

Using Information Retrieval to Support Software Maintenance Tasks

Denys Poshyvanyk

Computer Science Department
The College of William and Mary

Williamsburg, VA 23185
denys@cs.wm.edu

Abstract

This paper presents an approach based on
Information Retrieval (IR) techniques for extracting
and representing the unstructured information in large
software systems such that it can be automatically
combined with analysis of program dependencies and
execution traces to define new techniques for feature
location, impact analysis, and software measurement
tasks. We expect that these new techniques will
contribute directly to the improvement of design of
incremental changes and thus increased software
quality and reduction of software maintenance costs.
The presented results are based on the author’s
doctoral dissertation [23].

1. Introduction

Software is comprised of a multitude of artifacts;
some of them are intended to be read by the compiler,
while many others are intended to be read by
developers. During software evolution, developers
have to maintain large software systems often written
by others. The developer-centric information is often
expressed in natural language and it is embedded in
documentation and source code. External
documentation written in natural language (e.g.,
requirements, design documents, user manuals, etc.),
the comments, and the identifiers encode the domain of
the software and capture design decisions, change
requests, developer information, etc. This unstructured
information is usually larger in size than the source
code. Efficient mechanisms for storing and sharing this
information are needed, especially when development
teams are distributed geographically and change
frequently over time. Given the large amount of textual
data present in existing software systems, tools are
necessary for its storage, retrieval, and analysis before
it is delivered to the users.

The dissertation proposes and validates the use of
Information Retrieval techniques to extract, represent,
and analyze textual information in large scale software
systems such that it can be automatically combined

with structural information to better support a variety of
software maintenance tasks and activities. Specifically,
the research focuses on combining textual information
extracted with IR methods with program dependencies,
execution traces, and other analyses to define new
techniques for feature location, impact analysis, and
new measures for class cohesion and coupling.

The main contributions of this dissertation are [23]:
 Definition and validation of an approach to

concept location in source code, which combines
Formal Concept Analysis (FCA) and Latent
Semantic Indexing (LSI) [30];

 Definition and validation of a feature location
approach which relies on the combination of
probabilistic ranking of methods based on
execution scenarios and IR [25, 26];

 Definition and validation of a semi-automated
technique for feature location in source code
based on the combination of a single execution
trace and comments and identifiers from source
code [14];

 Definition and validation of new measures for
cohesion [18] and coupling [27] of classes in
Object-Oriented systems based on the analysis of
textual information in software. The cohesion
metrics are applied for identifying fault-prone
classes in large open-source systems [19],
whereas the coupling metrics are used to support
impact analysis tasks [29].

We expect that these new techniques and software
measures will contribute directly to the improvement of
the design of incremental changes of software and thus
will lead to increased software quality and reduced
software maintenance costs.

2. Motivation and Background

Identifiers chosen by programmers as names for
classes, methods, or attributes contain valuable
information and account for more than a half of the
source code content in existing software systems [8].
These names often serve as a starting point in many

program comprehension tasks [5], thus it is important
that these names clearly reflect the concepts that they
are supposed to represent as self-documenting
identifiers reduce the time and effort necessary to
obtain necessary comprehension level for the software
maintenance task at hand [3]. The problem of
extracting and analyzing the textual information in
software artifacts was recognized by researchers about
two decades ago. IR methods were proposed and used
successfully to accomplish these tasks. Early models
were used to construct software libraries and support
reuse tasks, while more recent work focused on specific
software maintenance and development tasks such as
feature location and traceability link recovery.

Several approaches have been developed to recover
traceability links between source code and external
documentation using probabilistic IR, vector space
models [1, 9] and LSI [7, 9, 17]. Other work proposed
a set of approaches to recover traceability links among
requirements [9], requirements and source code [1, 9,
17], and requirements and test cases [15]. A set of
tools that integrates facilities to manage traceability
links among different types of software artifacts was
developed and evaluated recently [7].

IR methods have been also successfully used for
concept and feature location [14, 20, 26, 30] in source
code. Other approaches use IR methods to classify
software systems based on source code in open-source
repositories [11] as well as to cluster source code to
obtain high-level views of software systems [12, 16].
IR techniques were also used to identify the starting
impact set of a maintenance request [2, 6] and to link
change request descriptions to sets of historical file
revisions impacted by similar past change requests [4].

IR approaches have also been used in the context of
software measurement to assess the quality of
identifiers and comments [13], conceptual cohesion
[18, 19] and coupling [27, 29] of classes, as well as
assessing and maintaining the quality of external
software documentation [28]. In addition, IR
techniques have been applied to several other tasks in
the past few years, such as bug fix assignment based on
problem description reports, identification of duplicate
bug reports [33], estimating the time to fix a particular
bug based on similar bug reports, classification of
software maintenance requests, providing
recommendations for novice programmers, identifying
developer contributions, mining concept keywords,
identification of changes from software repositories,
and finding similar software applications. Due do
space limitations, we omitted some of the citations in
this section, whereas the complete related work can be
found in [23].

These IR based approaches to software engineering
problems differ not only in their scope, but also in their

underlying indexing mechanism, corpus construction,
and data analysis method. A general model for using
IR methods can be described with the following steps:
 Preparing the corpus. A corpus is created using

the source code and other linguistic software
artifacts, such as the external documentation.
Various pre-processing methods are employed in
the corpus construction, some based on natural
language processing techniques, such as word
stemming or external ontologies. Each document
in the corpus corresponds to a specific software
element, such as a file, a class, or a method.

 Indexing the corpus. An IR method is used to
index the corpus, such as vector space models,
Latent Semantic Indexing, naïve Bayes classifiers,
or other probabilistic models, etc. A semantic
space of the software system is created.

 Computing similarities. A similarity measure
between the documents in the corpus is defined and
similarities are computed among the corresponding
software elements. These measures are commonly
referred to as semantic similarities.

 Solving software maintenance tasks. The
semantic similarities are used to solve the
maintenance or development task at hand. Some
approaches combine these measures with
additional data extracted with structural software
analysis tools, such as program dependencies,
software change data, execution traces, etc.

All this body of work (most of it done in the past
five-seven years) shows the usefulness of the IR based
approaches to support software engineering tasks, but
also highlights limitations and helps define research
directions in the field. We outline the contributions of
this dissertation to the field in the next section.

3. Research Contributions

We propose the use of IR techniques to extract and
represent the semantic information in large scale
software systems such that it can be automatically
combined with structural information to better support
concept and feature location in source code, impact
analysis, and software measurement tasks.
Specifically, the research in this dissertation focuses on
combining IR-based analysis data with the analysis of
program dependencies, execution traces to define new
techniques for feature location, impact analysis, and
software measurement.

3.1. Concept Location with Concept Lattices

We have developed an approach to concept location
in source code which combines Formal Concept
Analysis and Latent Semantic Indexing [30]. In this
approach, LSI is used to map the concepts expressed in

queries written by programmers to relevant parts of the
source code, presented as a ranked list of search results.
Given the ranked list of source code elements, the
approach selects the most relevant attributes from these
documents and organizes the results in a concept lattice
generated via FCA. The approach is evaluated in a case
study on concept location in the source code of Eclipse,
an industrial-size integrated development environment.
The results of the case study indicate that the proposed
approach is effective in organizing different concepts
and their relationships present in the subset of the
search results. The proposed concept location method
outperforms the simple ranking of the search results,
reducing programmers’ effort.

3.2. PROMESIR

We have developed an approach for feature location
using probabilistic ranking of methods based on
execution scenarios and IR, namely Probabilistic
Ranking Of Methods based on Execution Scenarios
and Information Retrieval (PROMESIR) [25, 26]. In
this work, we recast the problem of feature location in
source code as decision-making problem in the
presence of uncertainty. The solution to the problem is
formulated as a combination of the opinions of different
experts. The experts in this work are two existing
techniques for feature location: a scenario-based
probabilistic ranking of events and an IR-based
technique that uses LSI. We have empirically
evaluated this combination of the experts through
several case studies which use the source code of the
Mozilla Web browser and the Eclipse integrated
development environment. The results show that the
combination of experts significantly improves the
effectiveness of feature location when compared to
each of the experts used independently.

3.3. SITIR

We have implemented a semi-automated technique
for feature location in source code named SITIR which
is based on combining information from two different
sources: an execution trace and the comments and
identifiers from source code [14]. Using this technique,
users execute a single scenario (or a part of it) which
exercises the desired feature and all executed methods
are identified based on the collected trace. The source
code is indexed using LSI, which allows users to write
queries relevant to the desired feature and rank all the
executed methods based on their textual similarity to
the query. Two case studies on open source software,
JEdit and Eclipse, indicate that the new technique has
accuracy comparable with previously published
approaches such as PROMESIR and it is easier to use
as it considerably simplifies collecting execution traces.

3.4. The conceptual cohesion of classes

We proposed a new measure for cohesion of classes
in an OO software system based on the analysis of
unstructured information embedded in source code,
such as comments and identifiers [18]. The measure,
named the Conceptual Cohesion of Classes (C3), is
inspired by the mechanisms used to measure textual
coherence in cognitive psychology and computational
linguistics. We have devised the principles and the
technology that stand behind the C3 measure. A large
case study on three open source software systems is
presented, which compares the new measure with an
extensive set of existing metrics. The case study shows
that the proposed measure captures different aspects of
class cohesion from any of the existing cohesions
measures. In addition, combining C3 with existing
structural cohesion metrics proves to be a better
predictor for fault proneness of classes when compared
to different combinations of structural cohesion metrics
[19].

3.5. The conceptual coupling of classes

We have presented a new set of coupling measures
for OO systems – named conceptual coupling, based on
the semantic information encoded in identifiers and
comments obtained from source code, [27].
Conceptual coupling is based on measuring the degree
to which the identifiers and comments from different
classes relate to each other. This type of relationship is
measured through the use of Information Retrieval
techniques. The proposed measures are different from
existing coupling measures, and they capture new
dimensions of coupling which are not captured by the
existing coupling measures. The case study also
investigates the use of the conceptual coupling
measures during change impact analysis. We report the
findings of a case study on Mozilla, where the
conceptual coupling metrics were compared to nine
existing structural coupling metrics and proved to be
better predictors of classes impacted by changes [29].

4. Publications and Current Work

Several refereed publications resulted from this
research [14, 18, 19, 26, 27, 29-31] in addition to the
dissertation [23].

The current work continues today on improving
existing techniques for feature location, impact
analysis, traceability link recovery, software reuse,
mining developer expertise, and already resulted in
several refereed conference publications [10, 21, 22, 24,
32].

5. Acknowledgements

I would like to thank my mentor, Dr. Andrian
Marcus, without his support this thesis would not have
been possible. I would also like to acknowledge Dr.
Václav Rajlich and Dr. Jonathan Maletic for their
endless feedback and support on this research. I am
grateful to Dr. Giuliano Antoniol and Dr. Yann-Gaël
Guéhéneuc for their strong collaboration and support
on several research projects including PROMESIR [25,
26]. I acknowledge Dr. Rudolf Ferenc and Dr. Tibor
Gyimóthy for their support in empirical studies [19,
29]. The doctoral thesis was supported in part by the
grants from the United States National Science
Foundation CCF-0438970 and CCF-0820133. The
current work is supported in part by a grant from the
United States Air Force Office of Scientific Research under
grant number FA9550-07-1-0030.

6. References
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo,

E., "Recovering Traceability Links between Code and
Documentation", IEEE TSE, 28/10, October 2002, pp. 970 -
983.

[2] Antoniol, G., Canfora, G., Casazza, G., and Lucia, A.,
"Identifying the Starting Impact Set of a Maintenance Request:
A Case Study", in Proc. of 4th CSMR'00, Feb. 2000, pp. 227-
231.

[3] Antoniol, G., Gueheneuc, Y.-G., Merlo, E., and Tonella, P.,
"Mining the Lexicon Used by Programmers during Software
Evolution", in Proc. of 23rd ICSM'07, 2007, pp. 14-23.

[4] Canfora, G. and Cerulo, L., "Impact Analysis by Mining Software
and Change Request Repositories", in Proc. of 11th
METRICS'05, Sept. 19-22 2005, pp. 20-29.

[5] Caprile, C. and Tonella, P., "Nomen Est Omen: Analyzing the
Language of Function Identifiers", in Proc. of 6th WCRE'99,
October 1999, pp. 112-122.

[6] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S.,
"Hipikat: A Project Memory for Software Development", IEEE
TSE, vol. 31, no. 6, June 2005, pp. 446-465.

[7] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"Recovering Traceability Links in Software Artefact
Management Systems", ACM TOSEM, vol. 16, no. 4, 2007.

[8] Deissenboeck, F. and Pizka , M., "Concise and Consistent
Naming", Software Quality Journal, vol. 14, no. 3, 2006, pp.
261-282

[9] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K., "Advancing
candidate link generation for requirements tracing: the study of
methods", IEEE TSE, vol. 32, no. 1, January 2006, pp. 4-19.

[10] Kagdi, H. and Poshyvanyk, D., "Who Can Help Me with this
Change Request?" in Proc. of 17th ICPC'09, Canada, 2009.

[11] Kawaguchi, S., Garg, P. K., Matsushita, M., and Inoue, K.,
"MUDABlue: An automatic categorization system for Open
Source repositories", Journal of Systems and Software, vol. 79,
no. 7, 2006, pp. 939-953.

[12] Kuhn, A., Ducasse, S., and Gîrba, T., "Semantic Clustering:
Identifying Topics in Source Code", Information and Software
Technology, vol. 49, no. 3, March 2007, pp. 230-243.

[13] Lawrie, D., Feild, H., and Binkley, D., "Leveraged Quality
Assessment Using Information Retrieval Techniques", in 14th
ICPC'06, Athens, Greece, June 14-16 2006, pp. 149-158.

[14] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature
Location via Information Retrieval based Filtering of a Single

Scenario Execution Trace", in Proc. of 22nd ASE'07, Atlanta,
Georgia, November 5-9 2007, pp. 234-243.

[15] Lormans, M. and Van Deursen, A., "Can LSI help
Reconstructing Requirements Traceability in Design and Test?"
in Proc. of 10th CSMR'06, March 2006, pp. 47-56.

[16] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information", in
Proc. of 23rd ICSE'01, Canada, May 12-19 2001, pp. 103-112.

[17] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of
Traceability Links Between Software Documentation and
Source Code", International Journal of Software Engineering
and Knowledge Engineering, vol. 15/4, October 2005, pp. 811-
836.

[18] Marcus, A. and Poshyvanyk, D., "The Conceptual Cohesion of
Classes", in Proc. of 21st ICSM'05, Sept. 25-30 2005, pp. 133-
142.

[19] Marcus, A., Poshyvanyk, D., and Ferenc, R., "Using the
Conceptual Cohesion of Classes for Fault Prediction in Object
Oriented Systems", IEEE TSE, vol. 34, no. 2, 2008, pp. 287-
300.

[20] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source
Code", in Proc. of 11th WCRE'04, Nov. 9-12 2004, pp. 214-223.

[21] McMillan, C., Poshyvanyk, D., and Revelle, M., "Combining
Textual and Structural Analysis of Software Artifacts for
Traceability Link Recovery", in Proc. of TEFSE'09, Canada,
2009.

[22] Pierret, D. and Poshyvanyk, D., "An Empirical Exploration of
Regularities in Open-Source Software Lexicons", in Proc. of
17th ICPC'09, Vancouver, British Columbia, Canada, 2009.

[23] Poshyvanyk, D., Using Information Retrieval to Support
Software Maintenance Tasks, Wayne State University, Detroit,
MI, USA, Doctoral, 2008.

[24] Poshyvanyk, D. and Grechanik, M., "Creating and Evolving
Software by Searching, Selecting and Synthesizing Relevant
Source Code", in Proc. of 31st ICSE'09, Canada, May 2009.

[25] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G.,
and Rajlich, V., "Combining Probabilistic Ranking and Latent
Semantic Indexing for Feature Identification", in Proc. of 14th
ICPC'06, Athens, Greece, 2006, pp. 137-146.

[26] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G.,
and Rajlich, V., "Feature Location using Probabilistic Ranking
of Methods based on Execution Scenarios and Information
Retrieval", IEEE TSE, vol. 33, no. 6, June 2007, pp. 420-432.

[27] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling
Metrics for Object-Oriented Systems", in Proc. of 22nd
ICSM'06, Philadelphia, PA, September 25-27 2006, pp. 469 -
478.

[28] Poshyvanyk, D. and Marcus, A., "Using Traceability Links to
Assess and Maintain the Quality of Software Documentation",
in Proc. of TEFSE'07, 2007, pp. 27-30.

[29] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimóthy, T.,
"Using Information Retrieval based Coupling Measures for
Impact Analysis", Empirical Software Engineering, vol. 14, no.
1, 2009, pp. 5-32.

[30] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept
Analysis with Information Retrieval for Concept Location in
Source Code", in Proc. of 15th ICPC'07, June 2007, pp. 37-48.

[31] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and Liu, D.,
"Source Code Exploration with Google ", in Proc. of 22nd
ICSM'06, Philadelphia, PA, 2006, pp. 334 - 338.

[32] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on
Assessing Feature Location Techniques", in Proc. of 17th
ICPC'09, Canada, May 17-19 2009.

[33] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An
Approach to Detecting Duplicate Bug Reports using Natural
Language and Execution Information", in Proc. of 30th ICSE’08,
Leipzig, Germany, May 10 - 18 2008, pp. 461-470.

