
Parameterizing and Assembling IR-based Solutions
for SE Tasks using Genetic Algorithms

Annibale Panichella1, Bogdan Dit2, Rocco Oliveto3,
Massimiliano Di Penta4, Denys Poshyvanyk5, Andrea De Lucia6

1 Delft University of Technology, The Netherlands – 2 Boise State University, USA
3 University of Molise, Pesche (IS), Italy – 4 University of Sannio, Benevento, Italy

5 The College of William and Mary, VA, USA – 6 University of Salerno, Fisciano (SA), Italy

Abstract—Information Retrieval (IR) approaches are nowa-
days used to support various software engineering tasks, such
as feature location, traceability link recovery, clone detection, or
refactoring. However, previous studies showed that inadequate
instantiation of an IR technique and underlying process could
significantly affect the performance of such approaches in terms
of precision and recall. This paper proposes the use of Genetic
Algorithms (GAs) to automatically configure and assemble an
IR process for software engineering tasks. The approach (named
GA-IR) determines the (near) optimal solution to be used for each
stage of the IR process, i.e., term extraction, stop word removal,
stemming, indexing and an IR algebraic method calibration.
We applied GA-IR on two different software engineering tasks,
namely traceability link recovery and identification of duplicate
bug reports. The results of the study indicate that GA-IR
outperforms approaches previously published in the literature,
and that it does not significantly differ from an ideal upper
bound that could be achieved by a supervised and combinatorial
approach.

Keywords—Text-based software engineering, Search-based soft-
ware engineering, Information Retrieval, Parametrization

I. INTRODUCTION

Prior research in software engineering (SE) highlighted the
usefulness of conceptual (or textual) unstructured information
to capture the knowledge and design decisions of software de-
velopers. Identifiers and comments encoded in class or method
names, or attributes in source code and other artifacts contain
information often indispensable for program understanding [2],
[6], [13], [23], [29], [46]. This conceptual information plays
a paramount role as a data source, which is used by many
(semi-) automatic techniques to support software maintenance
and evolution tasks.

In recent years, many researchers concentrated on the
problem of extracting, representing, and analyzing conceptual
information in software artifacts. Specifically, Information
Retrieval (IR) methods were proposed and used to support
practical tasks. Early approaches aimed at constructing soft-
ware libraries [32] and supporting reuse tasks [35], [51], while
more recent work focused on addressing software maintenance
tasks including feature location (e.g., [41]), traceability link
recovery (e.g., [1], [34]), change impact analysis (e.g., [19]),
identification of duplicate bug reports (e.g., [48], [50]).

All these IR-based techniques that support SE tasks, such
as Latent Semantic Indexing (LSI) [12] or Latent Dirichlet
Allocation (LDA) [4], require configuring different compo-
nents and their respective parameters, such as the type of

pre-processors (e.g., splitting compound or expanding abbre-
viated identifiers; removing stop words and/or comments),
stemmers (e.g., Porter or snowball), indexing schema (e.g.,
term frequency - inverse document frequency, tf-idf), similarity
computation mechanisms (e.g., cosine, dot product, or entropy-
based). Nevertheless, despite this overwhelming popularity of
IR methods in SE research, most of the proposed approaches
are based on ad-hoc guidelines and methods for choosing,
applying, assembling, and configuring IR techniques.

Recent research has shown that different calibration of
the IR processes can produce varied results in the context of
duplicate requirements identification [18] or fault localization
[49]. Also, some IR techniques, such as LDA, require a proper
calibration of their parameters [21], [38]. Moreover, recent
studies demonstrate that the effectiveness of these IR-based ap-
proaches not only depends on the design choices behind the IR
techniques and their internals, but also on the type of software
artifacts used in the specific SE tasks and more generally on
the project datasets [37], [38]. Many existing SE approaches
using IR methods rely on ad-hoc methods for configuring these
components and solutions, oftentimes resulting in suboptimal
performance of such promising analysis methods to deal with
unstructured software data. This challenges the practical use of
IR-based approaches and undermines the technology transfer
to software industry.

In this paper we propose GA-IR, an approach that aims
at enabling automatic search and assembly of parameterized
IR-based solutions for a given software engineering task and
a dataset that takes into account not only task specific compo-
nents and data sources (i.e., different parts of software artifacts
related to solving a particular SE task), but also internal prop-
erties of the IR model built from the underlying dataset using
a large number of possible components and configurations. We
use Genetic Algorithms (GAs) to effectively explore the search
space of possible combinations of instances of IR constituent
components (e.g., pre-processors, stemmers, indexing schemas,
similarity computation mechanisms) to select the candidates
with the best expected performance for a given dataset used
for a SE task. During the GA evolution, the quality of a
solution (represented as a GA individual) is evaluated based
on the quality of the clustering of the indexed software
artifacts, following a process similar to what was previously
done for calibrating LDA parameters [38]. For this reason—
and differently from previously proposed approaches for IR-
process configuration [31]—our approach has the following
noteworthy advantages:

1) GA-IR is unsupervised, hence it does not require a
manually labeled training set, oftentimes unavailable,
e.g., when one needs to recover traceability links for
a project for the first time;

2) GA-IR is task independent, i.e., given the available
dataset, it assembles and configures an IR technique
that produces a high-quality clustering, which results
in an improved performance for a specific task.

We empirically show that using GA-IR it is possible to auto-
matically assemble a near-optimal configuration of an IR-based
solution for datasets related to two kinds of software engineer-
ing tasks: (i) traceability link recovery and (ii) duplicate bug
report identification. The evaluation shows that IR techniques
instantiated by GA-IR outperform previously published results
related to the same tasks and the same datasets, and that the
performances of GA-IR do not significantly differ from an ideal
upper bound, obtained by means of a combinatorial search, and
with the availability of an oracle (which is not required by our
approach).

Structure of the paper. Section II provides background
information on IR-based software engineering. Section III
describes the proposed GA-IR approach. Section IV describes
the study that we performed to evaluate the GA-IR. The
results are reported in Section V, while the threats to validity
are discussed in Section VI. Section VII discusses related
literature, while Section VIII concludes the paper and outlines
directions for future work.

II. BACKGROUND

This section provides some background on a generic IR
process for solving SE problems, and how such a process can
be instantiated for solving two problems that we believe are
relevant IR applications to SE tasks, namely traceability link
recovery and identification of duplicate bug reports.

A. A generic Information Retrieval based approach

Let us consider a generic IR-based approach, as the one
shown in Fig. 1. Next, we describe the details behind each of
the steps comprising such an approach.

Step 1: Term extraction. This step consists of removing
elements (e.g., special characters) that are not relevant to the
IR process, and extracting portions of software artifacts that
are considered relevant for the task at hand. For example, when
performing requirements-to-source-code traceability recovery,
one may (not) decide to consider source code comments [1],
may (not) decide to split compound identifiers [14], or may
decide to consider only certain parts-of-speech, e.g., nouns [5];
similarly, when comparing bug reports for duplicate detection,
contributor comments’ (other than the initial description), stack
traces, and source code fragments may (not) be considered.

Step 2: Stop word removal. This step aims at removing
common terms that often do not contribute to discerning one
document from another. This can be done using a stop-word
list, e.g., by removing stop words (e.g., articles, prepositions,
commonly used verbs), programming language keywords, or
recurring domain-specific terms.

Step 3: Morphological analysis. This step is often performed
to bring back words to the same root (e.g., by removing plurals

Similarity Computation

Artifact Indexing

Software
artifacts

Term
Extraction

IR Model
Selection

d1 d2dn
t1

t2
tm

Term-by-document matrix

Stop Word
Removal

Morphological
Analysis

Term
Weighting

d1 d2dn
d1

d2
dn

Document similarity matrix

Distance Measure
Selection

Fig. 1. Outline of a generic IR technique for solving SE problems.

to nouns, or verb conjugations). The simplest way to perform
morphological analysis is to rely on stemming algorithms, e.g.,
the Porter stemmer [39].

Step 4: Term weighting. The information extracted in the
previous phase is stored in an m × n matrix, called term-by-
document matrix (TDM), where m is the number of terms
occurring in all the artifacts, and n is the number of artifacts
in the repository. A generic entry wi,j of this matrix denotes
a measure of the weight (i.e., relevance) of the ith term in
the jth document [3]. Different measures of relevance can be
used: the simplest one is the Boolean weighting, which just
indicates whether a term appears in a document or not; other
measures are the term frequency, which accounts for the term
frequency (tf) in a document, or the tf-idf (term frequency-
inverse document frequency), which gives more importance to
words having high frequency in a document (high tf) and
appearing in a small number of documents, thus having a
high discriminating power (high idf). In general, one can use
a combination of a local weight of the term in a specific
document (e.g.,tf) and a global weight of the term in the
whole document collection (e.g.,idf). A more sophisticated
weighting schema is represented by tf-entropy [17], where the
local weight is represented by the term frequency scaled by
a logarithmic factor, while the entropy of the term within the
document collection is used for the global weight.

Step 5: Application of an algebraic model. After having built
a TDM, different algebraic models can be used to process
it. The simplest one is to use the TDM as is, i.e., to use a
traditional Vector Space Model (VSM). VSM is the simplest
IR-based technique applied to traceability recovery. In VSM,
artifacts are represented as vectors of terms (i.e., columns of
the TDM) that occur within artifacts in a repository [3]. VSM
does not take into account relations between terms of the
artifacts vocabulary. Alternatively, one can use Latent Semantic
Indexing (LSI) [12], which is an extension of the VSM.
It was developed to overcome the synonymy and polysemy
problems, which occur in VSM model. LSI explicitly takes into
account the dependencies between terms and between artifacts,
in addition to the associations between terms and artifacts.
To exploit information about co-occurrences of terms, LSI
applies Singular Value Decomposition (SVD) [8] to project the
original TDM into a reduced space of concepts, and thus limit
the noise due to a high number of original dimensions (unique
terms). A crucial factor that determines the performances of
LSI is the choice of the number of concepts, i.e., the k
parameter. Then, there are other methods that treat documents
as probability distributions of terms, among others JS [7] and
Latent Dirichlet Allocation (LDA) [4]. The latter also requires

a calibration of different parameters, such as number of topics
and the Dirichlet distribution parameters.

Step 6: Use of a distance (or similarity) measures. The
last step of the IR process aims at comparing documents, e.g.,
requirements and source code in traceability link recovery,
queries and source code in feature location, bug report pairs in
duplicate bug report detection. This can be done using different
similarity measures. For example, one can rely on the cosine
similarity, the Jaccard similarity, or the Dice (symmetric or
asymmetric similarity) coefficient.

B. Traceability Link Recovery

For IR-based traceability link recovery tasks [1] [33], the
typical artifacts used for generating the corpus consist of
documentation artifacts, such as requirements, use cases or
class diagrams and source code elements, such as classes or
methods. These artifacts depend on the traceability recovery
task. For example, to recover traceability links between use
cases and source code classes, the use cases are used as queries
(or source artifacts) and the classes are used as target artifacts.
All these artifacts are typically preprocessed by (i) removing
special characters, (ii) splitting identifiers, (iii) removing stop
words that are common in language as well as words that
appear frequently in the templates of the source artifacts (e.g.,
“use case number”, “actor”, etc.) and (iv) stemming. The most
used weighting schema for the TDM is the standard tf-idf,
while VSM and LSI are among the most used IR techniques.
The cosine similarities between all the source artifacts and
all the target artifacts are used to rank the potential candidate
links, which are presented to the developer for investigation to
decide if they are correct or not.

C. Identification of Duplicate Bug Reports

For the task of detecting duplicate bug reports [48] [50],
the primary source of information for constructing the corpus
consists of the information extracted from issue tracking sys-
tems. Each document of the corpus (i.e., each bug) typically
consists of the title (e.g., short description of the issue), the
description, and in some cases, attributes such as the project
name, component name, severity, priority, etc. In these docu-
ments, different weights could be assigned to the previously
enumerated elements (e.g., a title could be weighted more than
a description). The source artifacts are new, unassigned bugs
for which the developer is trying to find similar bugs, and
the target artifacts are existing bugs, which were assigned
to developers or resolved. Similarly to the other tasks, the
corpus is preprocessed using the standard steps (e.g., removing
any sentence punctuation marks, splitting identifiers, removing
stop words and stemming). The similarity measure between
the source (i.e., new) bugs and the target (i.e., existing) bugs,
which is computed using an IR technique (e.g., VSM), is used
to rank the list of bugs presented to the developer for manual
inspection.

III. THE PROPOSED APPROACH: GA-IR

This section describes how we use GAs to instantiate an IR
process to solve software engineering problems (GA-IR). First,
we treat the instantiation of the process described in Section
II-A as a search-based optimization problem and then describe

the GA approach. Subsequently, we illustrate how we evaluate
the fitness function during the GA evolution.

Genetic Algorithms (GAs) [24] are a stochastic search
technique inspired by the mechanism of a natural selection
and natural evolution. A GA search starts with a random
population of solutions, where each individual (i.e., chromo-
some) of a population represents a solution of the optimization
problem. The population is evolved toward better solutions
through subsequent generations and, during each generation,
the individuals are evaluated based on the fitness function
that has to be optimized. For creating the next generation,
new individuals (i.e., offsprings) are generated by (i) applying
a selection operator, which is based on the fitness function
of the individuals to be reproduced, (ii) recombining, with a
given probability, two individuals from the current generation
using the crossover operator, and (iii) modifying, with a given
probability, individuals using the mutation operator.

In this paper we propose to use a GA to automatically
assemble and instantiate parameterized IR-based solutions for
SE tasks. Specifically, we use GA to (i) instantiate the IR
technique represented in the chromosome of an individual, (ii)
execute the IR technique, i.e., processing the documents using
that IR process, and (iii) compute the GA fitness function by
clustering the processed documents and evaluating the internal
clustering quality.

A. Use GA to instantiate IR processes

The first choice in the design of a GA for an optimization
problem is the representation of candidate solutions that must
be encoded in a suitable form, known as chromosome repre-
sentation. As explained in Section II, an IR process (see Fig.
1) consists of a sequence of given steps or components, thus
it naturally lends itself to be represented as a chromosome.
In GA-IR, the chromosome (see Fig. 2) is a vector, where
each cell (gene) represents a phase of the IR process, and can
assume as a possible value any of the techniques/approaches
available for that phase. For example, for the morphological
analysis we could have “no stemming”, “Porter”, or “Snow-
ball”. Note that, since some steps require multiple decisions,
they are represented as two genes. In particular, the term
extraction has two genes, one related to what kind of characters
to prune, another related to how to split compound identifiers.
In principle, further, more complex configurations can be
foreseen. The right-hand side of the chromosome encodes the
parameter settings for the used IR methods. In this paper we
consider two widely used IR-methods, namely VSM and LSI,
which already prove to be very successful for the investigated
software engineering tasks [20], [41], [16], [42], [26], [47],
[43], [40], [44]. In terms of calibration, LSI requires to set the
number of concepts (k) to which the term-by-document space
will be reduced, while VSM has no additional parameters.

GA-IR is based on a simple GA with elitism of two
individuals, i.e., the two best individuals are kept alive across
generations. The GA initial population is generated by ran-
domly choosing the value of each gene of each individual.
The selection of the individuals to be reproduced is performed
using the Roulette Wheel selection operator, which elects indi-
viduals to reproduce pseudo-randomly, giving higher chances
to individuals with higher fitness. The crossover operator is the

Char.
Pruning

Identifier
Splitting

Stop word
removal

Morph.
Analysis

Term
Weighting

No
pruning

Simple
Camel
Case

English
stop
word
list

Porter tf-idf

IR
Technique Settings

LSI
k=10

Fig. 2. GA-IR chromosome representation.

single-point crossover, which, given two individuals (parents)
p1 and p2, randomly selects a position in the chromosome, and
then creates two new individuals (the offspring) o1 composed
of the left-side of p1, and the right-side of p2, and o2 composed
of the left-side of p2 and the right-side of p1. The mutation
operator is the uniform mutation, which randomly changes
one of the genes with one of the admissible values. The
GA terminates after a fixed number of generations or when
the fitness function cannot be improved further (i.e., GA
converged).

B. Measuring the quality of assembled IR approach instances

Another important step in the design of a GA is the
definition of the fitness function. In GA-IR we need to define
a fitness function able to estimate the performances of the
resulting IR technique. Thus, the fitness function evaluation
needs to be unsupervised (i.e., it does not require a labeled
training set or an oracle), in order to make it task-independent.

When applying IR methods, such as LSI or VSM, to extract
textual information from software artifacts, such techniques
implicitly cluster the software documents on the basis of
their textual similarities. Such different clusterings can be
obtained by using various numbers of latent concepts used
for modeling the concept space, independently from the used
pre-processing techniques. Specifically, given that applying
LSI on the term-document matrix results in the following
decomposition (through Singular Value Decomposition):

TM = U · Σ · V T

where U is the documents-to-concepts eigenvector matrix,
Σ the eigenvalue matrix, and V T the transposed terms-to-
concepts eigenvector matrix. Once the LSI space is reduced
to k concepts (k is indeed the LSI configuration parameter)
the decomposition becomes:

TMk = Uk · Σk · V T
k

Given the matrix Uk, we assign each document i to
its dominating concept j, i.e., the concept with the highest
Uk(i, j) value. For the traditional VSM, we apply a similar
approach, however, without reducing the space, but considering
k equal to the rank of the term-document matrix.

We conjecture that there is a strong relationship between
the performances obtained by an IR technique on software
corpora and the quality of the internal clusters produced.
Indeed, if the quality of the clusters produced by an IR-
process is poor, it means that the IR process was not able
to correctly extract the most important concepts from the

software corpus and the documents, which are more similar
to each other, are assigned to different clusters. Similarly to
what has been done in previous work when calibrating LDA
[38], we use the Silhouette coefficient [28] to measure the
quality of clusters, since it provides only one scalar value
combining cohesion and separation of clusters. In particular,
the Silhouette coefficient is computed for each document using
the concept of centroids of clusters. Let C be a cluster; its
centroid is equal to the mean vector of all the documents
belonging to C, i.e., Centroid(C) =

∑
di∈C di/|C|. Starting

from the definition of centroids, the Silhouette coefficient is
computed for each document di as the following:

s(di) =
b(di)− a(di)

max (a(di), b(di))

where a(di) is the separation (measured as the maximum
distance from di to the centroid of its cluster) and b(di) is
the cohesion (represented as the minimum distance from di to
the centroids of the clusters not containing di). The value of
the Silhouette coefficient ranges between -1 and 1.

A good cluster has a positive Silhouette coefficient because
it corresponds to the case in which b(di) > a(di), i.e., the mean
distance to other documents in the same cluster is less than
the minimum distance to other documents in other clusters. We
used the cosine of the angle between vectors for measuring the
distance between documents, since in LSI the documents are
represented as vectors in the concepts space. In the end, the
overall measure of the quality of clustering C = {C1, . . . , Ck},
that is our fitness function, is computed by the mean Silhouette
coefficient of all the documents.

IV. EMPIRICAL EVALUATION DESIGN

The goal of our study is to investigate whether GA-IR is
able to instantiate IR techniques that are able to effectively
solve SE tasks, while the quality focus is represented by the
performances of the IR-based processes in terms of accuracy
and completeness. The perspective is of researchers interested
in developing an automatic approach to assemble IR processes
for solving specific SE tasks. The context of the study consists
of (i) two SE tasks, namely traceability link recovery, and
identification of duplicate bug reports, and (ii) their corre-
sponding objects (i.e., datasets on which the tasks are applied).
Specifically, the study aims at answering the following research
questions (RQs) that have been addressed in the context of the
two SE tasks considered in our study:

RQ1: How do the IR techniques and configurations instan-
tiated by GA-IR compare to those previously used in literature
for the same tasks? This RQ aims at justifying the need for
an automatic approach that calibrates IR approaches for SE
tasks. Specifically, we analyzed to what extent the techniques
instantiated by GA-IR for solving a specific task are able to
provide better performances as compared to those configured
with “ad-hoc” settings. Our conjecture is that, with proper
settings, the performances could be sensibly improved because,
in many cases, the IR-based techniques have been severely
under-utilized in the past.

RQ2: How do the settings of IR-based techniques in-
stantiated by GA-IR compare to an ideal configuration? We
empirically identified the configuration that provided the best

results as compared to a specific oracle. For instance, in the
case of traceability link recovery, we identified the configura-
tion that provided the best performances in terms of correct
and incorrect links recovered. Clearly, one can build such a
configuration only with available labeled data set, by using
a combinatorial search among different treatments and by
evaluating each combination against the oracle in terms of
precision and recall.

We call such a configuration “ideal”, because it is not pos-
sible to build a priori (i.e., without the availability of a labeled
training set) a configuration providing better performances than
that. The performances achieved by the techniques instantiated
by GA-IR are then compared to those achieved with the
ideal configuration, to investigate how far off is the GA-IR
configuration from the best possible performances that one can
achieve.

A. GA-IR Implementation and Settings

GA-IR has been implemented in R [45] using the GA
library. Every time an individual needs to be evaluated, we
process documents using features available in the lsa package
which allows applying all the pre-processing steps, while for
computing the SVD decomposition we used the fast procedure
provided by the irlba package for large and sparse matrices.
As for the GA settings, we used a crossover probability of
0.8, a uniform mutation with probability of 1/n, where n
is the chromosome size (n = 7 in our case). We set the
population size equal to 50 individuals with elitism of two
individuals. As a stop condition for GA, we terminate the
evolution if the best fitness function value does not improve
for ten consecutive generations or when reaching the maxi-
mum number of generations equals to 100 (which, however,
was never reached in our experiments). All these settings
are commonly used in the genetic algorithms community. In
addition, to address the intrinsic randomness of GAs, for each
task and for each dataset, we performed 30 independent runs,
storing the best configuration and the relative best fitness
function value—i.e., the Silhouette coefficient—for each run.
Finally, among the obtained configurations, we consider the
one that achieves the median fitness function—across the 30
independent runs—for the best individual in the last genera-
tion. Finally, Table I summarizes the possible values for each
gene of the chromosome used in our experimentation. Clearly,
the number of possible values can easily be extended (e.g.,
different stemming, different weighting schemas).

B. Task 1: Traceability Link Recovery

For this task, we use the IR methods to recover traceability
links between high level artifacts (e.g., use cases) and source
code classes. The experiment has been conducted on the
software repositories of three projects, EasyClinic, eTour, and
iTrust. EasyClinic is a system used to manage a doctor’s office,
while eTour is an electronic touristic guide. The documenta-
tion, source code identifiers, and comments for both systems
are written in Italian. Both EasyClinic and eTour have been
developed by final year Master students at the University of
Salerno (Italy). iTrust is a medical application used as a class
project for Software Engineering courses at North Carolina
State University1. All artifacts consisting of use cases and

1http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing

TABLE I. VALUES OF THE GENES (STEPS OF THE IR-BASED
TECHNIQUE) FOR GA-IR.

STEP IMPLEMENTATIONS

Character pruning
keep special characters and digits
remove special characters, keep digits
remove both special characters and digits

Identifier splitting
do not split
simple Camel Case split
Camel Case keep compound split

Stop word removal

do not remove stop words
English/Italian stop word removal
English/Italian stop word removal + remove ≤ 2 char words
English/Italian stop word removal + remove ≤ 3 char words

Morphological analysis
no stemming
Porter stemming
Snowball stemming

Term weighting

Boolean
tf
tf-idf

logij = log
(

tfij + 1
)

tf-entropy

Algebraic model VSM
LSI

LSI k 10 ≤ k ≤ rank(TDM)

TABLE II. TASK 1 (TRACEABILITY LINK RECOVERY):
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENT.

System KLOC Source Target Correct
Artifacts (#) Artifacts (#) links

EasyClinic 20 UC (30) CC (47) 93
eTour 45 UC (58) CC (174) 366
iTrust 10 UC(33) JSP (47) 58

UC: Use case, CC: Code class; JSP: Java Server Page

Java Server Pages are written in English. Table II summarizes
the characteristics of the considered software systems: the
number and type of source and target artifacts, the source
code size in KLOC, and the number of correct links between
the source and target artifacts. These correct links are derived
from the traceability matrix built and validated by the original
developers. We consider such a matrix as the oracle to evaluate
the accuracy of different traceability recovery processes.

To answer RQ1, we compared the accuracy of recovering
traceability links achieved by the IR techniques assembled by
GA-IR with the accuracy achieved by LSI and VSM on the
same systems in the previously published studies where an
“ad-hoc” corpus pre-processing and LSI configuration were
used [10], [11]. We also compared the accuracy of recov-
ering traceability links using different combinations of pre-
processing steps (3 × 3 × 4 × 3 × 5=540, see Table I) for
both VSM and LSI. For LSI, we also consider different number
of concepts by varying k from 10 to a maximum number of
topics, which is 77 for EasyClinic, 176 for eTour and 80 for
iTrust. We also exercised all possible combinations of pre-
processing steps with such values. Thus, the total number of
trials performed on EasyClinic, eTour, and iTrust were 36,720,
i.e., 540 · (77-10+1), 89,640 and 37,800, respectively. With
such an analysis we are able to identify the configuration
which provides the best recovery accuracy (as compared to
our oracle) between all the possible configurations aiming at
estimating the ideal configuration of the IR-based traceability
recovery process. Then, in order to answer RQ2, we compared
the performances achieved with such an ideal configuration
with the performances achieved with the configuration identi-
fied by GA-IR.

For both RQ1 and RQ2, the performances of the GA-IR
approach, the baseline approach, and the ideal approach are
evaluated and compared by using two well-known metrics in

the IR field, namely precision and recall [3]. The precision
values achieved for different levels of recall (for each correct
link) by the different IR processes are then pairwise-compared
using the Wilcoxon rank sum test. Since this requires per-
forming three tests for each system, we adjusted the p-values
using Holm’s correction procedure [25]. Finally, we use the
average precision metric [3] for comparing the performances
of the different IR processes. We used the average precision
since it provides a single value that is proportional to the area
under precision-recall curve achieved for each ranked list of
candidate links. This value is the mean of the precision over
all the correct links. Hence, it combines both precision and
recall into a single performance scalar value.

C. Task 2: Duplicate Bug Report Identification

For this task, we used VSM and LSI to identify duplicate
bug reports from a set of existing reports. In essence, we used
two selected IR methods for computing the textual similarity
between new bug reports and existing bug reports using their
descriptions. The textual corpora is the one composed of (i)
the title of the bug, and (ii) the double weighted title and the
description of the bug.

Besides the textual similarity, as suggested by Wang et
al. [50], for each bug report in the analyzed corpus, we
also generated an execution trace by following the steps
to reproduce the bug (such steps are available in the bug
description). Using this information we built a bug-to-method
matrix, where each bug represents a column, and each method
represents a row. The matrix has binary values, i.e., a generic
entry (i, j) is one, if the ith method in the corresponding row
appears in the execution trace of the jth bug; zero otherwise.
This information can be used to identify bugs having similar
execution traces. Such information can complement textual
similarity in order to identify duplicate bug reports, i.e., bugs
having similar execution traces are candidate to be the same
bug. We then apply VSM and LSI also on the bug-to-method
matrix and we compute the similarity between each bug (in
terms of execution trace) using the Execution-information-
based Similarity. The final similarity between each pair of
bug reports is given by averaging the textual similarity and
the similarity of the execution traces of the two bugs.

The design of our study is based on the study introduced by
Wang et al. [50], however, it is different in several important
aspects, such as the IR techniques being used (we used both
VSM and LSI, while they used VSM only), dataset, type of
execution traces and method signatures. For example, Wang et
al. used 220 bug reports of Eclipse 3.0 posted on June 2004
and 44 duplicate pairs as well full execution traces with method
signatures. For our evaluation, we used 225 bugs (of the same
system and posted in the same period) with 44 duplicate pairs,
and marked execution traces without method signatures. For
collecting the data, even though we followed the methodology
described in their approach, we do not have information about
the exact set of bugs used by Wang et al. [50]. Moreover, the
execution traces we collected are most likely different since
this was a manual collection process. In addition, our JPDA2

instrumentation did not record the method signatures for the
executed methods. In summary, we created a realistic reference

2http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jpda.html

approach for Task 2, however this may not fully correspond
to the one in Wang et al. [50].

For each duplicate pair, we compute the similarity between
the oldest submitted bug (among those two) and the remaining
224 bug reports in the corpus. We compute the accuracy of
detecting all the pairs using the Recall Rate (RR) [48], [50].
Then, to address RQ1, we compare the RR of the config-
uration produced by GA-IR against the RR of a “baseline”
configuration produced by using the preprocessing of Wang et
al., and by applying VSM and LSI with an “ad-hoc” number
of concepts used in traceability link recovery, i.e., k = 50% of
total number of documents [11]. For RQ2, we compare the RR
generated by the configuration suggested by GA-IR against
the RR of the best configuration produced by performing a
combinatorial search on the preprocessing steps and k values.

Similarly to the other two tasks, the RR values at different
cut points (i.e., suggested list sizes) are pairwise-compared
using the Wilcoxon rank sum test, adjusting the corresponding
p-values using Holm’s correction procedure.

V. EMPIRICAL EVALUATION RESULTS

This section describes the results of our experiments con-
ducted in order to answer the research questions stated in
Section IV. We report the results for two different tasks in
Section V-A and Section V-B respectively.

A. Task 1: Traceability Link Recovery

Fig. 3 reports the precision/recall graphs obtained using (i)
the “ideal” IR configuration; (ii) the IR configuration identified
by GA-IR; and (iii) an “ad-hoc” configuration (referred to
as a reference) used in a previous study, i.e., VSM and
LSI used on the same dataset and for the same traceability
recovery task. For all three systems, namely EasyClinic, eTour
and iTrust, GA-IR was able to obtain a precision and recall
rate close to the one obtained by the combinatorial (i.e.,
“ideal”) configuration. It is important to emphasize that the
configuration identified by GA-IR used no information about
the oracle for computing the result, whereas the combinatorial
search used more than 30K different configurations for all
the three projects to identify the best configuration, and its
performance was evaluated based on the oracle. In other words,
among those > 30K configurations, we chose for comparison
the one that produced the best results based on the oracle.

Based on Fig. 3, when comparing the performance achieved
by GA-IR with those of the reference configurations, we can
observe a significant improvement in all the cases. These
results are also confirmed by the average precision obtained
by the three different treatments (see Table III). Indeed, the
average precision obtained by GA-IR is very close to the
“ideal” (combinatorial) one. For example, for EasyClinic the
average precision obtained with GA-IR is 66.92%, which is
slightly lower than the average precision obtained by the
“ideal” search, which is 67.47%. The same can be observed for
eTour and iTrust. Moreover, the difference in terms of average
precision with respect to the combinatorial configuration is
lower than 1%. However, the improvement obtained with
respect to the reference configurations is of about 20% in terms
of average precision. For example, for EasyClinic the average
precision obtained by GA-IR is 66.92%, whereas the average

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 20% 40% 60% 80% 100%
Ideal GA-IR Reference	VSM Reference	LSI

(a) EasyClinic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 20% 40% 60% 80% 100%
Ideal GA-IR Reference	VSM Reference	LSI

(b) eTour

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 20% 40% 60% 80% 100%
Ideal GA-IR Reference	VSM Reference	LSI

(c) iTrust

Fig. 3. Traceability link recovery: precision/recall graphs.

TABLE III. COMPARISON OF TRACEABILITY LINK RECOVERY
PERFORMANCES: AVERAGE PRECISION VALUES.

System Ideal GA-IR Ref. LSI [10], [11] Ref. VSM [10], [11]
EasyClinic 67.47 66.92 46.78 45.50
eTour 47.01 46.94 30.93 29.94
iTrust 68.84 68.13 45.47 46.07

TABLE IV. COMPARISON OF TRACEABILITY LINK RECOVERY
PERFORMANCES (PRECISION): RESULTS OF WILCOXON RANK SUM TEST.

EasyClinic eTour iTrust
GA-IR > Ideal 0.99 1 0.99
GA-IR > VSM-Reference [10], [11] < 0.01 < 0.01 <0.01
GA-IR > LSI-Reference [10], [11] < 0.01 < 0.01 <0.01
Ideal > VSM-Reference [10], [11] < 0.01 < 0.01 < 0.01
Ideal > LSI-Reference [10], [11] < 0.01 < 0.01 < 0.01

precision values obtained by the reference configurations (i.e.,
the ones that used an “ad-hoc” configuration) are 46.78% and
45.50% for LSI and VSM respectively. The findings presented
in Fig. 3 and Table III are also confirmed by statistical tests
(see Table IV), which show that for all three systems, there is
no statistical difference between the results produced by GA-
IR and the “ideal” search, but there is a statistical difference
between the results produced by GA-IR and the references
(baselines). In summary, GA-IR outperforms the baselines and
the differences are statistically significant.

B. Task 2: Duplicate Bug Report Identification

For the identification of duplicate bug reports, we used two
different corpora, referred as Short and 2ShortLong (as sug-
gested by [50]). In the former case, each bug is characterized
by only the bug title, while in the latter case we used both
the title and the bug description where the title is weighted
twice as much as the bug description. Note that in both cases
we combined textual information with information belonging
to execution traces.

Fig. 4 reports the recall rate for the results produced by
using four different configurations, i.e., GA-IR, “ideal” and
two reference configurations. The reference configurations are
obtained by applying a standard corpus preprocessing that is
typical to bug duplicates [50] and other SE tasks [30] and
using two IR methods, i.e., LSI and VSM. For LSI, we also
set the number of concepts (k) equal to half the number of
documents for LSI [11]. When the corpus consists of both
titles and bug descriptions, (i.e., 2ShortLong), GA-IR achieved
approximately the same RR values as the ideal with only few
exceptions to this rule, i.e., for cut points equal to 4,10, and

11. However, in these few cases, the differences are negligible
because these are always lower than 2%. From Fig. 4-(b) we
can also notice that GA-IR produces better results in terms of
RR as compared to the reference baselines. In particular, the
RR for GA-IR is higher than the RR of the LSI and VSM with
“ad-hoc” configurations, with an improvement raging between
2% and 16%.

When the corpus consists of bug report titles only (i.e.,
Short) we can observe that there is no difference between
RR scores achieved by GA-IR and the “ideal” configuration
(based on the oracle) for cut points lower than 10. For larger
cut-points, the “ideal” configuration yields higher recall rate
than GA-IR with a difference of 2%. Only for cut point equal
to 25 (i.e., the last one) the two configurations report again
the same RR scores. However, when comparing GA-IR with
the two reference baselines (i.e., LSI and VSM with “ad-hoc”
configurations) we can notice that GA-IR recall rate is either
equal or higher than the reference rate. Indeed, for cut points
ranging from 8 to 19, the GA-IR recall rate is approximately
2-7% higher than recall rate achieved by both LSI and VSM
with “ad-hoc” configuration. While for cut-points lower than
8 or greater than 20, GA-IR’s and reference’s recall rates are
the same as observed from the graph in Fig. 4-(b).

Comparing the results reported in Fig. 4-(a) and Fig. 4-(b),
we can observe that the performance of all the configurations
(“ideal”, GA-IR and reference configurations) are higher when
the corpus is represented by both bug title and description,
i.e., for the 2ShortLong corpus. We also observe that the gap
between GA-IR and the reference is much higher for the
2ShortLong corpus as opposed to the Short corpus, and one
explanation for this finding could be the fact that, on one hand,
when additional information is added to the corpus (i.e., a
long description), the benefits of properly calibrating an IR
technique (i.e., using GA-IR) are much more effective. On
the other hand, when the corpus is particularly limited, as in
the case of bug titles that contains only few words, a proper
calibration of IR techniques can result in smaller benefits.

Table V reports the results of the Wilcoxon test (adjusted
p-values) for all combinations of the techniques (statistically
significant results are highlighted in bold face). The results
indicate that on both Short and 2ShortLong corpora GA-IR
statistically outperforms the two reference baselines, i.e., VSM
and LSI instantiated with “ad-hoc” configuration. Moreover,
there is no significant difference between GA-IR and the
“ideal” configuration for the Short corpus. However, for the

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%

1 3 5 7 9 11 13 15 17 19 21 23 25

Re
ca
ll	
Ra

te

Suggested	List	Size

GA-IR
Ideal
Reference	LSI
Reference	VSM

(a) Short Corpus

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25

Re
ca
ll	
Ra

te

Suggested	List	Size

GA-IR
Ideal
Reference	LSI
Reference	VSM

(b) 2ShortLong Corpus

Fig. 4. Recall Rate graphs for Eclipse, with suggested list size raging between
1 and 25.

TABLE V. COMPARISON OF BUG REPORT DUPLICATION: RESULTS OF
THE WILCOXON RANK SUM TEST.

Short Corpus 2ShortLong Corpus
GA-IR > Ideal < 0.01 0.48
GA-IR > LSI-Reference < 0.01 < 0.01
GA-IR > VSM-Reference < 0.01 < 0.01
Ideal > VSM-Reference < 0.01 < 0.01
Ideal > VSM-Reference < 0.01 < 0.01

2ShortLong corpus the “ideal” configuration performs signifi-
cantly better than GA-IR.

C. Detailed description of the experimented IR processes

Table VI details the specific IR-configurations (i.e., the
preprocessing steps, IR technique and IR-technique parameter
values) that were identified by GA-IR, the “ideal” search and
the references. The rows are grouped by task (i.e., traceability
link recovery, and identification of duplicate bug reports),
dataset (or systems) and approach (i.e., GA-IR, “ideal”, and
references), and the columns represent the steps of the IR-
process, or the gene type illustrated in Table I.

From the fourth column of Table VI we notice that for
both tasks, and for all datasets and approaches, LSI was the
IR-technique that was chosen by GA-IR and the “ideal” search,
which tested LSI, and VSM. For most baselines, LSI was the
suggested technique and was configured with the dimensional-
ity reduction factor of 50% the number of documents from the

corpus for both traceability link recovery and identification of
duplicate bug reports. It is important to mention that there
were other IR-configurations that used VSM and produced
results close to the ones presented in previous sub-section,
however, in the end LSI-based configurations outperformed
them. Regarding the number of topics (k) selected for LSI,
for all three approaches we observe a clear pattern: (i) the
reference configuration uses a very different value than the
“ideal” or GA-IR; (ii) the k values selected by GA-IR and
“ideal” are very close to each other. This would indicate that
GA-IR allows us to instantiate an IR process that is close to
the one identified by the “ideal” one.

When comparing the preprocessing steps for character
pruning (see Table VI columns five and six), we observe that in
most of the cases the special characters were removed, and in
some cases, the “ideal” and GA-IR approaches include the dig-
its in the corpus. The reference configuration always removed
the digits, because the assumption was that their contribution
to providing meaning to the IR model that processes a corpus
from source code was limited. However, our findings show that
this assumption is not always true: for both the traceability
link recovery and identification of duplicate bug report tasks
(which include in their corpora use cases and bug descriptions
respectively) the “ideal” and GA-IR approaches often choose
the option to include the digits, as they might carry some
meaning, which in turn would help improve the results over
the baseline (which always removed the digits). For the choice
of splitting identifiers, in the majority of cases (i.e., 16 out of
20), the standard Camel Case splitting algorithm was applied
(see Table VI column seven). Only two exceptions to the rules
are obtained for iTrust with the “ideal” IR process and for
Eclipse (Short corpus) with both the “ideal” IR process and
GA-IR where the identifiers were split using Camel Case, as
well as keeping the original (compound) identifiers.

If we compare the preprocessing steps of removing stop
words and stemming (see Table VI columns seven and eight)
we observe that in all the cases a standard list of stop
words was used (i.e., no approach was configured by keeping
programming language keywords or identifiers frequently used
in English, such as articles, prepositions). In addition, in some
cases, GA-IR and the “ideal” search choose to also remove
identifiers with less than two or three characters, in order to
reduce the noise from the IR model. In terms of stemmers,
every approach used either the Snowball or Porter stemmer
(i.e., no approach was configured with no stemming at all),
with the only exception of the two references (i.e., VSM and
LSI with “ad-hoc” configuration) for identification of duplicate
bug report tasks where no stemmer is used [50].

For all approaches, the chosen function to compute the
document to document similarity was the cosine similarity
(see last column in Table VI). Moreover, for the majority
of cases (i.e., 19 out of 20) the tf-idf measure was chosen
as the preferred weighting schema (see Table VI column 11).
However, GA-IR choose the log weighting schema for iTrust.
Although we can identify some patterns when analyzing each
preprocessing step individually, we cannot determine a clear
pattern when we take all the preprocessing steps and the
configuration of the IR techniques as a whole, but we can
observe a clear variation in the choices. The fact that not
all the tasks and/or datasets require the same preprocessing

TABLE VI. COMPARISON OF DIFFERENT IR PROCESSES PROVIDED BY GA-IR, COMBINATORIAL AND REFERENCE. TABLE ABBREVIATIONS: CC =
CAMEL CASE; CC & KC = CAMEL CASE PLUS KEEP-COMPOUND IDENTIFIER.

Task System Strategy IR Method Special Digit Term Stopword Stopword Stemming Weight Similarity
Character Chars Splitting List Function Stemming Schema Function

Task 1

EasyClinic

Ideal LSI (k = 60) Remove Include CC Yes No Snowball tf-idf Cos
GA-IR LSI (k = 53) Remove Remove CC Yes ≤ 2 chars Snowball tf-idf Cos
Reference LSI (k = 37) Remove Remove CC Yes ≤ 3 chars Snowball tf-idf Cos
Reference VSM Remove Remove CC Yes ≤ 3 chars Snowball tf-idf Cos

eTour

Ideal LSI (k = 170) Remove Include CC Yes No Snowball tf-idf Cos
GA-IR LSI (k = 149) Remove Remove CC Yes No Porter tf-idf Cos
Reference LSI (k = 87) Remove Remove CC Yes No Snowball tf-idf Cos
Reference VSM Remove Remove CC Yes No Snowball tf-idf Cos

iTrust

Ideal LSI (k = 75) Remove Include CC & KC Yes ≤ 2 chars Snowball tf-idf Cos
GA-IR LSI (k = 79) Remove Include CC Yes ≤ 3 chars Porter log Cos
Reference LSI (k = 40) Remove Remove CC Yes No Snowball tf-idf Cos
Reference VSM Remove Remove CC Yes No Snowball tf-idf Cos

Task 2
Eclipse Short

Ideal LSI (k = 124) Include Include CC & KC Yes No Porter tf-idf Cos
GA-IR LSI (k = 119) Include Include CC & KC Yes No Porter tf-idf Cos
Reference LSI (k = 112) Remove Include No Yes No Porter tf-idf Cos
Reference VSM Remove Include No Yes No Porter tf-idf Cos

Eclipse 2ShortLong

Ideal LSI (k = 180) Remove Include CC Yes No Porter tf-idf Cos
GA-IR LSI (k = 185) Remove Include CC Yes ≤ 3 chars Porter tf-idf Cos
Reference LSI (k = 112) Remove Remove No Yes No Porter tf-idf Cos
Reference VSM Remove Remove No Yes No Porter tf-idf Cos

steps confirms the findings of Falessi et al. [18] that there is
no unique IR configuration that can be efficiently applied to
all the tasks and all the datasets. Thus, GA-IR plays a key
role in considering all the potential configurations of an IR-
technique, and all their potential interactions as a whole (as
opposed to considering them individually) and recommends
the configuration that is most suited for a dataset, as each
dataset is unique. We observed that besides recommending
the preprocessing steps, GA-IR was able to recommend the
number of topics k, and the overall IR configuration was
able to produce better results than the baseline. Moreover, our
comparison between GA-IR and the “ideal” search indicates
that GA-IR was able to find a suitable configuration (using the
Silhouette coefficient of the underlying model) that is close to
the configuration identified by the “ideal” search, which used
the oracle to identify the best configuration.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. For the two tasks investigated,
we evaluated the performances of GA-IR and of alternative
approaches using well-established metrics, namely precision
and recall, effectiveness measure and Recall Rate, as well as
oracles already used and validated in previous studies [20],
[50]. We used as a baseline for comparison the performances
achieved by IR techniques and settings used in previous papers.
As for detecting duplicate bug reports, it was not possible
to fully replicate the approach by Wang et al. [50] due to
unavailability of all the required information. However, Section
IV explains the details and the rationale for using a baseline
for comparison for such a task.

Threats to internal validity are related to co-factors that
could have influenced our results. We limited the influence of
GA randomness by performing 30 GA runs, and considering
the configuration achieving the median performance.

Threats to conclusion validity concern the relationship
between a treatment and an outcome. To support our claims,
we used a non-parametric statistical test, i.e.,, Wilcoxon rank
sum test. Since multiple tests were performed on the same

software projects, we also use the Holm’s correction to adjust
p-values.

Threats to external validity concern the generalization of
our results. First, as explained in Section IV, for a better
control over the independent and dependent variables of the
study we considered only two IR methods (i.e., LSI and VSM),
although as illustrated in Section III the approach can be easily
extended to consider and search among alternative IR methods
and their configurations. In addition, we consider only a subset
of the possible treatments for the various phases such as term
extraction, stop words removal, stemming, and term weighting.
Although the chosen treatments are representative of the ones
used in literature, it is worthwhile to investigate other pos-
sibilities. Finally, while we applied GA-IR to assemble and
calibrate IR-based techniques on artifacts in two SE tasks, it
would be worthwhile to scrutinize GA-IR in the context of
other SE tasks.

VII. RELATED WORK

This section describes related work concerning the impor-
tance of choosing proper treatments for different phases of an
IR process when applied to SE tasks. It also reports approaches
aimed at suggesting calibrations for specific IR techniques.

Falessi et al. [18] empirically evaluated the performance
of IR-based duplicate requirement identification on a set of
over 983 requirement pairs coming from industrial projects.
To this aim, they instantiated 242 IR processes, using var-
ious treatments for stemming, term weighting, IR algebraic
method, and similarity measures. Their study shows that the
performances of different IR configurations for detecting du-
plicate requirements vary significantly. Also, Thomas et al.
[49] studied the impact of classifier configuration in a bug
localization process. They considered 3,172 configurations,
where each configuration on one hand includes different steps
of the IR-based indexing, and on the other hand different
kinds of machine learning classifiers. The work by Falessi et
al. [18] and Thomas et al. [49] motivate our research, as it
empirically shows that instantiating an appropriate IR process
is crucial to achieving good performances. However, while they
do not propose an approach for choosing the most suitable

technique/configuration, our GA-IR approach searches for a
(near) optimal IR technique, which is also properly configured,
using GAs, and above all, it is able to do it without the
availability of an oracle.

Moreno et al. [36] investigated the effects of different text
retrieval configurations on feature location approaches, and
proposed an approach named QUEST to perform a query-
based identification of a text retrieval configuration. In other
words, their approach determines the text retrieval configura-
tion most suitable for a given query. Differently from our case,
their approach is focused on choosing among a limited number
(21) of configurations (therefore, the choice is performed
exhaustively), and to make the choice dependent on the query.
Instead, GA-IR can choose among a very high (and virtually
unlimited) number of configurations by relying on a search-
based optimization technique.

In our previous work [38] we proposed LDA-GA, a GA-
based approach to automatically calibrate the parameters of
LDA in the context of three software engineering tasks,
namely traceability link recovery, feature location and software
artifact labeling. In contrast to LDA-GA, GA-IR assembles and
configures the entire IR process, rather than just tuning the pa-
rameters of a specific IR algebraic method. More specifically,
our results are in concordance with the findings of Falessi et al.
[18], which illustrate that performances of IR processes depend
on the choices made for the various phases of IR processing,
rather than just on the appropriate choice and calibration of
the IR algebraic model.

The literature also reports approaches for calibrating spe-
cific stages of an IR process, or parameters of specific algebraic
IR techniques. Cordy and Grant have proposed heuristics for
determining the “optimal” number of LDA topics for a source
code corpus of methods, by taking into account the location
of these methods in files or folders, as well as the conceptual
similarity between methods [21]. Cummins [9] proposed to
use genetic programming (GP) to automatically build term
weighting formulae, using different combinations of tf and idf,
that can be altered using functions such as logarithm. The
similarity between our approach and Cummins’ approach is
the use of search-based optimization techniques to calibrate
IR processes. Their approach was evaluated on a set of 35,000
textual documents, for a document search task. In contrast to
our technique, their approach (i) focuses on term weighting
only (whereas we focus on the whole process), and (ii) their ap-
proach is supervised, as the fitness function evaluation requires
the availability of a training set (e.g., labeled traceability links).
Griffiths and Steyvers [22] propose a method for choosing the
best number of topics for LDA among a set of predefined
topics. Their approach consists of (i) choosing a set of topics,
(ii) computing a posterior distribution over the assignments of
words to topics, (iii) computing the harmonic mean of a set of
values from the posterior distribution to estimate the likelihood
of a word belonging to a topic, and (iv) choosing the topic with
the maximum likelihood.

To the best of our knowledge, the most related work to
ours is the approach by Lohar et al. [31], who proposed to
use GA for customizing a process for traceability recovery.
While we share the goal of configuring each step of the IR
process, and the application to traceability link recovery, there
are substantial differences between the two approaches:

1) While the approach of Lohar et al. [31] is supervised,
i.e., it configures the IR process using GA on a
training set on which traceability links have been
labeled, our approach is unsupervised, as it calibrates
the GA based on the achieved clustering quality. As
mentioned in the introduction, this can be valuable
when a labeled training set is unavailable;

2) For this reason, our approach is task independent, as
it is able to configure an IR process independently
of the task on which the configured process has to
be applied while the approach by Lohar et al. [31] is
task dependent.

VIII. CONCLUSION AND FUTURE WORK

The application of IR techniques to software engineering
problems requires a careful construction of a process consisting
of various phases, i.e., term extraction, stop word removal,
stemming, term weighting, and application of an algebraic IR
method. Each of these phases can be implemented in various
ways, and requires careful choice and settings, because the
performances significantly depend on such choices [18].

This paper proposes the use of Genetic Algorithms to
assemble and configure a (near) optimal IR process to be
applied to given software artifacts, (e.g., when processing
artifacts to solve problems such as traceability link recovery
or feature location). Noticeably, the proposed approach is
unsupervised and task independent, as it evaluates the extent
to which the artifacts can be clustered after being processed.

We applied the proposed approach—named as GA-IR—
to two software engineering tasks, namely traceability link
recovery and detection of duplicate bug reports. The results
of our empirical evaluation indicate that:

• for traceability recovery, the IR processes assembled
by GA-IR significantly outperform those assembled
according to existing approaches from literature;

• for duplicate bug report detection, the obtained results
do not always significantly improve the performances
of the baseline approach, since such a baseline is
already close to the ideal optimum;

• in most cases, the performances achieved by GA-IR
are not significantly different from the performances
of an ideal IR process that can be combinatorially built
by considering all possible combinations of treatments
for the various phases of the IR process, and by
having a labeled training set available (i.e., by using
a supervised approach).

Our work in progress aims at extending the proposed
approach in various ways. First, we plan to use a more sophisti-
cated evolutionary algorithm, employing genetic programming
(GP) to assemble different phases in different ways, including
creating ad-hoc weighting schemata [9] or extracting ad-hoc
elements from artifacts to be indexed, e.g., only specific source
code elements, only certain parts-of-speech. Last, but not least,
we plan to apply GA-IR in the context of other software
engineering tasks, and to make it available as a plugin to the
Tracelab [27] environment, as done already for the automatic
configuration of LDA [15].

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[2] G. Antoniol, Y.-G. Guéhéneuc, E. Merlo, and P. Tonella, “Mining the
lexicon used by programmers during sofware evolution,” in Proc. of the
23rd IEEE International Conference on Software Maintenance. Paris,
France: IEEE Press, 2007, pp. 14–23.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
The Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[5] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “On the role of the nouns in IR-based traceability
recovery,” in Proc. of 17th IEEE International Conference on Program
Comprehension, Vancouver, British Columbia, Canada, 2009.

[6] B. Caprile and P. Tonella, “Restructuring program identifier names,” in
Proc. of 16th IEEE International Conference on Software Maintenance.
San Jose, California, USA: IEEE CS Press, 2000, pp. 97–107.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[8] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations. Boston: Birkhauser, 1998, vol. 1,
ch. Real rectangular matrices.

[9] R. Cummins, “The evolution and analysis of term-weighting schemes in
information retrieval,” Ph.D. dissertation, National University of Ireland,
2008.

[10] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Applying a smoothing filter to improve IR-based traceability recov-
ery processes: An empirical investigation,” Information and Software
Technology, 2012.

[11] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artefact management systems using information
retrieval methods,” ACM Trans. on Soft. Eng. and Methodology, vol. 16,
no. 4, 2007.

[12] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[13] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[14] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better
identifier splitting techniques help feature location?” in The 19th IEEE
International Conference on Program Comprehension, ICPC 2011,
Kingston, ON, Canada, June 22-24, 2011. IEEE Computer Society,
2011, pp. 11–20.

[15] B. Dit, A. Panichella, E. Moritz, R. Oliveto, M. Di Penta, D. Poshy-
vanyk, and A. De Lucia, “Configuring topic models for software engi-
neering tasks in tracelab,” in 7th International Workshop on Traceability
in Emerging Forms of Software Engineering, TEFSE 2013, 19 May,
2013, San Francisco, CA, USA, 2013, pp. 105–109.

[16] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” Empirical Software Engineering (EMSE), pp. 1–
33, to. appear, 2012.

[17] S. T. Dumais, “Improving the retrieval of information from external
sources,” Behavior Research Methods, Instruments and Computers,
vol. 23, pp. 229–236, 1991.

[18] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Trans. Software Eng., vol. 39,
no. 1, pp. 18–44, 2013.

[19] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
impact analysis for managing software changes,” in Proc. of the
34th IEEE/ACM International Conference on Software Engineering
(ICSE’12), Zurich, Switzerland, June 2-9, 2012, pp. 430–440.

[20] M. Gethers, R. Oliveto, D. Poshyvanyk, and A.De Lucia, “On integrat-
ing orthogonal information retrieval methods to improve traceability

recovery,” in Proc. of the 27th International Conference on Software
Maintenance (ICSM’11). Williamsburg, VA, USA, Sept. 25-Oct. 1:
IEEE Press, 2011, pp. 133–142.

[21] S. Grant and J. R. Cordy, “Estimating the optimal number of latent
concepts in source code analysis,” in Proc. of the 10th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’10), 2010, pp. 65–74.

[22] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. of the
National Academy of Sciences, vol. 101, no. Suppl. 1, pp. 5228–5235,
2004.

[23] S. Haiduc and A. Marcus, “On the use of domain terms in source
code,” in Proc. of 16th IEEE International Conference on Program
Comprehension. Amsterdam, the Netherlands: IEEE CS Press, 2008,
pp. 113–122.

[24] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[25] S. Holm, “A simple sequentially rejective Bonferroni test procedure,”
Scandinavian Journal on Statistics, vol. 6, pp. 65–70, 1979.

[26] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software Mainte-
nance and Evolution: Research and Practice (JSME), vol. 24, no. 1,
pp. 3–33, 2012.

[27] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin,
E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. Huffman Hayes
et al., “Tracelab: An experimental workbench for equipping researchers
to innovate, synthesize, and comparatively evaluate traceability solu-
tions,” in Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, 2012, pp. 1375–1378.

[28] J. Kogan, Introduction to Clustering Large and High-Dimensional Data.
New York, NY, USA: Cambridge University Press, 2007.

[29] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in Proc. of 14th IEEE International Conference
on Program Comprehension. Athens, Greece: IEEE CS Press, 2006,
pp. 3–12.

[30] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location via
information retrieval based filtering of a single scenario execution trace,”
in Proc. of 22nd IEEE/ACM International Conference on Automated
Software Engineering. Atlanta, Georgia, USA: ACM Press, 2007.

[31] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang,
“Improving trace accuracy through data-driven configuration and com-
position of tracing features,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, 2013, pp. 378–388.

[32] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE Trans-
actions on Software Engineering, vol. 17, no. 8, pp. 800–813, 1991.

[33] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of 25th
International Conference on Software Engineering. Portland, Oregon,
USA: IEEE CS Press, 2003, pp. 125–135.

[34] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of traceability
links between software documentation and source code,” International
Journal of Software Engineering and Knowledge Engineering, vol. 15,
no. 5, pp. 811–836, 2005.

[35] A. Michail and D. Notkin, “Assessing software libraries by browsing
similar classes, functions and relationships,” in Proc. of 21st Interna-
tional Conference on Software Engineering. Los Angeles, California,
USA: IEEE CS Press, 1999, pp. 463–472.

[36] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta, R. Oliveto, B. Russo,
and A. Marcus, “Query-based configuration of text retrieval solutions
for software engineering tasks,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 567–578.

[37] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in Proc. of the 18th IEEE International Conference on
Program Comprehension, Braga, Portugal, 2010, pp. 68–71.

[38] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software

engineering tasks? an approach based on genetic algorithms,” in 35th
IEEE/ACM International Conference on Software Engineering, San
Francisco, CA, USA, May 18-26, 2013, p. to appear.

[39] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[40] D. Poshyvanyk, Y. Gael-Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Combining probabilistic ranking and latent semantic indexing for
feature identification,” in Proc. of 14th IEEE International Conference
on Program Comprehension. Athens, Greece: IEEE CS Press, 2006,
pp. 137–148.

[41] D. Poshyvanyk, Y. Gael−Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval,” IEEE Trans.
on Softw. Eng., vol. 33, no. 6, pp. 420–432, 2007.

[42] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using
information retrieval based coupling measures for impact analysis,”
Empirical Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[43] D. Poshyvanyk and D. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in Proc.
of 15th IEEE International Conference on Program Comprehension.
Banff, Alberta, Canada: IEEE CS Press, 2007, pp. 37–48.

[44] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 4, pp. 23:1–23:34, Feb. 2013. [Online].
Available: http://doi.acm.org/10.1145/2377656.2377660

[45] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,

2012, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.
org/

[46] D. Ratiu and F. Deissenboeck, “From reality to programs and (not
quite) back again,” in 15th IEEE International Conference on Program
Comprehension (ICPC’07), Banff, Alberta, Canada, June 26-29, 2007,
pp. 91–102.

[47] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” in Proc. of the 18th
IEEE International Conference on Program Comprehension, Braga,
Portugal, 2010, pp. 14–23.

[48] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of du-
plicate defect reports using natural language processing,” in Proc. of
29th IEEE/ACM International Conference on Software Engineering
(ICSE’07), Minneapolis, Minnesota, USA, 2007, pp. 499–510.

[49] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The
impact of classifier configuration and classifier combination on bug
localization,” IEEE Trans. Software Eng., vol. 39, no. 10, pp. 1427–
1443, 2013.

[50] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in 30th IEEE/ACM International Conference on Software
Engineering, Leipzig, Germany, May 10-18, 2008, pp. 461–470.

[51] Y. Ye and G. Fischer, “Reuse-conducive development environments,”
Journal of Automated Software Engineering, vol. 12, no. 2, pp. 199–
235, 2005.

