On Automatically Generating Commit Messages via
Summarization of Source Code Changes

Luis Fernando Cortés-Coy!, Mario Linares-Vasquez?, Jairo Aponte!, Denys Poshyvanyk?
1 Universidad Nacional de Colombia, Bogotd, Colombia
2The College of William and Mary, Williamsburg, VA, USA
Ifcortesco@unal.edu.co, mlinarev@cs.wm.edu, jhapontem@unal.edu.co, denys @cs.wm.edu

Abstract—Although version control systems allow developers
to describe and explain the rationale behind code changes in
commit messages, the state of practice indicates that most of the
time such commit messages are either very short or even empty. In
fact, in a recent study of 23K+ Java projects it has been found that
only 10% of the messages are descriptive and over 66% of those
messages contained fewer words as compared to a typical English
sentence (i.e., 15-20 words). However, accurate and complete
commit messages summarizing software changes are important to
support a number of development and maintenance tasks. In this
paper we present an approach, coined as ChangeScribe, which
is designed to generate commit messages automatically from
change sets. ChangeScribe generates natural language commit
messages by taking into account commit stereotype, the type of
changes (e.g., files rename, changes done only to property files),
as well as the impact set of the underlying changes. We evaluated
ChangeScribe in a survey involving 23 developers in which the
participants analyzed automatically generated commit messages
from real changes and compared them with commit messages
written by the original developers of six open source systems.
The results demonstrate that automatically generated messages
by ChangeScribe are preferred in about 62% of the cases for
large commits, and about 54% for small commits.

Keywords—Commit message, summarization, code changes

I. INTRODUCTION

Changes to software systems are stored in version control
systems (VCS) such as Subversion' and Git> and are partially
documented in commit messages (a.k.a., commit notes, commit
comments, or commit logs). The main purpose behind commit
messages is to describe the changes and help encoding ratio-
nale behind those changes. These commit messages, especially
if they are correct and complete, are essential to program
comprehension and software evolution in general since they
help developers understand and validate changes, locate and
re(assign) bug reports, and trace changes to other software
artifacts.

However, the state of the practice on using and writing
commit messages by actual developers seriously discords
with theory. In fact, the study by Maalej and Happel [21]
analyzed more than 600K+ commit messages and personal
work descriptions demonstrating that 10% of the messages
were removed because they were empty, had very short strings
(fewer than two words) or lacked any semantical sense. Also,
in another study of 23K+ projects by Dyer et al. [8] it has
been shown that 14% of the commit messages were empty
(i.e., zero words), 66% of the messages contained fewer words

Uhttp://subversion.apache.org/
Zhttp://git-scm.com/

than a typical English sentence (i.e., 15 - 20 words) and only
10% of analyzed messages were descriptive.

One possible explanation behind this dissonance between
theory and practice has been recently explored in several
studies [26], [4], [20]. In particular, it has been observed
that the number and nature of daily activities by software
developers, including a large number of interruptions, can
influence their attention to modified code [26], [4]. In fact,
these daily activities become one of the causes for ignoring
or forgetting implementation details behind the changes by
commit time [20]. Moreover, identifying and remembering
the exact set of changes done during a commit can be hard
and expensive for non-trivial large changes spanning across
multiple code packages, classes, methods, configuration files,
database schemas, and other artifacts [4].

Regardless of exact reasons or excuses for the vast majority
of unusable commit messages, them still remain an important
source of information, knowledge, and documentation that
developers rely on while addressing software maintenance
tasks [14], [4], [11]. The main objective of a commit message
is to provide information about the what and the why as
related to software changes [2]. The what refers to the changes
implemented during the incremental change while the why
describes the motivation and context behind the changes.
Although the details about the changes and changed code units
can be generated automatically and accurately with line-based
differencing tools, these tools do not provide enough context to
understand the why behind the changes. Moreover, according
to Buse and Weimer [2], raw diffs are not always enough as
a summary for some of the what questions about the change,
because raw diffs only report textual differences between two
versions of the files, which is often long and confusing, and
does not provide developers with answers to many high-level
questions.

Previous approaches tried to augment some of the what and
why aspects of commit messages by automatically enhancing
them using visualization [4], code summarization [2], [28],
and line-based differencing [3]. In addition, a recent approach
by Rastkar and Murphy [31] used a multi-document summa-
rization technique to describe the motivation behind software
changes. Building on top of the previous work, in this paper we
present a novel approach, coined as ChangeScribe, that helps
developers to write descriptive commit messages. Change-
Scribe automatically generates editable commit messages for a
given change-set and describes the what and why of a change
in natural language by indicating commit stereotype [6], type
of changes (e.g., files rename, changes done only to properties
files) and the impact set of the changes. While ChangeScribe
integrates and extends some previously published techniques

it also offers a new way of summarizing code changes by
taking into account the impact set of changes being committed.
ChangeScribe has been instantiated to work with software
applications written in Java and hosted using Git.

We evaluated ChangeScribe using a survey involving 23
developers, in which real commit messages from 50 com-
mits of six open source projects (i.e., Elastic Search, Spring
Social, JFreeChart, Apache Solr, Apache Felix, and Retrofit)
were compared against the commit messages generated by
ChangeScribe. The results of the user study demonstrate that
84% of the generated commit messages do not miss essential
information required to understand the changes, 25% of them
are concise, and in 39% of the cases the generated messages
are easy to read and understand. In addition, the participants
preferred ChangeScribe’s commit messages to those written
by the original developers in 62% of cases for large commits
and in 54% of the cases for small commits.

In general, this paper makes the following contributions: (i)
an approach and tool, ChangeScribe, for automatic generation
of descriptive commit messages that can reduce the amount of
meaningless messages written by developers; (ii) an empirical
study with 23 developers comparing ChangeScribe’s commit
messages with those written by the original open source devel-
opers; and (iii) an open source Eclipse plug-in that implements
the proposed approach and is publicly available®.

II. RELATED WORK

ChangeScribe is mainly related to (i) other approaches
for augmenting the context provided by differencing tools,
(ii) techniques for generating natural language descriptions for
software artifacts, and (iii) previous studies on the character-
istics of commit messages. The differences between Change-
Scribe and the related work are listed in Table I.

A. Describing and Augmenting Context of Code Changes

Jackson and Ladd [18] introduced the Semantic Diff tool,
which detects differences between two versions of a proce-
dure, and then summarizes the semantic differences by using
program analysis techniques. Other approaches that improve
line-based differencing tools are LDiff by Canfora et al. [3]
and iDiff by Nguyen et al. [27]. Parnin et al. [28] proposed an
approach for analyzing differences between program versions
at bytecode statement level; for describing the changes, type
information and fully qualified source code locations of the
changes (in the source entity and the entities impacted by the
change) are presented. ChangeScribe also relies on line-based
differencing, however it augments the context of the changes
with a natural language description that includes the commit
stereotype, change descriptions, and impact set.

Buse and Weimer [2] designed an automatic technique,
DeltaDoc, to describe source code modifications using sym-
bolic execution and summarization techniques. DeltaDoc gen-
erates textual descriptions of the changes, but when the change-
set is very large (i.e. many files or methods), it describes
each method separately ignoring possible dependencies of
those methods. Recently, Rastkar and Murphy [31] proposed
a multi-document summarization technique for describing the

3http://www.cs.wm.edu/semeru/data/SCAM 14-ChangeScribe

Table 1. APPROACHES FOR GENERATING DESCRIPTIONS OF SOURCE
CODE CHANGES AND SOFTWARE ARTIFACTS. THE TABLE LISTS THE
DESCRIPTION TYPE, ARTIFACTS (CODE CHANGES, STATEMENT, CLASS,
METHOD, BUG REPORT,CODE FRAGMENT, CROSSCUTTING CONCERN),
AND TECHNIQUES (INFORMATION RETRIEVAL, PROGRAM ANALYSIS,
SOFTWARE VISUALIZATION, NATURAL LANGUAGE PROCESSING,
STEREOTYPES IDENTIFICATION, UNSUPERVISED LEARNING, SUPERVISED
LEARNING, IMPACT ANALYSIS)

Approach Type Artifact Technique
Semantic Diff [18] Abstract summary CcC PA
Ldiff [3] Line-diff CcC PA
iDiff [27] Line-diff CC PA
Parnin ef al. [28] Abstract summary cC PA
DeltaDoc [2] Abstract summary CcC PA
Rastkar and Murphy [31] Extractive summary CC IR
Commit 2.0 [4] Visual CC NY
Haiduc er al. [13] Extractive summary C+M IR
Hill et al. [16] Word sequences S NLP
Sridhara et al. [33] Abstract Summary M NLP
Rastkar er al. [29], [30] Abstract summary CCR PA+NLP
JSummarizer [23] Abstract Summary C NLP+SI
Lotufo ef al. [19] Extractive summary BR UL
Rastkar ef al. [32] Extractive summary BR SL
Ying and Robillard [34] Extractive summary CF SL
McBurney and McMillan [22] Abstract Summary M NLP+IR
ChangeScribe Abstract summary CC NLP+SI+IA

motivation behind a change. As compared to the approaches
above, the commit messages generated by ChangeScribe con-
tain more information on the what about the changes including
information on dependencies and do not require using artifacts
of multiple types.

The code context of source code changes can be also
augmented using visualizing tools. For instance, D’ Ambros
et al. [4] proposed Commit 2.0, a tool for augmenting commit
logs with a visual context of the changes. Commit 2.0 provides
a visualization of the changes at different granularity levels,
and allows developers to annotate the visualization. While
ChangeScribe only generates a textual description, however,
in the future work, a visualization like the one in Commit 2.0
can be integrated into our proposed approach.

B. Natural Language Descriptions of Software Artifacts

Summarizing software artifacts is an active research topic
in software maintenance and most of the existing techniques
work mainly on source code artifacts. Haiduc et al. [13]
proposed an approach for summarizing methods and classes
as collections of the most representative terms from the source
code; the terms were extracted and selected using different
Information Retrieval techniques (e.g., VSM and LSI). Hill et
al. [16] used natural language processing (NLP) techniques for
generating natural language phrases (i.e., sequences of words)
from source code units that are relevant to a query. Sridhara et
al. [33] generate natural language comments for Java methods
using summarization techniques; the method’s comments are
generated from elements in the method’s signature and body,
which are identified as relevant to the method behavior. Rastkar
et al. [29], [30] described crosscutting concerns and how
they were implemented in a system; the summaries contained
sentences describing salient code elements (i.e., relevant to the
concern), and the sentences were generated using structural and
natural language information that is extracted from the source
code. Moreno et al. [23] proposed a technique for generat-
ing summaries of Java classes in JavaDoc format composed
of three parts: (i) general description explaining the objects
represented by the class, (ii) class stereotype [24] description
including the class responsibilities, and (iii) class behavior

description. Ying and Robillard [34] used machine learning
techniques for summarizing Java code fragments. McBurney
and McMillan [22] generate summaries of Java methods by
including local information (keywords in the method) and con-
textual information (keywords in the most important referenced
methods). ChangeScribe uses code summarization techniques
based on NLP, similarly to [16], [29], [30], [23], for generating
commit messages.

Other artifacts such as bug reports have been summarized
by using machine learning techniques [19], [32]. For instance,
Lotufo et al. [19] used unsupervised-learning methods, mean-
while Rastkar et al. [32] used supervised-learning approaches
that are suitable for summarizing conversational data (e.g.,
email and forum discussions).

C. Empirical Studies on Characterizing Commit Messages

Few studies have mined software repositories aimed at
characterizing commit messages. Alali et al. [1] analyzed
distributions of terms in commit messages of nine open source
systems. The results suggest that vocabulary terms such as fix,
add, test, bug, patch are in the top ten list of most frequently
used terms; the combinations file-fix, fix-use, add-bug, remove-
test, and file-update are the most frequent sets. In addition,
Dyer et al. [8] found that 14% of the commit messages
from 23k+ Java projects from SourceForge are empty; only
10% of the messages are descriptive; and over 66% of the
messages contain only one to fifteen words. Other studies
such as [17] and [15], did not analyze the characteristics of
commit messages, but used commit messages to categorize the
commits in terms of the change type.

III. GENERATING COMMIT MESSAGES WITH
CHANGESCRIBE

ChangeScribe was conceived as an approach for helping
developers to generate descriptive commit messages automat-
ically. Therefore, ChangeScribe is integrated with the JGit
plugin*, and the message generation process is triggered
when a developer decides to commit a set of changes to the
repository. Then, the commit message (automatically generated
by ChangeScribe) is presented in an editable text area to
allow developers to add rationale, include issue-ids to link the
commit to a feature/issue request, and modify the message if
it is required. Currently, ChangeScribe does not link change
sets to issue tracking systems because we wanted to provide
a general approach able to work when no issue trackers are
available. However, future extensions of ChangeScribe will
include the feature for linking commits to features/issues.

Our approach is aimed at summarizing code changes
between two adjacent versions of a system; in addition, the
messages include commit stereotypes and sentences that could
help describe the motivations behind the changes. However,
augmenting the context provided by diff-line based descrip-
tions also has a drawback: large commits can generate large
descriptions. We take care of this limitation by allowing
developers to select the length of the message. Yet we did not
base it on the number of lines or characters, because truncating
the description can impact semantics of the message. Instead,
we defined an impact set-based metric to show only modified

classes with an impact set above certain threshold. For each
class C; in the change set (i.e., new, removed, or modified
classes), the impact value is measured by the number of
methods outside the class impacted by the changes to C; (i.e.,
methods referencing C;) over the total number of methods in
the commit. The threshold is defined by the developer during
the commit process, and allows her to control the length of
the message without truncating it arbitrarily.

The process for generating commit messages (Figure 1)
using ChangeScribe takes as input two adjacent versions (i.e.,
Vi—1 and V;) of a Java project versioned in Git. The process
includes the following steps: (1) extraction of source code
changes for added, removed or modified types (e.g. class or in-
terface); (2) detection of method responsibilities within a class
using method stereotypes; (3) characterization of the change
set using commit stereotypes; (4) estimation of the impact set
for the changes in the commit; (3 selection of the content (i.e.,
filtering) based on the impact-value threshold defined by the
developer; and (6) generation of change descriptions for each
modified type that exceed the impact-value threshold defined
by the developer, and the general description for the commit.
In the following sections, we describe the details for each one
of these steps.

A. Change Extraction

We extract the change set between two adjacent versions
of a Java project by using the JGit® library for Eclipse.
For each element of the change set we identify the change
type (i.e., addition, deletion or modification) and the renamed
files. If a Java type (class or interface) is updated, then we
identify source code changes using the Change Distiller tool
implemented by Fluri et al. [10]; Change Distiller extracts
fine-grained source code changes based on a customized tree
differencing algorithm.

B. Methods and Commit Stereotype Identification

A method stereotype describes method intents and its re-
sponsibilities within the class [7]. Those responsibilities/intents
can be categorized as structural, behavioral, creational, and
collaborational. For instance, a creational method creates and
destroys objects; structural methods are responsible for getting
and setting attributes of an object; collaborational methods
define the communication between objects of an application.
Method stereotypes [7] of added, removed, or modified meth-
ods are used to compute the commit stereotype [6]. According
to Dragan ef al. [6] a commit is characterized by aggregating
the responsibilities of added and removed methods. Therefore,
commit stereotypes can provide additional information about
the intention of a change.

We used JStereoCode implementation proposed by Moreno
et al. [24] to identify method stereotypes by analyzing abstract
syntax trees and using the rules proposed by Dragan et al
[7]. ChangeScribe uses the method stereotypes to identify
commit’s intent using rules proposed by Dragan et al. [6]
(See Table II), which consider only added/removed methods;
we included also the stereotypes of modified methods to
characterize the commit.

“http://www.eclipse.org/jgit/

SImplementation of Git SCM in Java. http://wiki.eclipse.org/JGit/

Impact

ChangeScribe - GUI

! threshold =~ r=========—— o IO LT

Method Stereotypes
@ Identification
(JStereoCode)
Changes Extraction > #
(JGit + Change Distiller)

Commit Stereotypes
Identification

Impact Set Analysis @

@ Sentences Generation @

Stereotypes Detector

Message Generator

i
i

i

i

i

i

i

i

!

i

f i !
Content Filtering @ .
i

!

i

]

i

]

i

|

i

|

i

|

i

]

Figure 1. Architectural view of ChangeScribe

Table 1II. COMMIT TYPES PROPOSED BY DRAGAN et al. [6] Table III. EXAMPLE OF COMMIT MESSAGES GENERATED WITH TWO
DIFFERENT VALUES OF THE IMPACT THRESHOLD

Commit Description Rule

type ChangeScribe message without filter (Impact-value threshold = 0%)

Structure Only the simple accessor and mu- Igetl + Isetl # 0 BUG - FEATURE: <type-ID>

modifier tator, get and set, are present. Imethods| - (Igetl + Isetl) = 0 This is a degenerate modifier commit: this change set is composed of empty,

State Ac- Consists mostly of accessors laccessorsl > 2/3 . Imethods| incidental, and abstract methods. These methods indicate that a new feature is planned.

cess mod- This change set is mainly composed of:

ifier 1. Changes to package org.springframework.social.connect.web:

State up- Consists mostly of mutators Imutatorsl > 2/3 . Imethodsl 1.1. Modifications to ConnectController.java:

date mod- 1.1.1. Add try statement at oauthlCallback(String,NativeWebRequest)

ifier method 1.1.2. Add catch clause at oauthlCallback(String,NativeWebRequest)

Behavior Consists mostly of command and Inon-void command! + method 1.1.3. Ad‘d meﬂ}Od invocation to method warn of logger object at

modifier non-void-command methods Icommand| > 2/3 . Imethodsl oauth1Callback(String,NativeWebRequest) method

Object Consists mostly of factory methods Ifactoryl > 2/3 . Imethods| 1.2. Modifications to ConnectControllerTest.java:

creation 1.2.1. Modify method invocation mockMvc at oauthlCallback() method 1.2.2. Add

modifier a functionality to oauth 1 callback exception while fetching access token

Relationship More collaborators lcollaborators] > 2. Changes to package org.springframework.social.connect.web.test:

modifier than non- collaborators. Inon-collaborators| 2.1. Add a ConnectionRepository implementation for stub connection repository. It
Not all the methods Ifactoryl < 1/2 . Imethodsl allows to:
are factory methods. Find all connections; Find connections; Find connections to users; Get connection;
Low number of controller methods. Icontroller] < 1/3 . Imethods! Get primary connection; Find primary connection; Add connection; Update connec-

Control Many control features Controller is Icontrollerl + Ifactoryl > tion; Remove connections; Remove connection

modifier present 2/3 . Imethods! Referenced by: ConnectControllerTest class

Large Categories of stereotypes laccessors| + Imutators| > ' I

modifier (accessor with mutator) and 1/5 . Imethods! ChangeScribe with filter (Impact-value threshold = 17%)

(factory with controller) have Ifactoryl > 1/10 . Imethods| \/

to participate in distributions Icontrollerl > 1/10 . Imethods|

not in small proportions laccessors| <= 1/2.Imethods| \/
Imutatorsl <= 1/2 . Imethods|

Controller or factory
have to be present Ifactoryl#0 \/ Icontrollerl#£0
Number of methods in a commit Imethods| > average + stdev
is high
Lazy Has to contain get/set methods It Igetl + Isetl # O
modifier might have a large number of de-
generate methods Occurrence of Imethodsl - (Igetl + Isetl -
other stereotypes is low |degeneratel) <= 1/3 . Imethods|

Idegeneratel > 1/3 . Imethodsl
Degenerate Has at least one degenerate method |degeneratel > 1

modifier
Small Number of methods in a class is Imethods| < 3
modifier less than 3

C. Impact Set Analysis and Content Selection

Once the commit stereotypes are identified, we filtered the
content to be included in the commit message. For each class
in the change set, ChangeScribe computes the impact value
measured as the relative number of methods impacted by a
class in the commit (i.e., new, removed, or modified classes).
For example, the number of methods invoking a new class
over the total of methods in the change set. Then, a class is
included in the commit message if its impact-value is greater
than or equal to the impact threshold defined by the software
developer (the rationale here is to include only classes that have
more impact in the change set). Table III lists two examples
of commit message when the developer disables the filter (i.e.,
threshold equals to zero) and uses an impact threshold of 17%.

BUG - FEATURE: <type-ID>

This is a degenerate modifier commit: this change set is composed of empty,
incidental, and abstract methods. These methods indicate that a new feature is planned.
This change set is mainly composed of:

1. Changes to package org.springframework.social.connect.web:

1.1. Modifications to ConnectController.java:

1.1.1. Add try statement at oauthlCallback(String,NativeWebRequest)
method 1.1.2. Add catch clause at oauthlCallback(String,NativeWebRequest)
method 1.1.3. Add method invocation to method warn of logger object at
oauth1Callback(String,NativeWebRequest) method

D. Generating Commit Messages

The message is composed of three elements: (i) tag de-
scribing whether the commit fixes a bug or implements a new
feature (only for non-initial commits), (ii) general description,
(iii) detailed description of the changes.

1) General Description: The general description character-
izes the change set providing a general overview of the com-
mit. It has the following parts: (i) a phrase describing whether
it is an initial commit, (ii) a phrase describing commit’s
intent, (iii) a phrase describing class renaming, (iv) a sentence
listing the new modules, (iv) a sentence indicating whether the
commit includes changes to properties or internationalization
files.

The commit intent is described using the commit stereo-
type, and the corresponding sentence is generated using the
template:

This is a <commit stereotype> : <commit stereotype
description>

For example, if the change set consists mostly of factory

methods, the sentence will be "This is a degenerate modifier
commit: this change set is composed of empty, incidental, and
abstract methods. These methods indicate that a new feature
is planned".

When new modules are added, we add a sentence using
the following template:

The commit includes these new modules: <module 1>,
<module 2>, ..., <module n>

We consider a module as a functional unit that groups
code units with the same responsibilities (i.e., a package). For
example, one commit for the Spring Social® includes two new
packages and this change is described by ChangeScribe as
follows: The commit includes these new modules: facebook,
twitter.

ChangeScribe also describes other relevant changes such as
class renames by using the following sentence: "This commit
renames some files". In addition, when the change set includes
changes to property or internationalization files, the general
description includes a sentence generated with the following
template:

This commit includes changes to internationalization,
property or configuration files (<file 1>, <file 2>, ...,
<file n>)

For example, one commit in Apache Solr’ modifies sev-
eral property, configuration and internationalization files, and
ChangeScribe describes the change as follows: This commit
includes changes to internationalization, property or con-
figuration files (CHANGES.txt, schema-complex-phrase.xml,
solrconfig-query-parser-init.xml)

2) Detailed Description: This part of the commit message
describes the changes made to each Java type (class or inter-
face) that exceed the impact threshold defined by a developer,
and the changes are organized according to packages. Accord-
ing to the change type, if it was an addition or deletion, our
approach describes the class’ goal and its relationships with
other objects. Moreover, if an existing file is modified, we
describe the changes for each inserted, modified and deleted
code snippet.

For each class added or removed, we describe the respon-
sibilities by extracting information from source code iden-
tifiers based on the approach by Hill et al. [16]. Change-
Scribe generates noun, verb or prepositional phrases us-
ing method identifiers. For example, for the constructor
with the signature public CloudGateway (Settings,
ClusterName, CloudBlobStoreService), Change-
Scribe will generate the sentence "Instantiate cloud gateway
with settings, cluster name and cloud blob store service"; for
the method of the class CloudGateway with signature void
doStart (), ChangeScribe will generate the sentence: "Start
cloud gateway".

ChangeScribe generates sentences for class signatures
(a.k.a., class declaration) using the class stereotypes proposed

6900.g1/XzSxbu
7g00.gl/uokJfW

by Moreno et al. [25]. The following template is used to
generate sentences for class signatures:

<change type> <class stereotype> <represented object>.
It allows: <methods description>

For example, for the ConstructorCodeAdapter class
responsible for data encapsulation, the sentence generated is
"Add an entity class for constructor code adapter”; and with
the class declaration public class TwitterService
implements TwitterOperations, ChangeScribe gen-
erates the sentence Add a TwitterOperations implementation
for twitter service. It allows |[...].

When the Java type is modified, ChangeScribe generates
phrases for all changes at statement level. The Change Distiller
tool [10] generates a list of classified changes based on the
operation type (insertion, deletion or modification) and the
changes to the abstract syntax tree. This information is used
by ChangeScribe for generating sentences and describing the
modified types using the text templates listed in Table IV.
For example, when a new method is added, the sentence
generated is Add an additional functionality to <Object>. But,
if the method is removed, the resulting sentence is remove
functionality to <Object>. In addition, we included context
information such as the visibility, or whether the method is
unused: remove an unused functionality from <Object>.

For each added, removed or modified type (i.e., class), a
sentence is added to describe the impact of the change in two
ways: (i) references to the type in the change set, and (ii)
co-lateral changes triggered when a method was added to or
removed from an existing class. The first case use this text
template:

Referenced by: <class name 1> class, <class name 2>
class, ... , <class name n> class

For the second case, we use the text template (<opera-
tion>:= added | deleted):

The <operation> methods triggered changes at <class
name 1>, <class name 2>, ... , <class name n>

The complete commit message is created by concatenating
the general description and detailed description. Table V shows
a complete commit message for a change set in Spring Social
Java project®. The commit updates a class with a new con-
structor method; this change triggered modifications to other
classes (the OAuth2ProviderSigninAccount class) and this case
is documented by ChangeScribe.

IV. DESIGN OF THE STUDY

We conducted a survey to evaluate our approach. The goal
of this study is to assess the quality of commit messages
generated by ChangeScribe. The context is 50 commits from
six open source projects (i.e., Elastic Search, Spring Social,
JFreeChart, Apache Solr, Apache Felix, and Retrofit) hosted
at GitHub, and written in Java. The commits were selected

8http://goo.gl/alq8Xh

Table IV.

CHANGESCRIBE TEMPLATES FOR DESCRIPTIONS OF

MODIFIED TYPES

Change type

Template (T) and example (E)

Add/remove
functionality

T: <operation> <context information> functionality to
<functionality name>

E: Remove an unused functionality to rescore search
source builder

Class rename

T: Rename type <old class name> with <new class name>
E: Rename type InternalSettingsPerparerTests with Inter-
nalSettingsPreparer Tests

Method rename

T: Rename <old method name> with <new method name>
E: Rename buckets method with getBuckets

Object state rename

T: Rename <old name> object attribute with <new name>
E: Rename rescore method with addRescore

Add/remove/update
variable declaration

T: <operation> variable declaration statement at <method
name>

E: Add variable declaration statement at backgroundIn-
voke(Method,Object[]) method

Add/remove object
state

T: <operation> (object state) <attribute name> attribute
E: Add (Object state) entries attribute

Change attribute

type

T: Change attribute type <old type> with <new type>
E: Change attribute type RescoreBuilder with
List<RescoreBuilder>

Update parent class

T: <operation> parent class <old parent class name> with
<new parent class name>

E: Modify the parent class DirectoryReader with FilterDi-
rectoryReader

Add/remove parent
class

T: <operation> parent class <parent class name>
E: Remove parent class DirectoryReader

Update parent inter-
face

T: Modify parent interface <parent interface name> with
<new parent interface name>
E: Remove parent class DirectoryReader

Add/remove parent
interface

T: <operation> parent interface <parent interface name>
E: Remove parent class DirectoryReader

T: <operation> javadoc at <class/method name>
class/interface/method

E: Modify javadoc at Histogram interface

E: Modify javadoc at rescore() method

T: Decrease/Increase accessibility of <old accessibility>
to <new accessibility> at <attribute or method name>

Add/remove/update
Javadoc

Decrease/increase attribute/method
accessibility of E: Decrease accessibility of protected to private at method
attributes and getName()
methods

T: Type’s <parameter name> change of <old type> with
Parameter type <new type> at <method name> method

E: Type’s size change of String with Long at setSize(Long
change .

size)
Table V. EXAMPLE OF ChangeScribe’S COMMIT MESSAGE LISTING

IMPACT SET DETAILS (CLASSES IMPACTED BY A METHOD
ADDITION/DELETION)

BUG - FEATURE: <type-ID>

This is a small modifier commit that does not change the system significantly.
This change set is mainly composed of:

1. Changes to package org.springframework.social.oauth2:

1.1. Modifications to AccessGrant.java:

1.1.1. Add a constructor method

The added/removed methods triggered changes to OAuth2ProviderSignInAccount
class

2. Changes to package org.springframework.social.web.signin:

2.1. Modifications to OAuth2ProviderSignInAccount.java:

2.1.1. Modify arguments list when calling connect method at con-
nect(Serializable) method

randomly while manually looking for a diverse set of commit
sizes and messages, including those representing initial com-
mits, refactorings, large commits, short commits, and commits
with pseudo-messages. In terms of size-categories defined by
Hattori and Lanza [15], four commits are tiny, ten are small,
17 are medium, and 19 are large. Also, our decision to use
Java projects in the study is based on the fact that some of
the elements in our automatically generated commit messages
are built using previous techniques designed for Java projects.
In addition, the projects that we selected are fairly active and

Table VI JAVA PROJECTS HOSTED AT GITHUB AND USED IN THE
STUDY. THE TABLE LISTS THE SYSTEM DESCRIPTION, TOTAL OF COMMITS
AT GITHUB, NUMBER OF DEVELOPERS, AND COMMITS ANALYZED

Project Description Commits@GH #Devs. Analyzed
Elastic Search Dlst.rlbuted restful search 7474 159 5
engine

Library for connecting

applications with SaaS 1559 12 10
providers such as Face-

book and Twitter.

Spring social

Java chart library for pro-

JFreeChart fessional quality charts. 323 7 10

Apache Solr Qpen source enterprise 10K 16 10
search platform
Open source implemen-

Apache Felix tation of OSGI specifica- 10K 11 10
tion

Retrofit Type-safe REST client 666 447 5

for Android and Java

mature software systems that have been used in the case studies
before.

Since ChangeScribe uses code summarization techniques
for generating commit messages, we decided to use an eval-
uation framework, which was previously used for assessing
automatically generated code summaries [33][23]. Therefore,
the quality focus of the study is on the evaluation provided by
real developers regarding the content adequacy, conciseness,
and expressiveness. In addition, we wanted to understand other
attributes that are important for useful commit messages as
perceived by developers.

A. Research Questions

In the context of our study, we defined the following
research questions:

o RQq: Does the content adequacy of commit messages
generated by ChangeScribe outperform real commit mes-
sages?

o RQs: Does the conciseness of commit messages generated
by ChangeScribe outperform real commit messages?

e RQs3: Does the expressiveness of commit messages gener-
ated by ChangeScribe outperform real commit messages?

e RQ,: What are the attributes that describe commit mes-
sages preferred by developers?

The first three research questions (i.e. RQ;-RQg3) aim at
comparing real commit messages to messages generated by
ChangeScribe, based on the three properties: content adequacy,
conciseness, and expressiveness. Meanwhile, the purpose of
the last research question (RQ4) is to identify developers’
preferences in terms of other attributes/properties of commit
messages. For RQ;-RQj3, we evaluated the quality of a prop-
erty in a commit message by using a 3-points Likert Scale
similarly to [23]. For RQ,4, we asked the participants to select
the message that they preferred (i.e., original developer’s or
the one by ChangeScribe) and write specific rationale for the
choice. Table VII lists the questions that we used to evaluate
each one of the research questions.

To validate the results for each property are statistically
significant, when comparing the rankings of the original mes-
sage vs ChangeScribe’s message, we used the Mann-Whitney

Table VII.

SURVEY QUESTIONS AIMED AT EVALUATING MESSAGE PROPERTIES AND COLLECTING PARTICIPANT PREFERENCES

Property (RQ) Question

Possible Answers

Content adequacy (RQ1) it is presented, do you think that the commit message?

Considering only the content of the commit message and not the way

1) Is not missing any relevant information.

2) Is missing some information but the missing information is not necessary
to understand the commit.

3) Is missing some very important information that can hinder the under-
standing of the commit

onciseness (RQ-
¢ (RQ2) it is presented, do you think that the commit message?

Considering only the content of the commit message and not the way

1) Has no unnecessary information
2) Has some unnecessary information
3) Has a lot of unnecessary information

Expressiveness (RQ3) it is presented, do you think that the commit message?

Considering only the content of the commit message and not the way

1) It is easy to read and understand
2) Is somewhat readable and understandable
3) Is hard to read and understand

Preferences (RQ4)

When comparing both commit messages, which one do you prefer?

1) COMMENT 1
2) COMMENT 2

Preferences (RQ4) Why do you prefer that?

Open question

test [S] with o = 0.05. We also computed the Cliff’s delta d
effect size [12] to measure the magnitude of the difference. We
followed the guidelines in [12] to interpret the effect size val-
ues: negligible for |d| < 0.147, small for 0.147 < |d| < 0.33,
medium for 0.33 < |d| < 0.474 and large for |d| > 0.474.).
Because we are not assuming population normality and homo-
geneous variances, we used non-parametric methods (Mann-
Whitney test, and Cliff‘s delta).

B. Data Collection Process

In order to evaluate the quality of the commit messages as
perceived by developers, we designed an online survey using
the Qualtrics tool®. We asked survey participants (i.e., Java
developers) to evaluate commit messages written by original
developers and generated by ChangeScribe. For the analysis,
we provided the set of changes in the commit and displayed
those using GitHub’s diff style. Figure 2 depicts an example
of changes presented for one of the questions in the survey.
We designed the survey using the following guidelines:

e The commit messages should be anonymized while pre-
senting them to developers in order to avoid participants’
bias towards any specific source. Therefore, in the survey
we identified the messages as COMMENT 1 (i.e., real
message) and COMMENT 2 (i.e., ChangeScribe) — Figure
3. In addition, instead of using links to GitHub for
showing the commits, we collected the diffs and presented
the changes outside of GitHub without any reference to
the commits’ ids or real messages (see Figure 2);

e The participants should understand the code changes
before evaluating the quality of the messages. In this case,
each set of questions for a particular commit started with
an initial step (Figure 3, step 1), which asked a participant
to provide her own commit message;

e The survey should not take more than 60 minutes to re-
duce the drop-out rate, and to avoid getting quick answers
because of the duration of the survey. We estimated that
the four steps (Figure 3) for evaluating a commit and
the corresponding messages (i.e., real and ChangeScribe)
would be done in maximum 12 minutes. Therefore, we
asked participants to evaluate five commits each.

In addition to the questions in Table VII, we included
questions suggested by Feigenspan et al. [9] to measure
programming experience of the participants. The results for
the demographic questions are in our online appendix.

“http://qualtrics.com

JFree Chart
Showing 6 changed files with 1 addition and 3,429 deletions.

14 src/main/java/org/jfree/chart/axis/DateAxis.java

Range r = vap.getDataRange(this);
if (r == null) {
if (this.timeline instanceof SegmentedTimeline) {
//Timeline hasn't method getStartTime()
r = new DateRange((
(SegmentedTimeline) this.timeline).getstar
((SegmentedTimeline) this.timeline).getSt:
+1);
}
else {
r = new DateRange();
}
r = new DateRange();

}

long upper = this.timeline.toTimelinevalue(

Figure 2. Example of code changes describing a commit. The changes are
presented using a diff-based style similarly to GitHub

not the way

Task
1..Open the commit diff by clicking on the next link: open the diff
it diff

the content of
itis presented. Do you think that the commit message?
2. Study the commit i
3. When you are done understanding the commit diff, please write
in t

to help a developer to understand the change done commentz O o o
| .

¥

o
JY O comment 1

O comment 2

a
(COMMENT 1):

@ 5. Now read the following commit message (COMMENT 2):

ages above, and the analysis
n check the diff again clicking

Why do you prefer that?

Figure 3. Example of a set of questions for a particular commit

C. Replication Package

All the experimental materials used in our study and
ChangeScribe (Eclipse plugin) are publicly available at: http://
www.cs.wm.edu/semeru/data/SCAM14-ChangeScribe. In par-
ticular we provide: (i) the links to the commits used in
the study, (ii) real and ChangeScribe commit messages, (iii)
anonymized survey’s results, and (iv) instructions for installing
ChangeScribe as an Eclipse plugin.

V. RESULTS ANALYSIS

23 participants completed the survey in which they pro-
vided 119 evaluations of the commits. In each evaluation the
participant analyzed the changes in the source code; wrote their
own commit message; evaluated both the commit message
written by the original open source developer and the automatic
commit message generated by our approach; and finally, the

Table VIII. CONTENT ADEQUACY EVALUATION OF THE ORIGINAL AND Table X. EXPRESSIVENESS EVALUATION OF THE ORIGINAL AND
AUTOMATIC COMMIT MESSAGES AUTOMATIC COMMIT MESSAGES
Response Original commit mes- Automatic commit Response Original commit mes- Automatic commit
sages (% ratings) messages (% rat- sages (% ratings) messages (% ratings)
ings
&) Is easy to read and understand 71 39
Not missing any information 21 60 Is somewhat readable and under- 19 44
Missing some no essential information 38 24 standable
Missing some essential information 40 16 Is hard to read and understand 10 17
Table IX. CONCISENESS EVALUATION OF THE ORIGINAL AND PR . L. .
AUTOMATIC COMMIT MESSAGES ;ndlcates that the apprpach achleves a significant improvement
in terms of relevant information needed to properly explain
Response Original commit mes- Automatic commit the changes done by the committer, and thllS, its use mlght
sages (% ratings) messages (% ratings) substantially alleviate a well-known maintenance issue. On
Has no unnecessary information 86 25 the other hand, the results show that our approach is able
Has some unnecessary information 9 48 to generate a commit message that includes all essential
Has a lot of unnecessary informa- 5 27

tion

participant made a decision about which of the two messages
she would prefer. Based on the information gathered about
their background we found that all of the participants rated
their knowledge of control version systems as satisfactory,
good or very good, 21 of them (91%) most of the times
or always wrote commit messages when contributing to a
software project, only one of them had less than four years of
programming experience, and 18 of them (78%) had industry
experience as developers. Regarding academic degrees, ten
participants were bachelors, ten were master students, and
three were PhD students or had PhD degrees.

As the first step of the analysis, one of the authors evaluated
the content adequacy of the commit messages created by the
participants in order to determine whether each respondent
understood the shown changes. It is worth noting that the
evaluator was quite familiar with each change set included in
the study, and thus, he was competent to judge this property of
these commit messages. The result of this evaluation showed
that 10% of the commit messages generated by the participants
(12 commit messages out of the 119) did not contain correct
information, and therefore, indicated a poor understanding of
the changes done. We decided to discard these 12 evaluations,
since understanding the changes is essential for conducting
reliable and accurate assessment of the original and automatic
commit messages. Thus, in the end we kept 107 evaluations.

As mentioned above, the participants were asked to evalu-
ate both the commit messages generated by ChangeScribe and
the commit messages written by the original developers. The
properties evaluated were: content adequacy, conciseness, and
expressiveness. Content adequacy judges whether the message
contains all important information about the changes done.
Conciseness assesses whether a commit message is clear and
succinct or, in other words, if it does not contain superfluous
and unneeded information. Expressiveness evaluates if a com-
mit message is easy to read and if the way it is presented
facilitates understanding of the changes done.

A. RQ:: Content Adequacy

We consider this property as the most important one since
commit messages that contain all essential information about
the changes done may ease a number of maintenance tasks.
The results show that only in 16% of the cases our approach
generated commit messages that missed essential information.
Conversely, the original commit messages miss essential infor-
mation in 40% of the cases (Table VIII). In general, this result

information of the changes done in 60% of the cases, while
the messages written by the developers only reach this degree
of completeness in 21% of the cases. From this point of view,
the improvement achieved by ChangeScribe is also significant.
In terms of statistical significance of the results, the difference
is significant (p — value = 1.543F — 08) between the content
adequacy rankings of the original messages and the messages
by ChangeScribe; and the magnitude of the difference is large
(d = —0.9386784).

B. RQs: Conciseness

The automatic commit messages generated by the tool
contain a lot of superfluous and unneeded information in 27%
of the cases (Table IX). Only in 25% of the cases the generated
commit messages do not have any unnecessary information,
while the messages written by the original developers reach
this level of conciseness in 86% of the cases. These percent-
ages indicate that, regarding this property, there is a wide
margin for improvement. In terms of statistical significance,
the difference is significant (p — value < 2.2E — 16) between
the conciseness rankings of the original messages and the mes-
sages by ChangeScribe; and the magnitude of the difference
is large (d = 0.662866).

Due to the format and the information included by default
in the automatic commit message, this message is always
longer than the original one. We found that the average length
of the original commit messages is five lines, while the length
of the commit message generated by our approach has 43
lines, on average. Overall, these results indicate that there
is a trade-off between content adequacy and conciseness.
That is why our tool allows developers to set up a threshold
that controls how much information will be included in the
commit message. For this study we fine-tuned this threshold
having in mind that content adequacy is more important than
conciseness. However, we are aware that the excess of non-
essential information in the generated commit message could
potentially adversely affect developers’ productivity and also
decrease the degree of acceptance of the tool.

C. RQj3: Expressiveness

In our interpretation, this property was positively evaluated
by the participants although the original commit messages got
better scores (Table X). For instance, 17% of the automated
messages were rated as hard to read and understand, while only
10% of the original commit messages got this score. At the
other end of the scale is where the difference is more notorious
and there is more room for improvement. There, the results

show that while the original commit messages are easy to
read and understand in 71% of the cases, the automatic commit
messages get this rating only in 39% of the cases. We found the
difference is statistically significant (p—value = 1.728 E—05)
between the conciseness rankings of the original messages
and the messages by ChangeScribe; and the magnitude of
the difference is medium (d = 0.3572579). This indicates
that, overall, readability and understandability of the automatic
messages are acceptable.

D. RQ4: Which messages did participants prefer? Why?

As a final question of each evaluation, we asked respon-
dents which commit message they preferred and why. In 51%
of the cases the participants preferred the commit messages
generated by ChangeScribe.

When analyzing the reasons why respondents preferred the
original message, we found that most of the times they argue
that it is simpler, or shorter, or has enough information to
infer the general idea and get a high level understanding of
the purpose of the change. For instance, one of the participants
noted: "Even though it is not complete and misses information,
it includes the reason for the commit which will allow you to
understand the multiple changes that the commit includes". In
some cases, they argued that the automatic commit message
explains the change step by step including details and technical
information that are not truly relevant to describe the changes
done at a high level. In this regard, another respondent pointed
out: "The changes made do not justify the use of a message as
complex and detailed as Comment 2. Also, Comment 2 presents
a large amount of unnecessary information". Comment 2 refers
to the generated message.

On the other hand, they preferred the automatic commit
message mainly because it is more explanatory and more
extensively covers the changes done. One of the participants
noted: "Comment 1 is easy to read, and hard to understand
for someone that does not have the necessary background. /
Comment 2 is very lengthy, but easy to understand, even for
someone that may not be very familiar with the software. / /
I would prefer to see the second comment a bit shorter ...".
Here again Comment 2 refers to the automatic commit message
while Comment 1 makes reference to the original one.

The evaluated commit messages were classified by commit
size using the taxonomy proposed by Hattori and Lanza [15],
but due to the size of our set of commits, instead of having
four categories (tiny, small, medium, and large), we divided the
set in two categories, namely small and large commits. Thus,
our set has 37 large and 13 small commits. For large commits,
the results show that in 62% of the cases our approach was
preferred by the participants. Therefore, ChangeScribe clearly
outperforms the original commit message when the change
set includes many different changes that often require detailed
and longer explanations. For small commits, the automatic
commit message was preferred in 7 of the 13 cases. Those
who favored the original commit messages considered that
ChangeScribe includes unnecessary information. For instance,
one of the participants noted: "The amount of extra information
provided by comment 2 just adds noise to the real purpose of
commenting".

In summary, the participants’ responses indicate that
ChangeScribe’s messages are more detailed and longer than

the original ones, so that they are able to convey more
(relevant) information about the changes, in particular for large
commits. That is why the content adequacy is the property
with the highest scores. However, for being longer and wordy,
these messages tend to include unnecessary information mostly
for small commits. This would explain why the conciseness
feature obtained the lowest scores. In this regard, one of the
participants explained why the automatic commit messages
should be preferred: "Even when some unnecessary infor-
mation is included, it is always better to have unnecessary
info that you can filter rather than not having necessary
information that you may need".

VI. THREATS TO VALIDITY

This section describes the main threats to validity that
can potentially affect our results and conclusions. First of
all, the empirical evaluation was limited to 50 change sets
from six open source systems only. The study involved 23
developers who evaluated 107 instances of the commits. Thus,
it is important to notice that several variables could affect
the effectiveness of the approach such as the quality of the
commit messages written by the original developers and the
quality of the commits itself, the problem domain, and the
background of the study participants and their familiarity
with the systems. In order to minimize these threats we
made sure to randomly sample commit messages representing
different categories. Also, we made sure that our participants
had significant experience in software development and had
minimal or no experience with the systems from the study.
However, we realize that a more comprehensive assessment is
needed in order to generalize the results.

In order to reduce the internal validity threats and maximize
the reliability of the results of evaluation, we confirmed that
(1) participants had adequate knowledge of version control
systems, (ii) they had the habit of writing commit messages as
part of their working routines, and also, (iii) the messages that
they wrote reflect appropriate understanding of the changes
included in each commit in evaluation. Furthermore, in all
the cases, the evaluated commit messages were presented to
participants anonymously to reduce bias, and the changes were
presented outside GiHub to avoid references to the original
commit messages. However, some learning effect may have
occurred while the subjects judged the commit messages since
after the first evaluation, they knew the content and format of
the questions, and also, they might had been able to infer which
of the two was the original commit message.

VII. CONCLUSION AND FUTURE WORK

This paper presents an approach for generating automatic
commit messages based on the code changes included in a
change set. ChangeScribe extracts and analyzes the differ-
ences between two versions of the source code, and also,
performs a commit characterization based on the stereotypes
of methods modified, added and removed. The outcome is a
commit message that provides an overview of the changes
and classifies and describes in detail each of the changes
made by a developer in the source code. Furthermore, we
conducted a survey in which 23 developers performing 107
evaluations of 50 commit messages from six open source
systems and equivalent number of commit messages generated

by ChangeScribe. According to the case study results, 84%
of the generated commit messages do not miss essential
information required to understand the changes, 25% of them
are concise, and in 39% of the cases the generated message
is easy to read and understand. The results also demonstrate
that while the original commit messages miss some very
important information that can hinder understanding of the
changes what and why in 40% of the cases, ChangeScribe’s
commit messages have been rated to have this deficiency in
just 16% of the cases. Finally, in 51% of the cases the study
participants preferred ChangeScribe’s commit messages to the
ones written by the original developers. When considering only
large commits, ChangeScribe’s commit messages are preferred
in 62% of the cases; and when considering only small commits
ChangeScribe’s commit messages are preferred in 54% of the
cases. All in all, the evaluation indicates that ChangeScribe
can be useful as an online assistant to aid developers in
writing commit messages or to automatically generate commit
messages when they do not exist or their quality is low.
Moreover, the length of the message is an important attribute
that should be controlled by the developer to avoid unnecessary
information without truncating the message. ChangeScribe
provides developers with a filter based on the changes impact,
that reduce the size of the message without truncating the
descriptions.

The evaluation also provided us with useful tips for the
future work. First of all, we observed that, according to the
participants, the generated messages must be shorter and more
succinct. We plan on studying how we can improve these
properties without affecting content adequacy. In the future we
are also planning on using an improved version of the tool in
a study that can help us assess the impact of our approach on
real development practices in longitudinal study (including the
usage of the impact set-based filter provided by ChangeScribe).
In this context, the tool could generate an initial version of the
commit message and the developer would make only minor
modifications, before committing the changes.

VIII. ACKNOWLEDGEMENTS

We would like to thank developers from software devel-
opment companies in Colombia, researchers from Italy and
graduate students from the College of William and Mary for
their help in answering the survey. This work is supported
in part by the NSF CCF-1016868, NSF CCF-1218129, and
NSF-1253837 grants. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

REFERENCES

[11 A. Alali, H. Kagdi, and J. Maletic.
characterization of open source software repositories.
pages 182-191, 2008.

[2] R. Buse and W. Weimer. Automatically documenting program changes.
In ASE’10, pages 33-42, 2010.

[3] G. Canfora, L. Cerulo, and M. D. Penta. Ldiff: An enhanced line
differencing tool. In ICSE’09, pages 595 —598, 2009.

[4] M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0. In Workshop on
Web 2.0 for Software Engineering (Web2SE '10), pages 14-19, 2010.

[5] S. DJ. Handbook of Parametric and Nonparametric Statistical Proce-
dures (fourth edition). Chapman & All, 2007.

[6] N. Dragan, M. Collard, M. Hammad, and J. Maletic. Using stereotypes
to help characterize commits. In ICSM’11, pages 520-523, 2011.

What’s a typical commit? a
In ICPC’08,

(71

(8]

(91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

[33]

[34]

N. Dragan, M. Collard, and J. Maletic. Reverse engineering method
stereotypes. In ICSM’06, pages 24-34, 2006.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories.
In ICSE’13, pages 422431, 2013.

J. Feigenspan, C. Kaistner, J. Liebig, S. Apel, and S. Hanenberg.
Measuring programming experience. In ICPC’12, pages 73-82, 2012.

B. Fluri, M. Wursch, M. Pinzger, and H. Gall. Change distilling:tree
differencing for fine-grained source code change extraction. [EEE
Transactions on Software Engineering, 33(11):725 =743, 2007.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers
drive software evolution. In IWPSE 2005, pages 113-122, 2005.

R. Grissom and J. Kim. Effect sizes for research: Univariate and
multivariate applications. Taylor and Francis, New York, NY, 2012.

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of
automated text summarization techniques for summarizing source code.
In WCRE’13, pages 3544, 2010.

A. Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance (FoSM’08), pages 48-57, 2008.

L. P. Hattori and M. Lanza. On the nature of commits. In ASE’0S,
pages 63-71, 2008.

E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing
source code context of nl-queries for software maintenance and reuse.
In ICSE’09, pages 232-242, 2009.

A. Hindle, D. German, , and R. Holt. What do large commits tell us?: a
taxonomical study of large commits. In MSR’08, pages 99-108, 2008.

D. Jackson and D. Ladd. Semantic diff: A tool for summarizing the
effects of modifications. In ICSM’94, pages 243-252, 1994.

R. Lotufo, Z. Malik, and K. Czarnecki. Modelling the hurried bug
report reading process to summarize bug reports. In ICSM’12, pages
430-439, 2012.

W. Maalej and H. Happel. From work to word: How do software
developers describe their work? In MSR’09, pages 121-130, 2009.

W. Maalej and H. Happel. Can development work describe itself? In
MSR’10, pages 191-200, 2010.

P. W. McBurney and C. McMillan. Automatic documentation generation
via source code summarization of method context. In ICPC’14, page
to appear, 2014.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker. Automatic generation of natural language summaries for java
classes. In ICPC’13, pages 23-32, 2013.

L. Moreno and A. Marcus. Jstereocode: automatically identifying
method and class stereotypes in java code. In ASE’12, pages 358-361,
2012.

L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker. Jsummarizer:
An automatic generator of natural language summaries for java classes.
ICPC’13 - formal tool demonstration, pages 230-232, 2013.

G. Murphy. Attacking information overload in software development.
In VL/HCC’09, page 4, 2009.

H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and T. N. Nguyen. idiff:
Interaction-based program differencing tool. In ASE’11, pages 575-575,
2011.

C. Parnin and C. Gorg. Improving change descriptions with change
contexts. In MSR’08, pages 51-60, 2008.

S. Rastkar. Summarizing software concerns. In ICSE’10, pages 527—
528, 2010.

S. Rastkar, G. Murphy, and A. Bradley. Generating natural language
summaries for crosscutting source code concerns. In ICSM’11, pages
103-112, 2011.

S. Rastkar and G. C. Murphy. Why did this code change? In ICSE’13,
pages 1193-1196, 2013.

S. Rastkar, G. C. Murphy, and G. Murray. Automatic summarization
of bug reports. IEEE Trans. Software Eng, 40(4):366-380, 2014.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker.
Towards automatically generating summary comments for java methods.
In ASE’10, pages 43-52, 2010.

A. T. Ying and M. P. Robillard. Code fragment summarization. In
ESEC/FSE’13, 2013.

