SE tasks.
SE research has examined similar problems in different con-
texts [69]. Additionally, recent research in the machine learn-
ing community has proposed methodologies for automatically
configuring the optimal set of hyperparameters [70], [71], but
these approaches have not been measured using SE datasets in
the context of SE tasks.

Model-based Testing. Tonella et al. [11] demonstrated how
interpolating a spectrum of low-order Markov models inferred
from an event log can be used to improve code coverage, since
“backing off” increases the likelihood of deriving feasible test
cases. Conceptually, the work by Tonella et al. uses “natural-
ness” (Sec. II) at different scales to improve code coverage,
but we envision much more opportunity in model-based testing
by exploiting the posterior distribution in the output layer
of a deep software language model. While the posterior can
specify natural event sequences, we can also infer unnatural
event sequences from this model. Our work will segment
the posterior’s domain into a natural space and an unnatural
space. In this sense, we propose a novel interpretation of
deep software language models as natural bits to support
other aspects of software testing, e.g., destructive testing and
regression testing. Moreover, the natural space in this model is

vy @ @ @ 0 ©

w @—0—0—0—0—0
O—O0—0O0—0—0—0

2 O—0O0—0—0—0—0

w O O O O O O

w(l) w(2) w(3)

Fig. 5. STACKED RNN UNFOLDED IN TIME. While RNNs are deep in time,
stacking RNNs yield architectures that are deep in both time and space. The
depth in space (e.g., red nodes at time ¢) enables hierarchical processing which
potentially learns information across multiple time scales [40], [57].

not fixed. We envision a framework for adapting this space by
dynamically toggling event sequences as natural or unnatural
depending on the evidence to steer the model online according
to specific objectives (other than code coverage).

Software Lexicon. Software maintenance is hard. Since
program comprehension is one contributing factor, improving
the software lexicon is one way to support critical mainte-
nance tasks. We envision a novel lexicon broker to negotiate
commits with the expressed goal of supporting program com-
prehension by consolidating concepts and, to this end, serving
as a recommendation engine in cases where developers’ imple-
mentations can be improved. How can we enable this broker?
While a deep software language model can effectively support
many different SE tasks, the architecture’s components may
be used for other pertinent SE tasks such as learning software
synonyms in massive repositories [72]-[76]. Recall the deep
software language model embeds a token vector in a low-
dimensional subspace using a linear projection a (Sec. III).
This is perhaps best understood by thinking of the vector
aj;w; as a linear combination of the columns of a [77], i.e.,
ajiw; = E?Zl wja.; = a.y € R™*! where 1 < N < n,
m = |z|, and the last equality is because w is one-hot encoded.
So, each column in a represents one token in the vocabulary.
These are contextualized feature vectors which can leverage
intelligent recommendations on improving the lexicon. After
conducting our empirical validation (Sec. IV) and observing
how well the deep software language models performed on our
dataset, we conducted a cursory study of the models’ internal
representations. The purpose of this small exploratory study
was to begin to understand how these models can be analyzed
to address other SE concerns, e.g., token similarity [75]. We
extracted the token embeddings a.; € R3%9%! from our RNN's-
(300, 20)-1 model (Sec. IV). Tab. V lists the two closest tokens,
using Euclidean distance, for three distinct queries. Of the
71,293 token types in the vocabulary (Sec. IV), the two closest
tokens to getX were two other getter methods that appear to be
related to position or size. Again, of the 71,293 token types,
the closest tokens to transient were two other Java keywords.
Finally, the two closest tokens to @BeforeClass were two other
Java annotations. While these are intriguing anecdotes, this
is very preliminary work in this space, but we believe these

TABLE V. QUERYING SIMILAR TOKENS USING TOKEN EMBEDDINGS

Query Closest Tokens
getX getY, getWidth
transient native, volatile
@BeforeClass @ AfterClass, @Extension

cursory observations warrant a deeper and much more rigorous
examination in different SE contexts. Finally, it is important
to note that architectures, e.g. stacked RNNs (Fig. 5), that are
deep in both time and space, provide more opportunity for
using components for other SE tasks.

Language Models for Software Evolution. Sutskever et
al. [23] trained a type of RNN for character-level language
modeling and found the model learned to balance parentheses
and quotes over distances as long as 30 characters. They note
that a character-level n-gram language model could only do
this by modeling 31-grams. We believe this has some partic-
ularly important implications for modeling software corpora
because of software concerns like scope and encapsulation. If
a software language model is capable of balancing { and } in
source code, then perhaps deep architectures can be designed
with enough capacity to reliably predict the next word in a
sequence “in time,” yet—at a higher level of abstraction—
the architecture is capable of representing invariant features
of the evolution of the software system “in space.” We see
these feature hierarchies as gateways to entirely novel methods
for classifying software systems in many different software
maintenance and evolution contexts.

VIII. CONCLUSION

State-of-the-practice software language models are bound
to the n-gram features that are apparent by simply scanning a
corpus and aggregating counts of specific and discrete token
sequences (Sec. II). On the other hand, deep learning uses
expressive, continuous-valued representations that are capable
of learning more robust models (Sec. III). We propose that SE
research, with a wealth of unstructured data, is a unique oppor-
tunity to employ these state-of-the-art approaches. By empiri-
cally demonstrating that a relatively simple RNN configuration
can outperform n-grams and cache-based n-grams with respect
to PP on a Java corpus, deep software language models are
shown to be high-quality software language models (Sec. IV),
capable of showing great promise in SE applications [12].
We also demonstrate an improvement in performance at an
SE task (Sec. V). Finally, we identify avenues for future
work using deep software language models to conduct model-
based testing, improve software lexicons, and support software
maintenance and evolution (Sec. VII). Computer vision, speech
recognition, and other fields have occupied the attention of the
approaches we propose in this paper. Our work is one step—
the first step—toward deep learning software repositories.

ACKNOWLEDGMENT

We would like to thank Abram Hindle from the University
of Alberta for sharing his tools and data from his empirical
study [5]. This work is supported in part by the NSF CCF-
1218129 and NSF-1253837 grants. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

F. Jelinek, Statistical Methods for Speech Recognition. ~Cambridge,
MA, USA: MIT Press, 1997.
P. Koehn, Statistical Machine Translation, 1st ed. New York, NY,

USA: Cambridge University Press, 2010.

J. Goodman, “Classes for fast maximum entropy training,” CoRR, vol.
¢s.CL/0108006, 2001.

D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE *12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 837-847.

T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A

statistical semantic language model for source code,” in Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE *13. New York, NY, USA: ACM, 2013, pp. 532-542.

S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test
inputs using a natural language model to reduce human oracle cost,” in
Proceedings of the 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation, ser. ICST 13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 352-361.

D. Movshovitz-Attias and W. W. Cohen, “Natural language models
for predicting programming comments,” in ACL. Sofia, Bulgaria:
Association for Computational Linguistics, August 2013.

M. Allamanis and C. A. Sutton, “Mining source code repositories at
massive scale using language modeling,” in MSR, 2013, pp. 207-216.

J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just
aren’t natural: Improving error reporting with language models,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR *14. New York, NY, USA: ACM, 2014, pp.
252-261.

P. Tonella, R. Tiella, and D. C. Nguyen, “Interpolated n-grams for model
based testing,” in ICSE, 2014, pp. 562-572.

Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE *14. New York, NY,
USA: ACM, 2014, pp. 269-280.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE ’14. New York, NY, USA: ACM, 2014, pp. 281-293.

R. Rosenfeld, “Two decades of statistical language modeling: Where
do we go from here?” in Proceedings of the IEEE, vol. 88, 2000, pp.
1270-1278.

A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural
probabilistic language models,” in Proceedings of the 29th International
Conference on Machine Learning, 2012, pp. 1751-1758.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137-1155,
Mar. 2003.

F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model,” in Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics. Society for Artificial Intelligence
and Statistics, 2005, pp. 246-252.

H. Schwenk and J.-L. Gauvain, “Training neural network language
models on very large corpora,” in Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Lan-
guage Processing, ser. HLT ’05. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2005, pp. 201-208.

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE *13. New York, NY, USA: ACM, 2013, pp. 651-654.

——, “Migrating code with statistical machine translation,” in Com-
panion Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion *14. New York, NY, USA: ACM,
2014, pp. 544-547.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining API usage mappings for
code migration,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 457-468.

S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” in Proceedings of the 34th Annual
Meeting on Association for Computational Linguistics, ser. ACL ’96.
Stroudsburg, PA, USA: Association for Computational Linguistics,
1996, pp. 310-318.

I. Sutskever, J. Martens, and G. Hinton, “Generating text with recurrent
neural networks,” in Proceedings of the 28th International Conference
on Machine Learning (ICML-11), ser. ICML ’11. New York, NY,
USA: ACM, June 2011, pp. 1017-1024.

E. Arisoy, T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Deep
neural network language models,” in Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-gram Model?
On the Future of Language Modeling for HLT. Montréal, Canada:
Association for Computational Linguistics, June 2012, pp. 20-28.

T. Mikolov, “Statistical language models based on neural networks,”
Ph.D. dissertation, 2012.

Y. Bengio, “Learning deep architectures for Al,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1-127, Jan. 2009.

T. Mikolov, W. tau Yih, and G. Zweig, “Linguistic regularities in con-
tinuous space word representations.” in HLT-NAACL. The Association
for Computational Linguistics, 2013, pp. 746-751.

R. Rosenfeld, “A maximum entropy approach to adaptive statistical
language modeling,” Computer, Speech and Language, vol. 10, pp. 187—
228, 1996.

Y. Bengio, “Deep learning of representations: Looking forward,” in Pro-
ceedings of the First International Conference on Statistical Language
and Speech Processing, ser. SLSP "13. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 1-37.

B.-J. P. Hsu, “Language modeling for limited-data domains,” Ph.D.
dissertation, Cambridge, MA, USA, 2009.

R. Kuhn and R. De Mori, “A cache-based natural language model for
speech recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 6, pp. 570-583, Jun. 1990.

P. Clarkson and A. Robinson, “Language model adaptation using
mixtures and an exponentially decaying cache,” in In Proceedings of
ICASSP-97, 1997, pp. 799-802.

G. E. Hinton, “Connectionist learning procedures,” Artif. Intell., vol. 40,
no. 1-3, pp. 185-234, 1989.

C. M. Bishop and J. Lasserre, “Generative or discrimative? Getting the
best of both worlds,” in Bayesian Statistics 8, International Society for
Bayesian Analysis. Oxford University Pres, 2007, pp. 3-24.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research.” Cambridge, MA, USA: MIT Press, 1988,
ch. Learning Representations by Back-propagating Errors, pp. 696—699.

G. E. Hinton, “Learning distributed representations of concepts,” in
Proceedings of the Eighth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum, 1986, pp. 1-12.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, ‘“Distributed repre-
sentations,” in Parallel Distributed Processing. Volume 1: Foundations.
Cambridge, MA: MIT Press, 1986, ch. 3, pp. 77-109.

N. K. Sinha and M. M. Gupta, Soft Computing and Intelligent Systems:
Theory and Applications, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999.

I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in Proceedings
of the 30th International Conference on Machine Learning (ICML-13),
vol. 28, no. 3. JMLR Workshop and Conference Proceedings, May
2013, pp. 1139-1147.

M. Hermans and B. Schrauwen, “Training and analysing deep recur-
rent neural networks,” in Advances in Neural Information Processing
Systems 26. Curran Associates, Inc., 2013, pp. 190-198.

R. Pascanu, C. Giilgehre, K. Cho, and Y. Bengio, “How to construct
deep recurrent neural networks,” CoRR, vol. abs/1312.6026, 2013.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

0. Irsoy and C. Cardie, “Opinion mining with deep recurrent neural
networks,” in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2014, pp. 720-728.

J. L. Elman, “Finding structure in time,” COGNITIVE SCIENCE,
vol. 14, no. 2, pp. 179-211, 1990.

R. Miikkulainen and M. G. Dyer, “Natural language processing with
modular neural networks and distributed lexicon,” Cognitive Science,
vol. 15, pp. 343-399, 1991.

M. L. Jordan, “Serial order: A parallel distributed processing approach,”
Institute for Cognitive Science, University of California, San Diego,
Tech. Rep. ICS Report 8604, 1986.

T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky,
“RNNLM - Recurrent neural network language modeling toolkit,” in
Proceedings of ASRU 2011. 1EEE Signal Processing Society, 2011,
pp. 1-4.

T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky, “Strate-
gies for training large scale neural network language models,” in ASRU,
2011, pp. 196-201.

V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
’14. New York, NY, USA: ACM, 2014, pp. 419-428.

T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proceed-
ings of the 2011 IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 2011. 1EEE Signal Processing Society,
2011, pp. 5528-5531.

Y. Shi, W. Zhang, J. Liu, and M. T. Johnson, “RNN language model
with word clustering and class-based output layer,” EURASIP J. Audio,
Speech and Music Processing, vol. 2013, p. 22, 2013.

Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” CoRR, vol. abs/1206.5533, 2012.

Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature
learning and deep learning: A review and new perspectives,” CoRR,
vol. abs/1206.5538, 2012.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in JMLR W&CP: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2011),
Apr. 2011.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551, Dec.
1989.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” Trans. Neur. Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

P. Werbos, “Backpropagation through time: what does it do and how to
do it,” in Proceedings of IEEE, vol. 78, no. 10, 1990, pp. 1550-1560.

J. Schmidhuber, “Learning complex, extended sequences using the
principle of history compression,” Neural Comput., vol. 4, no. 2, pp.
234-242, Mar. 1992.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-
21 June 2013, 2013, pp. 1310-1318.

A. Mnih and G. Hinton, “Three new graphical models for statistical
language modelling,” in Proceedings of the 24th International Confer-

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

[(77]

ence on Machine Learning, ser. ICML ’07. New York, NY, USA:

ACM, 2007, pp. 641-648.
(2014) JFlex. [Online]. Available: http://jflex.de/

S. M. Katz, “Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer,” in IEEE Transactions
on Acoustics, Speech and Signal Processing, 1987, pp. 400—401.

F. Jelinek and R. L. Mercer, “Interpolated estimation of markov source
parameters from sparse data,” in In Proceedings of the Workshop on
Pattern Recognition in Practice, May 1980, pp. 381-397.

A. Stolcke, “SRILM - an extensible language modeling toolkit.” in
INTERSPEECH. 1SCA, 2002.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.

D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures., 2nd ed. Chapman & Hall/CRC, 2000.

M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software
engineering research,” ser. ESEC/FSE 13, 2013, pp. 466-476.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
ser. ICSE °13, 2013, pp. 422-431.

R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks.” in JCML.
Omnipress, 2011, pp. 129-136.

A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software
engineering tasks? An approach based on genetic algorithms,” in Pro-
ceedings of the 2013 International Conference on Software Engineering,
ser. ICSE *13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 522-531.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305, Feb.
2012.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 2951-2959.

J. Yang and L. Tan, “Inferring semantically related words from software
context,” in Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, ser. MSR ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 161-170.

M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Au-
tomatically mining software-based, semantically-similar words from
comment-code mappings,” in Proceedings of the 10th Working Con-
ference on Mining Software Repositories, ser. MSR *13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 377-386.

Y. Tian, D. Lo, and J. L. Lawall, “Automated construction of a
software-specific word similarity database,” in 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February
3-6, 2014, 2014, pp. 44-53.

Y. Tian, D. Lo, and J. Lawall, “Sewordsim: Software-specific word sim-
ilarity database,” in Companion Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE Companion *14. New
York, NY, USA: ACM, 2014, pp. 568-571.

J. Yang and L. Tan, “Swordnet: Inferring semantically related words
from software context,” Empirical Softw. Engg., vol. 19, no. 6, pp. 1856—
1886, Dec. 2014.

L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.

