
SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Multi-Study Investigation Into Dead Code
Simone Romano, Member, IEEE, Christopher Vendome, Member, IEEE Computer Society,

Giuseppe Scanniello, Member, IEEE, and Denys Poshyvanyk, Member, IEEE Computer Society

Abstract—Dead code is a bad smell and it appears to be widespread in open-source and commercial software systems. Surprisingly,
dead code has received very little empirical attention from the software engineering research community. In this paper, we present a
multi-study investigation with an overarching goal to study, from the perspective of researchers and developers, when and why
developers introduce dead code, how they perceive and cope with it, and whether dead code is harmful. To this end, we conducted
semi-structured interviews with software professionals and four experiments at the University of Basilicata and the College of William &
Mary. The results suggest that it is worth studying dead code not only in the maintenance and evolution phases, where our results
suggest that dead code is harmful, but also in the design and implementation phases. Our results motivate future work to develop
techniques for detecting and removing dead code and suggest that developers should avoid this smell.

Index Terms—Dead Code, Unreachable Code, Unused Code, Bad Smell, Empirical investigation, Multi-study.

F

1 INTRODUCTION

IN software engineering, dead code is unnecessary source
code, because it is unused and/or unreachable (i.e., never

executed) [1], [2]. The problem with dead code is that after
a while it starts to “smell bad.” The older it is, the stronger
and more sour the odor becomes [3]. This is because keeping
dead code around could be harmful [1], [4], [5]. For example,
Mäntylä et al. [1] stated that dead code hinders the compre-
hension of source code and makes its structure less obvious,
while Fard and Mesbah [4] asserted that dead code affects
software maintainability, because it makes source code more
difficult to understand. In addition, developers could waste
time maintaining dead code [5].

Dead code seems to be quite common too [5], [6], [7], [8].
For example, Brown et al. [6] reported that, during the code
examination of an industrial software system, they found a
large amount of source code (between 30 and 50 percent of
the total) that was not understood or documented by any
developer currently working on it. Later, they learned that
this was dead code. Boomsma et al. [7] reported that on a
subsystem of an industrial web system written in PHP, the
developers removed 2,740 dead files, namely about 30% of
the subsystem’s files. Eder et al. [5] studied an industrial
software system written in .NET in order to investigate how
much maintenance involved dead code. They found that
25% of all method genealogies1 were dead. Romano et al. [8]
focused on dead methods in desktop applications written in
Java. They reported that the percentage of dead methods in
these applications ranged between 5% and 10%.

• S. Romano and G. Scanniello are with University of Basilicata, Potenza
(PZ), Italy.
E-mail: simone.romano@unibas.it and giuseppe.scanniello@unibas.it

• C. Vendome and D. Poshyvanyk are with The College of William and
Mary, Williamsburg, VA, USA.
E-mail: cvendome@cs.wm.edu and denys@cs.wm.edu

1. A method genealogy is the list of methods that represent the
evolution of a single method over different versions of a software
system [5].

Furthermore, Yamashita and Moonen [9] reported that
dead code detection is one of the features software profes-
sionals would like to have in their supporting tools.

Although there is some consensus on the fact that dead
code is a common phenomenon [5], [6], [7], [8], it could be
harmful [1], [4], [5], and it seems to matter to software pro-
fessionals [9]; surprisingly, dead code has received very little
empirical attention from the software engineering research
community.

In this paper, we present a multi-study investigation
with multiple goals to understand when and why devel-
opers introduce dead code, how they perceive and cope
with it, and whether dead code is harmful. To this end,
we conducted semi-structured interviews with software
professionals and four experiments with students (a few of
them had professional experience) from the University of
Basilicata (Italy) and the College of William & Mary (USA).
Our results demonstrate that it is worth studying dead code
not only in the maintenance and evolution phases, where
our results indicate that dead code is harmful, but also in
the design and implementation stages. Our empirical results
motivate future work on this topic to develop techniques for
detecting and removing dead code.
Paper structure. In Section 2, background information is
provided and related work is discussed. In Section 3, we mo-
tivate our multi-study investigation into dead code, which is
then described is Section 4. The semi-structured interviews
are presented in Section 5, while the results from these
interviews and the threats that could affect their validity
are presented in Section 6. Similarly, we first introduce the
experiments in Section 7, and then the obtained results and
the threats to validity in Section 8. The overall discussion of
the results is presented in Section 9. Final remarks conclude
the paper.

2 BACKGROUND AND RELATED WORK

2.1 Background
Bad smells (shortly “smells”) are symptoms of poor design
and implementation choices [10]. Fowler [11] defined 22

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

smells together with instructions on how to remove them,
i.e., refactoring operations or simply refactorings. Fowler,
in his book, did not mention dead code. On the contrary,
Brown et al. [6] referred to dead code as lava flow, namely
unused code frozen in an ever–changing design. Mäntylä et
al. [1] defined dead code as source code used in the past,
but currently never executed. Wake [2] referred to dead
code as unused variables, parameters, fields, methods, or
classes. Martin [3] defined dead code as never executed
code (e.g., the body of an if -statement that checks for a
condition that cannot happen), while a dead function is a
method that is never called. In both the cases, dead code and
dead functions are not contained in any program execution
trace.2 Although there are some slight differences among
the definitions provided before, it seems that dead code is
unnecessary because it is unused and/or unreachable.

The term “dead” is also used in the programming lan-
guages field, where dead code refers to computations whose
results are never used (e.g., a variable referenced in the
code, but not actually used at run-time) [12]. A compiler
removes dead code from a program in the optimization
phase, namely it improves the intermediate representation
of this program for optimization reasons (e.g., faster code
and/or shorter code). This implies that dead code is not
removed from the source code, but from its intermediate
representation; therefore, developers often are unaware of
the presence and the removal of dead code.

In summary, dead code assumes a different meaning
both within the same field (i.e., software engineering) and
between different fields (i.e., software engineering and pro-
gramming languages). In this paper, we refer to the software
engineering definition of dead code and we use the term
“dead” to also refer to lava flow, unreachable, and unused
code. Whenever needed, we distinguish among the follow-
ing kinds of dead code: classes, methods, variables (local
and global), parameters, and statements.

2.2 Related Work
Chen et al. [13] proposed a data model for C++ software
repositories that supported reachability analysis and dead
code detection of both C++ and C entities (e.g., variable,
functions, and types). Dead entities were detected by means
of the difference of two sets, S and R(r), where S was
the set of all the entities in a software system, while R(r)
was the set of entities reachable from the entity r (i.e., the
starting point of the software execution). Boomsma et al. [7]
proposed a dynamic approach to identify and then eliminate
dead files from web systems written in PHP. This approach
consisted of monitoring the execution of web systems in a
given time frame for the purpose of gathering data on the
usage of PHP files. If a file was not used in the considered
time frame, it was marked as potentially dead. The au-
thors evaluated their approach on an industrial web system
comprising six subsystems. They reported that, on Aurora
(one of the subsystems), thanks to the authors’ approach the
developers removed 2,740 dead files. Fard and Mesbah [4]
presented JSNOSE, a smell detection approach for web
systems with client-side written in JavaScript. JSNOSE used

2. Execution traces record information about the execution of a soft-
ware system.

static and dynamic analyses to detect 13 smells, including
dead code, in client-side code. JSNOSE detected dead code
(dead statements in particular) by either counting the exe-
cution of statements or reachability of statements. Romano
et al. [8] proposed DUM, a static approach to detect dead
code at method level in Java desktop application. The ap-
proach consisted of building a graph-based representation
of methods and their relationships (i.e., invocations). Then,
this representation was traversed to detect dead methods.
Nodes (i.e., methods) reachable from a starting node, in the
graph-based representation, were considered alive. All the
other nodes were marked as dead. Romano et al. [14] im-
plemented DUM in an Eclipse plug-in named as DUM-Tool.
The main difference among our contribution and the papers
discussed just before is that they proposed approaches and
tools to detect dead code, while we investigated when and
why developers introduce dead code, how they perceive and
cope with it, and whether dead code is harmful.

Scanniello [15] defined an approach based on the Kaplan
Meier estimator to analyze how dead code (dead methods
specifically) affects five evolving software systems. The au-
thor observed that, on two software systems, the developers
avoided introducing dead code as much as possible, thus
suggesting that the removal of dead code was perceived for
the developers as relevant. Later, Scanniello [16] conducted
an investigation into 13 software metrics as predictors for
dead code (dead methods in particular). Five out of 13
software metrics were identified as predictors for dead code.
LOC (Lines of Code) seemed to be the best predictor, thus
suggesting that the larger a class is, the higher the probabil-
ity that its methods are dead code. Eder et al. [5] investigated
on maintenance of dead code in an industrial web system
written in .NET. The authors monitored the execution of
methods in a given time frame. Methods not executed in this
time frame were considered as dead. Then, they quantified
the maintenance operations affecting dead methods. The
authors observed that maintenance of dead code account for
7.6% of the total number of modifications. The differences
with respect to these papers is that we conducted a multi-
study investigation whose overarching goal is to study dead
code from the developers’ perspective. That is, we have
conducted a user study in addition to studying the evolution
of some software systems as our motivation.

Yamashita and Moonen [9] conducted a survey to inves-
tigate developers’ knowledge about smells. The results from
this survey suggested that 32% of the respondents did not
know about smells. The most popular smell was duplicate
code. Dead code was reported as the 10th most popular
smell among the 34 smells that the respondents mentioned.
Dead code detection resulted as the 10th most desired
features (out of 29) for smell analysis tools. This is the sole
study that reports results on developers’ perceptions about
dead code. In some sense, our multi-study investigation
extends this survey and provides further insights into dead
code (e.g., its harmfulness).

3 DEAD CODE

In this section, we provide an example to show why dead
code is believed to be harmful when comprehending and
modifying source code. We also present a mining study to

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

1 public class Dot extends Figure {
2

3 @Override
4 public void rescaleX(double formerX, double newX,

double percent, LaTeXDrawRectangle bound){
5 if(percent==1.) return;
6 LaTeXDrawPoint2D NW = bound.getTheNWPoint();
7 SE = bound.getTheSEPoint(), farest;
8 if(Math.abs(newX-SE.x)<Math.abs(newX-NW.x))
9 farest = NW;

10 else
11 farest = SE;
12 center.x = farest.x+(center.x-farest.x)*percent;
13 updateDelimitor();
14 updateShape();
15 updateBorders();
16 updateGravityCenter();
17 }
18

19 @Override
20 public void rescaleY(double formerY, double newY,

double percent, LaTeXDrawRectangle bound){
21 if(percent==1.) return;
22 LaTeXDrawPoint2D NW = bound.getTheNWPoint();
23 SE = bound.getTheSEPoint(), farest;
24 if(Math.abs(newY-SE.y)<Math.abs(newY-NW.y))
25 farest = NW;
26 else
27 farest = SE;
28 center.y = farest.y+(center.y-farest.y)*percent;
29 updateDelimitor();
30 updateShape();
31 updateBorders();
32 updateGravityCenter();
33 }
34

35 public synchronized void setWidth(float w){
36 if(w<=0) throw new IllegalArgumentException();
37 width = w;
38 updateGap();
39 updateDelimitor();
40 updateBorders();
41 updateShape();
42 }
43

44 ...

(a)

1 public class Draw extends Figure {
2

3 @Override
4 public void rescaleX(double formerX, double newX, double

percent, LaTeXDrawRectangle bound){
5 if(percent==1.) return;
6 if(bound==null) throw new IllegalArgumentException();
7 int i, size = figures.size();
8 for(i=0; i<size; i++)
9 figures.elementAt(i).rescaleX(formerX, newX, percent,

bound);
10 updateBorders();
11 }
12

13 @Override
14 public void rescaleY(double formerY, double newY, double

percent, LaTeXDrawRectangle bound) {
15 if(percent==1.) return;
16 if(bound==null) throw new IllegalArgumentException();
17 int i, size = figures.size();
18 for(i=0; i<size; i++)
19 figures.elementAt(i).rescaleY(formerY, newY, percent,

bound);
20 updateBorders();
21 }
22

23 ...

(b)

1 public class ParametersDrawFrame extends
AbstractParametersFrame {

2

3 @Override
4 public void saveParameters(){
5 if(!(figure instanceof Draw))
6 throw new ClassCastException();
7 LaTeXDrawRectangle borders = figure.getBorders();
8 LaTeXDrawPoint2D NW = borders.getTheNWPoint();
9 LaTeXDrawPoint2D SE = borders.getTheSEPoint();

10 float newVal = Float.valueOf(NWX.getValue().toString())
.floatValue();

11 figure.rescaleX(NW.x, newVal, Math.abs((newVal-SE.x)/(
NW.x-SE.x)), borders);

12 newVal = Float.valueOf(NWY.getValue().toString()).
floatValue();

13 figure.rescaleY(NW.y, newVal, Math.abs((newVal-SE.y)/(
NW.y-SE.y)), borders);

14 newVal = Float.valueOf(SEX.getValue().toString()).
floatValue();

15 figure.rescaleX(SE.x, newVal, Math.abs((newVal-NW.x)/(
SE.x-NW.x)), borders);

16 newVal = Float.valueOf(SEY.getValue().toString()).
floatValue();

17 figure.rescaleY(SE.y, newVal, Math.abs((newVal-NW.y)/(
SE.y-NW.y)), borders);

18 ((Draw)figure).updateBorders();
19 ((Draw)figure).updateGravityCenter();
20 super.saveParameters();
21 }
22

23 ...

(c)

Fig. 1: An excerpt of LaTeXDraw 2.0.8 concerning two dead methods.

understand both the prevalence of dead code in open-source
software systems and to what extent the amount of such a
smell changes during software evolution and maintenance.
Finally, we summarize the motivations behind our multi-
study investigation.

3.1 Dead Code vs. Comprehensibility and Modifiability
To demonstrate how the presence of dead code (in par-
ticular, dead methods) could affect source code compre-
hensibility and modifiability, we consider an excerpt of
a real application written in Java (see Figure 1), namely

LaTeXDraw 2.0.8 (i.e., one of the experimental objects used
in the experiments). LaTeXDraw is an open-source graphical
drawing editor for LaTeX. Among the classes of LaTeXDraw,
we report: Dot (see Figure 1.a), Draw (see Figure 1.b),
and ParametersDrawFrame (see Figure 1.c). The Dot
class represents a dot (i.e., one of the drawable items of
LaTeXDraw), whereas the class Draw is a container of
drawable items (e.g., it can contain rhombuses, squares,
etc). The ParametersDrawFrame class is a dialog box that
allows changing the parameters of a Draw object. Please
note that we do not show the classes representing other

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

drawable items of LaTeXDraw (e.g., rhombus) because of
their scarce relevance.

LaTeXDraw allows the user to scale both dots and con-
tainers of drawable items. When the user scales a given dot,
setWidth of Dot is executed and consequently the dot is
scaled. On the other hand, when the user scales a container
of drawable items, rescaleX and rescaleY of Draw are
executed; then, the rescaleX and rescaleY methods of
any contained item are executed as well (see the calls in the
lines 9 and 19 in Figure 1.b). LaTeXDraw does not allow
creating Draw objects containing Dot objects. This implies
that the calls to rescaleX and rescaleY (see the lines
9 and 19 in Figure 1.b, and the lines 11, 13, 15, and 17 in
Figure 1.c) can never cause the execution of rescaleX and
rescaleY of Dot. It is worth mentioning that besides the
calls in Figures 1.b and 1.c, there is no caller in LaTeXDraw
that can cause the execution of rescaleX and rescaleY
of Dot. This is why these two methods are dead.

The presence of these two dead methods could lead to
potential problems when comprehending and maintaining
the source code of LaTeXDraw. We discuss these potential
problems by considering the following three scenarios:

• Newcomer developer modifies dead code. Let us sup-
pose that Alice, a newcomer developer, has to per-
form a change task on LaTeXDraw that consists of
modifying how to scale a dot. Sillito et al. [17] re-
ported that newcomer developers are often interested
in finding a few focus points3 at the beginning of a
change task. Later, these focus points can be expanded.
According to Sillito et al.’s results, we can postulate
that Alice could start searching focus points such as
“dot” and “scale”. For example, she could use “dot”
as a query of a text-based search to find that the Dot
class represents a dot. Then, she could scroll the Dot
class to search some methods named something like
“scale” and she could wrongly consider rescaleX and
rescaleY relevant to her change task. Alice could also
try to expand her focus point to be more confident that
rescaleX and rescaleY are responsible for scaling
a dot. Thus, Alice could look for where these two
methods are called and find out possible calls in Draw
and ParametersDrawFrame. Without knowing that a
Draw object cannot contain a Dot object, Alice could
modify rescaleX and rescaleY of Dot and subse-
quently she could spend time understanding why the
modifications are not affecting LaTeXDraw’s behavior.
In this context, newcomer developers would actually
implement the change task only after understanding
why the modifications do not affect LaTeXDraw’s be-
havior.

• Developer with some knowledge of the code base
modifies dead code. Let us consider again the change
task that consists of modifying how to scale a dot,
but unlike the scenario before, the developer (i.e., Bob)
has some knowledge of the LaTeXDraw code base. In
particular, Bob has never dealt with dots and containers
of drawable items, but he has already worked on the
source code of another drawable object (e.g., a rhombus)

3. A focus point is a software entity (e.g., a method) that is relevant
to a given task [17].

and he knows that the methods responsible for scaling
this drawable object are rescaleX and rescaleY.
He could think that this is also true for a Dot object.
In this context, developers could modify rescaleX
and rescaleY of Dot and then they would need
to spend time understanding why their modifications
do not affect LaTeXDraw’s behavior before correctly
implementing the change task.

• (Newcomer or not) developer revives dead code.
When performing the change task mentioned in the
previous scenarios, the developers could try to revive
rescaleX and rescaleY of Dot. That is, Alice and
Bob could write code that causes the execution of
these two methods. Unfortunately for them, rescaleX
and rescaleY of Dot are buggy because instead of
scaling a dot, they translate it. Trying to reuse these two
methods could be a waste of time since the developer
(i.e., a newcomer or not) should first understand why
a given dot is not scaled and then fix rescaleX and
rescaleY of Dot.

3.2 Dead Code Study

In this section, we present the design of a mining study
that we conducted to further motivate our multi-study
investigation. The obtained results and the threats that could
affect their validity are presented as well.

3.2.1 Planning and Execution
Our motivational mining study aimed to understand the
prevalence of dead code (i.e., dead methods) in open-source
software systems and to what extent the amount of dead
code changes (increases or decreases) during the evolution
and maintenance of these systems. To this end, we studied
the following questions:

• How prevalent is dead code in open-source Java applications?
• Do developers introduce more dead code or remove dead code

during the maintenance and evolution of their software?
The first question aimed to demonstrate the scope of this
smell. By understanding the prevalence, we can determine
whether this can be a common issue that impacts devel-
opers with respect to source code comprehensibility and
modifiability. In the second question, we aimed to under-
stand whether developers are introducing more dead code,
removing dead code, or if it is staying consistent as the
system evolves. By understanding these two phenomena,
we can better understand the scope of dead methods and
to what extent developers both introduce and remove them.
The perspective is that of researchers interested in under-
standing the pervasiveness of this smell.
Procedure. The study focused on open-source Java GUI-
based4 applications hosted in GitHub.5 As an initial filter-
ing, we looked for Java projects that had at least a fork, a
star, or a watcher (i.e., the projects were not abandoned),
and were not a fork (i.e., the projects were not duplicated).
We cloned these projects from GitHub and identified those
projects that were GUI-based applications. To perform this

4. GUI-based applications mean applications based on GUI frame-
works (e.g., Swing).

5. github.com

https://github.com/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

TABLE 1: GUI frameworks considered in the mining study
together with their import declarations.

Framework Import declarations
AWT java.awt

JavaFX

javafx.animation, javafx.application, javafx.beans,
javafx.event, javafx.util, javafx.stage, javafx.scene,
javafx.collections, javafx.concurrent, javafx.embed,
javafx.fxml, javafx.geometry

JGoodies com.jgoodies.forms
QT Jambi com.trolltech.qt
Swing javax.swing
SwingX org.jdesktop.swingx
SWT org.eclipse.swt

further filtering, we looked for projects that imported the
GUI frameworks listed in Table 1. We identified 2,484 can-
didate GUI-based Java applications. Since our dead code
detection tool required the class files for the projects, we
considered projects using Ant6 and Maven,7 and were able
to successfully build 35 projects in their current snapshot.

Additionally, to understand to what extent the amount
of dead code changes during software maintenance and
evolution, we considered projects that were able to build for
multiple commits. As expected, many projects were not able
to build at many commits; for example, these commits may
have bugs preventing compilation or the build scripts may
be outdated to reflect the source code changes [18]. We were
able to identify 13 projects out of the 35 projects that build
for at least two commits. While the analysis may miss inter-
mediate dead code additions or removals, it demonstrates to
what extent dead code present within the system between
two buildable versions, which could be representative of
more stable snapshots or releasable versions.
Analysis Procedure. With the projects locally cloned, we
utilized DUM-Tool [14] to analyze the systems that were
buildable to identify the dead methods. The tool provides an
XML-formatted file detailing the identified dead methods.

To study how prevalent is dead code, we considered
only the most recent buildable version of each project and
provide the distribution of the number of dead methods in
the Java applications.

To investigate to what extent developers both introduce
and remove dead code, we traversed the Git8 version history
and ran DUM-Tool at each buildable version. Then, we an-
alyzed how the number of dead methods changed between
versions of the application to identify whether more dead
code was introduce, removed, or remained consistent.

3.2.2 Results
How prevalent is dead code in open-source Java applications?

We observed a distribution of dead methods with a mini-
mum of 0 methods, median of 7.5 methods, mean of 42.12
methods, and maximum of 405 methods. Dead methods
were relatively common in our dataset with 32 of 35 ap-
plications containing them. Additionally, the applications
typically had multiple dead methods (31 out of 35 appli-
cations) and certain applications had a high number of
dead methods. Overall, we found that on average dead

6. ant.apache.org
7. maven.apache.org
8. git-scm.com

methods are 15.94% of methods of an application, while
the median is 11.95%. It is important to note that these
methods may be intended for future use. However, our
study in the subsequent sections demonstrates that this
can have a negative impact with respect to source code
comprehensibility and modifiability.

Do developers introduce more dead code or remove dead code
during the maintenance and evolution of their software?

The three projects that we previously observed without
dead methods in their current version also did not contain
any dead code through their revision history. Figure 2 shows
the different behaviors that we observed in the remaining 10
Java applications that did contain dead code.

We observed that the number of dead methods remained
constant for 5 applications during their commit history. Of
these applications, JMario and javacus had the most dead
methods at 38 methods and 20 methods, respectively. The
ttyhlauncher application had eight dead methods, and was
followed by SimuladorAutomatos with three dead methods.
Finally, piggy only had two dead methods.

Interestingly, the other five projects showed fluctuations.
In the case of autoXenon as in Figure 2.a, we observed
two small peaks with the first representing two dead meth-
ods and the second five dead methods. In both cases, the
number decreased back to 0 in the subsequent commit.
Figure 2.e shows a similar behavior for InvApp, but it had a
much larger increase. We observed the lack of dead methods
through the revision history followed by a brief large spike
to 60 dead methods later in the development that lasts only
for that version.

In the case of BatesPapoServidor (see Figure 2.b), we
observed the most fluctuations in terms of the amount of
dead methods. Initially, we observed a large number of dead
methods were removed. After two commits, we observed
a slightly larger increase of dead methods, which were
subsequently removed in the following commit. After the
removal the another large increase in the number of dead
methods occurred and remained relatively consistent after a
minor decrease (there was an increase for a single commit,
but decrease to the previous number of dead methods in the
next commit).

In Figure 2.c, we observed an initial period in the first
nine commits where the number of dead methods were de-
creased to 0. Then, we observed this remains consistent for
the next ten commits after which the number increases and
remained consistent. Conversely, in Figure 2.d, we observed
that FBOS initially had a small number of dead methods that
remained relatively constant until the 8th commit, where
there was an increase to 40 dead methods. It remained
constant for three commits and then took a sharp decrease
in dead methods for a commit followed by a slight increase.

By considering the revision histories, there were two
main observations about the number of dead methods. First,
we observed a consistent number of dead methods in five of
the applications. Second, we observed the other projects had
periods where a large number of dead methods were intro-
duced within the application. In both cases, it is important
to understand the impact that these dead methods might
have with respect to source code comprehensibility and
modifiability, since it was relatively common for projects
in our dataset to have dead methods throughout their

http://ant.apache.org/
http://ant.apache.org/
https://git-scm.com/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

(a) autoXenon (b) BatePapoServidor (c) diff

(d) FBOS (e) InvApp (f) javacus

(g) JMario (h) piggy (i) SimuladorAutomatos

(j) ttyhlauncher

Fig. 2: Number of dead methods at each revision for each project.

development histories with instances where a large number
of these dead methods may also be introduced within a
single commit.

3.2.3 Threats to Validity

Threats to validity are reported and discussed by following
the guidelines by Wohlin et al. [19].

Internal Validity. In terms of factors that could bias our
results, we performed filtering to remove duplicate projects
or abandoned projects. Then, we considered all GUI-based
applications as other software systems such as libraries
would yield misleading results as methods (e.g., APIs) may
inaccurately be identified as dead, which would inflate our
results. Due to both the number of candidate applications

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 3: Summary of our multi-study investigation.

and the need to analyze at commit-level, it is not feasible to
perform this manually. However, we relied on two popular
build systems (i.e., Ant and Maven) to automatically build
the applications. The lack of the ability to build open-
source software at commit-level is an inherent limitation
to any similar study. We used the GitHub API to identify
the project metadata that was used to select the candidate
applications by extracting the language of the project, the
stars, watchers, forks, and fork status (i.e., if the project is a
fork or not). We also utilized the Git command line utility to
traverse the revision history so that we could analyze each
commit. The use of the GitHub API and Git command line
utility might affect the results.
External Validity. As we only consider Java GUI-based ap-
plications, we do not assert that our observations hold for all
open-source systems or Java systems utilized through other
mechanisms (e.g., frameworks or libraries). Applications
in other languages or hosted on other forges may exhibit
different behaviors, but we focused on GitHub due to its
overwhelming popularity and access to public repositories.
Conclusion Validity. To identify dead code, we utilized
DUM-Tool [14], which was published in prior work and
demonstrated to accurately identify dead methods in Java
GUI-based applications.
Construct Validity. We used a single tool (i.e., DUM-Tool)
to detect dead code. In this context, there is a lack of tool
support [8]. Additional threats could be related to the kind
of dead code on which this motivational study is focused,
i.e., dead methods.

3.3 Wrap-up
The results from the mining study show that dead code is
prevalent in the considered open-source Java applications.
The presence of dead code could affect both comprehensibil-
ity and modifiability of source code (see the scenarios before
presented). We also observed fluctuations in the amount
of dead code through version history of some software
projects. This might be related to the fact that developers
perceive this smell as harmful and then remove it when
possible. On the other hand, we observed that the amount
of dead code remained constant through the version history
of other projects, so letting us postulating that developers
do not take care of this smell. These findings and postula-
tions motivate the multi-study investigation into dead code
presented in this paper.

4 MULTI-STUDY INVESTIGATION

The overarching goal of our multi-study investigation is to
answer the following Research Questions (RQs):

RQ1. When and why do developers introduce dead code?
RQ2. How do developers perceive and cope with dead code?
RQ3. Is dead code harmful?

RQ3.a. Is dead code harmful to comprehend (unfamiliar)
source code?

RQ3.b. Is dead code harmful to perform change tasks (famil-
iar and unfamiliar) source code?

In Figure 3, we graphically summarize our multi-study
investigation.9 In this figure, we depicted each individual
study as a rectangle. Within every rectangle, we reported:
the textual label (in bold) that we use to refer to the study
in the rest of the paper (e.g., Inter), the kind of study (e.g.,
semi-structured interviews), and some information about
the participants in the study (e.g., six software professionals
in Inter). We also provided a link between each individual
study and the investigated RQ/s (see the circle at the top-
left corner of any rectangle).

Our multi-study investigation took place between De-
cember 2015 and December 2016. We started this investi-
gation with semi-structured interviews with six software
professionals to study when and why dead code is intro-
duced (i.e., RQ1) and how developers perceive and cope
with this smell (i.e., RQ2). From January to December 2016,
we conducted four controlled experiments with students to
study whether dead code is harmful (i.e., RQ3.a and RQ3.b).
Indeed, in UniBas1—the baseline experiment—we inves-
tigated both RQ3.a and RQ3.b [20]. UniBas1 involved 47
undergraduate students at the University of Basilicata. The
participants were asked to perform a comprehension task
on a code base and then implement five change requests on
that code base. In such a way, students continually increased
their familiarity with the given code base, while performing
the comprehension task. As a result, when the participants
in UniBas1 had to implement the change requests (i.e., the
modification task), they had already investigated the greater
part of the code base and largely increased their familiarity
with this code. Therefore, we consider a code base familiar to
a participant if she had already performed a comprehension
task on that code base, while a code base is unfamiliar
otherwise.

The results in UniBas1 suggested that comprehensibility
of unfamiliar source code is significantly better when a code
base does not contain dead code. On the other hand, we did
not observe a statistically significant difference with respect
to the modifiability (effort and effectiveness in modifying
source code) of familiar source code.

9. The interested reader can find both the experimental materials and
raw data at: www2.unibas.it/gscanniello/DeadCode/package.zip

http://www2.unibas.it/gscanniello/DeadCode/package.zip

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

In the replications, we focused on either RQ3.a (i.e.,
UniBas2 and W&M1) or RQ3.b (W&M2). The participants
in UniBas2 were graduate students at the University of
Basilicata, while those in W&M1 and W&M2 were 11 and 6
undergraduate/graduate students at the College of William
& Mary, respectively. The total number of students involved
in these four experiments was 83.

UniBas2, W&M1, and W&M2 can be classified as oper-
ational replications because we varied some dimensions of
experimental configuration [21]. For example, we varied the
experimenters (e.g., W&M1), the kind of participants (e.g.,
UniBas2), and the experimental protocol (e.g., experimental
objects in W&M2). We introduced variations between the
baseline experiment and the replications to increase our
confidence in the results [22].

In the next sections, we present in detail the individual
studies comprising our multi-study investigation.

5 INTERVIEWS: PLANNING AND EXECUTION

In this section, we present the design of the semi-structured
interviews comprising our multi-study investigation.

5.1 Goal

Based on RQ1 and RQ2, we defined the main goal of the
semi-structured interviews, by applying the Goal Question
Metrics (GQM) template [23], as follows:

analyze dead code
for the purpose of understanding when and why

it is introduced and how devel-
opers perceive and cope with it

from the point of view of researchers and practitioners
in the context of software professionals.

Although the use of GQM is uncommon in qualitative
studies, we decided to exploit this template to ensure that
important aspects were defined before the semi-structured
interviews took place.

5.2 Participants

The participants (or also interviewees) in our semi-
structured interviews were software professionals. We
looked for potential participants within the contact network
of the software engineering research group at the University
of Basilicata. Six out of nine software professionals accepted
our invitation. In Table 2, we show some information about
the background of the participants who took part in our
interviews. The interviewees had from four to ten years of
work experience. Two out of six interviewees were project
managers, whereas the others were software developers. All
the interviewees had a degree in Computer Science: three
had a doctoral degree, one a Master’s degree, and two a
Bachelor’s degree. The companies in which the interviewees
worked developed software in the following sectors: health,
research, and Information and Communications Technology
(ICT). Five out of six interviewees worked for independent
private companies, while one interviewee was employed
in a subsidiary public company. The workforce of these
companies ranged from about 10 to 40,000 employees. The
interviewees were employed in either multinational (four

out of six interviewees) or Italian companies. The intervie-
wees usually dealt with software systems whose estimated
size, in terms of LOC (Lines of Code), ranged from medium
to very large. Such a system-size estimate was based on
the following classification: small if LOC < 10,000, medium
if 10,000 ≤ LOC < 50,000, semi-large if 50,000 ≤ LOC <
100,000, large if 100,000 ≤ LOC < 500,000, and very large if
LOC ≥ 500,000.

In Table 3, we report how each interviewee evaluated her
experience in design, development, testing, maintenance,
and management of software systems. Most of the intervie-
wees had extensive experience in design, development, and
maintenance of software systems. With respect to testing
and management of software systems, two interviewees had
extensive experience, while the others had some experience.

5.3 Procedure

The used procedure is inspired by the one Murphy et
al. [24] and Francese et al. [25] used in their studies. The
first author (from here onward referred to as interviewer)
interviewed professionals in person, if they worked in the
Potenza area, or via Skype otherwise. Each interview was
audio-recorded and involved the interviewer and only one
interviewee at a time. It was conducted in Italian, since it
was the native language for both interviewer and inter-
viewees (the use of English could introduce unnecessary
complexity and threaten the results due to misunderstand-
ings). Each interview lasted at most one hour and it was
divided into four parts. In the first part, the interviewer
gathered demographic information related to interviewee’s
work experience and summarized in Table 2 and Table 3.
The second part consisted of an open-ended question, where
the interviewee could freely talk about dead code according
to her experience. The interviewer did not influence the
answer of each interviewee. In the third and fourth part, the
interviewer provided the interviewee with a list of software
engineering topics. In the third part, the interviewee chose
two of these topics and then he/she discussed dead code
in relation to the chosen topics. In the fourth part, two
topics, among those not yet discussed, were chosen by the
interviewer; then, the interviewee discussed these topics in
relation to dead code similarly to the third part of the inter-
view. While choosing the topics from the list, the interviewer
tried to ensure coverage of all the topics at least once. The
interviewer chose topics with which the interviewee had
more familiarity. This was done by using both demographic
information and personal knowledge of the interviewee
(if any). The interviewees could state that they were not
familiar with a given topic. In such a case, the interviewer
would choose another topic. Topics were discussed one at
a time in both the third and fourth parts. To ensure that
all the software engineering topics related to dead code
were covered, we selected the following topics from the
Software Engineering Body of Knowledge (SWEBOK) [26]:
(1) Software Design, (2) Software Construction, (3) Software
Testing, (4) Software Maintenance, (5) Software Configuration
Management, (6) Software Engineering Management, (7) Soft-
ware Engineering Process, and (8) Software Engineering Tools
and Methods.

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 2: Information on the interviewees and on the companies where they worked.

ID Degree Years of
Experience Position Company

Sector Ownership Workforce Location Typical System-Size
I1 PhD 7 Developer ICT Independent, private ∼300 Many, in Europe Semi-large/large
I2 Master 10 Project Manager ICT Independent, private ∼40,000 Many, in any continent Large/very large
I3 Bachelor 4 Developer ICT Independent, private ∼9,000 Many, in Europe, South and North America Large/very large
I4 PhD 8 Developer Health Subsidiary, public ∼1,900 Unique, in Italy Medium/semi-large
I5 PhD 10 Developer Research Independent, private ∼10 Unique, in Italy Medium/semi-large
I6 Bachelor 6 Project Manager ICT Independent, private ∼40,000 Many, in any continent Large/very large

TABLE 3: Experience of the interviewees. Each of them
could evaluate her experience as: none, some, or extensive.

ID Design Development Testing Maintenance Management
I1 Some Extensive Some Extensive Some
I2 Extensive Extensive Some Extensive Extensive
I3 Some Extensive Some Extensive Some
I4 Extensive Extensive Extensive Some Some
I5 Extensive Extensive Extensive Extensive Some
I6 Extensive Extensive Some Extensive Extensive

5.4 Analysis Procedure

We first transcribed the audio-recordings of the interviews
and then we (the first and the third authors of this paper)
analyzed the transcriptions of these recordings by means of
a Thematic Analysis Template (TAT) [27]. Thematic analysis
is a qualitative method for identifying, analyzing, and re-
porting patterns (i.e., themes) within data (i.e., transcriptions
in our case) [28]. A template is a hierarchical structure of
themes. Researchers first build an initial template to analyze
data; then, this template can be modified during the course
of the ongoing analysis. As King [27] suggests, the best
starting point to build an initial template is represented
by the interview topics. Therefore, the themes of our initial
templates were the selected SWEBOK topics. We exploited
TAT because it is both fast to build and is also flexible [27].

To carry out our analysis, we exploited ATLAS.ti,10 a
program to support qualitative analysis. Thus, it is also
suitable for supporting thematic analysis.

6 INTERVIEWS: RESULTS

In this section, we present the results from the study of RQ1
and RQ2 and then the threats that could affect their validity.

6.1 Studying RQ1 and RQ2

In Figure 4, we show the graph-based visualization of the
final template resulting from the thematic analysis. Themes
and sub-themes, constituting the final template, are repre-
sented as rectangles while relations among them are de-
picted through arrow-shaped lines. When there is a relation
between a theme and one or more sub-themes, they are
drawn with the same background color. The visualization
shown in Figure 4 was built in ATLAS.ti by means of the
network view feature.

The final template is also shown in Table 4, where we
assign a number/letter to each theme/sub-theme and we
report how each identified sub-theme contributes to answer
the research questions. In the following, we present the
results with respect to the themes in our final template. We
also provide some excerpts from the interviews.

10. atlasti.com

Theme 1. Software Design

a) The interviewees stated that dead code could result
from a design choice to support anticipated future
features. For example, I1 said:

You could design a software component that is dead,
because you believe to use it someday.

Theme 2. Software Construction

a) To support anticipated future features, the interviewees
stated that developers write dead code that they think
to revive someday. This is when code is created dead.
For example, I1 said:

Just yesterday, I modified a program to allow it to work
on TVs manufactured by A11 in 2014 and 2015. When I
was making my modifications, I thought that next year
I’d modify my program again to allow it to work on A’s
2016 TVs. So I wrote a piece of code that should allow
the program to work on A’s 2016 TVs. I know that, at
the moment, this piece of code is dead, but it’ll be used
in 2016.

b) The interviewees said that getter/setter methods are
written without worrying about if these methods will
be used or not. This is another case in which code was
created as dead, but interviewees seem to tolerate its
presence. On this point, I5 said:

I usually keep dead getters/setters because they may
come in handy in the future.

c) When the interviewees are doubtful about whether a
code fragment is dead or not (i.e., alive), they use the de-
bugger to find if there is an execution that involves this
fragment. However, the interviewees were conscious
that the use of a debugger can only guarantee that code
is alive, but not the contrary. With respect to this theme,
I3 said:

When debugging the program I can figure out if there is
unused code.

Theme 3. Software Testing

a) To be sure that a piece of code is alive, test case execu-
tion traces are exploited. The interviewees recognized
that these traces can involve code that is alive when
testing the subject program, but dead when running

11. A refers to a TV manufacturer that was anonymized.

http://atlasti.com/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

is
 p

a
rt

 o
f

is
 p

a
rt

 o
f

is part of

is p
a
rt o

f

is part of

is p
a
rt o

f

is
 p

a
rt

 o
f

is
 p

a
rt

 o
f

is part of

is
 p

a
rt

 o
f

is part of

is part of

is p
a
rt o

f

is p
a
rt o

f

is part of

7. Software Engineering Tools and Methods

5. Software Configuration Management

a) Tool Support

a) Controlling Dead Code

2. Software Construction

1. Software Design

6. Software Engineering Management

4. Software Maintenance

8. Software Quality

3. Software Testing

a) Execution Traces and Alive Code

a) Risk Management and Dead Code

b) Managing Inherited Software

a) Design for Software Evolution

a) Comprehensibility and Modifiability

b) Performance

c) Debugger and Alive Code

a) Coding for Software Evolution

b) Dead Getters and Setters

a) Maintaining Software

c) Comments and Dead Code

d) Refactoring

b) Inherited Software

Fig. 4: Graph-based visualization of the final template built in ATLAS.ti.

TABLE 4: Final Template and links to the investigated RQs.

Theme Sub-theme RQs
1. Software Design a) Design for Software Evolution RQ1, RQ2

2. Software Construction
a) Coding for Software Evolution RQ1, RQ2
b) Dead Getters and Setters RQ1, RQ2
c) Debugger and Alive Code RQ2

3. Software Testing a) Execution Traces and Alive Code RQ2

4. Software Maintenance

a) Maintaining Software RQ1, RQ2
b) Inherited Software RQ1
c) Comments and Dead Code RQ2
d) Refactoring RQ2

5. Software Configuration Management a) Controlling Dead Code RQ2

6. Software Engineering Management a) Risk Management and Dead Code RQ2
b) Managing Inherited Software RQ2

7. Software Engineering Tools and Methods a) Tool Support RQ2

8. Software Quality a) Comprehensibility and Modifiability RQ2
b) Performance RQ2

the program within its target environment. The in-
terviewees tolerate the presence of this kind of dead
code, because it is exercised by at least one test case
and it would not be a major issue if this code was
inadvertently (or not) revived. On this point, I4 said:

The analysis of test case execution traces told you if
a given method is executed. Thus, you can assume
that it isn’t dead. However, it can happen that a test
case exercises a method that is currently not used,
that is dead.

Theme 4. Software Maintenance

a) The interviewees asserted that dead code can be intro-
duced during the execution of any maintenance oper-
ation (i.e., adaptive, corrective, and perfective). Dead
code is introduced because: (i) developers are unaware

that a modification to a code fragment makes another
code fragment dead (e.g., if there is only a method m
that invokes a method n and m is modified so that
it does not invoke n anymore, then n becomes dead);
and (ii) developers believe that a code fragment that
after some changes is no longer used, could be reused
someday (i.e., they are aware that this code is dead, but
it could be useful later). With respect to this sub-theme,
I5 said:

When I develop a new version of a piece of source code, I
often keep the old one for a certain time period although
it’s dead.

b) The interviewees stated that dead code could be in-
herited together with software changes. This happens
when a software company acquires an existing software
system from another company, and becomes respon-
sible for its maintenance and evolution. For example,

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

I2 said:
Dead code is often inherited. That is, we get it from
another software company.

c) When dead code is identified, the interviewees do
not always perform refactorings or do not adequately
perform refactoring operations to remove it. Two strate-
gies, both based on the use of source code comments,
are applied: (i) adding a comment before dead code to
take note that it is or could be dead and (ii) commenting
out dead code. The interviewees (and developers, in
general) go towards option (i) when they are aware that
a code fragment is dead, but they do not have adequate
time to remove it. This option is also used when the
developer is unsure whether the removal of a code
fragment (supposed to be dead) will affect the external
behavior of a subject software system. Option (ii) is
applied when interviewees are sure that a code frag-
ment is dead, and they believe that they will utilize that
code in the future (without possibly taking advantage
from a version control system, see Theme 5). This is
the case when dead code is not adequately refactored.
Commenting out dead code causes the introduction of
new smells (i.e., commented out code [3]) in the source
code. With respect to this sub-theme, I6:

To satisfy delivery times, we just comment code that’s
supposed to be dead. That is, we add a sort of label to
identify this kind of code. Similarly, we just comment
code that’s supposed to be dead if we deal with inherited
code because modifying it is risky.

d) The interviewees deal with refactoring as follows: (i) re-
moving dead code when they are sure that it is actually
dead and its removal is both low-risk and low-cost;
(ii) ignoring chances for the removal of dead code
because of high-risk; and (iii) postponing the removal
of dead code because of high cost. In the cases (ii) and
(iii), comments can be used to inform developers about
the presence of dead code (see Theme 4.c). On this sub-
theme, I1 said:

Recently, we’ve passed from a version to another one of
a program, its GUI’s been changed a lot, the application
logic as well, and much code’s been became dead. This
dead code’s been there for a while until someone’s found
the time to remove it.

Theme 5. Software Configuration Management

a) To record the effect of the removal of dead code, the
interviewees (and developers, in general) use version
control systems. These tools “remember” dead code
removal operations and, therefore, the developer can
successively use the removed source code. For example,
I6 said:

If someday I need removed dead code, then I ask the
version control system to look for it.

Theme 6. Software Engineering Management

a) The interviewees reported that both no work activity
is planned and no ad hoc tool is used for the purpose
of both identifying and removing dead code. However,
code inspection and analysis activities are planned and
executed to identify and then remove bad smells (in-
cluding dead code). For example, I2 stated:

We use a code analyzer. It measures cyclomatic complex-
ity, identifies large classes, etc. However, it isn’t specific
for analyzing dead code.

b) When dealing with inherited software (see Theme 4.b),
interviewees stated that project managers suggest that
developers avoid removing dead code even if it is
recognized in the code. This choice is inherently related
to the risks of removing dead code. On this sub-theme,
I2 said:

Generally speaking, dead code should be removed. How-
ever, suppose you have a piece of code that smells bad
but works. Making modifications on this piece of code
means taking a risk. If you introduce a bug, the customer
can ask your explanations on why you’ve modified
working code.

Theme 7. Software Engineering Tools and Methods

a) To support the identification and removal of dead code,
the interviewees asserted that, besides tools to get
execution traces, they only exploit canonical features
provided by the used Integrated Development Envi-
ronment (IDE) such as searching, debugging, etc. For
example, I4 said:

I check if a method is dead by right-clicking on the
method, and then selecting Find Usages.12

Theme 8. Software Quality

a) The interviewees agreed on the fact that the presence of
dead code worsens both source code comprehensibility
and modifiability. This is why such a kind of smell
should be removed from the source code, but this is
not always possible (as mentioned in Theme 4). For
example, I3 said:

Dead code should be removed. It could get you confused.
It makes source code bulky and little readable.

b) The interviewees also stated that dead code may neg-
atively impact software performance (e.g., execution
time), but they remove it for the purpose of achieving
better performance in a few cases. On this sub-theme,
I5 said:

As for software performance, I remove dead code only if
it strongly worsens execution time.

6.2 Threats to Validity

Despite our efforts to mitigate as many threats to validity
as possible, some limitations have to be considered when

12. It is a feature of NetBeans IDE.

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

interpreting the results. For example, we applied triangula-
tion13 strategies to increase the credibility and validity of the
results [29], [30].
Internal Validity. It is impossible to know whether intervie-
wees answered truthfully. For example, scarce motivation
could negatively affect observed insights. To mitigate this
threat, we chose topics that were of interest to the intervie-
wees, while they directly chose other topics for discussion
(see Section 5.3). We sampled participants only from people
in our contact network. It may be that different interviewees
would differ in some way from those in our sample. We
mitigated this point by applying data source triangulation.
External Validity. Outcomes might have limited generaliz-
ability, because we report the results of the interviews with
six software professionals. Although this could represent
a strong limitation for the results, Guest et al. [31] noted
that data saturation14 may be attained by as little as six
interviews.
Construct Validity. This kind of threat to validity concerns
the behavior of the interviewees and the interviewer. When
people take part in a study, they might try to figure out
what is the purpose and intended result of the study. In our
case, interviewees are likely to base their behavior on their
guesses about the study goal, either positively or negatively.
As for the interviewer, he can unconsciously bias the results
on the basis of what he expects from the study. We mitigate
this bias, because more than one experimenter participated
in the thematic analysis (investigation triangulation).

7 EXPERIMENTS: PLANNING AND EXECUTION

To carry out the controlled experiments, we followed the
recommendations by Juristo and Moreno [32], Kitchenham
et al. [33], and Wohlin et al. [19].

7.1 Goal

On the basis of RQ3.a and RQ3.b, we defined the main goal
of UniBas1, by applying the GQM template, as follows:

analyze the presence of dead code
for the purpose of evaluating its effect

with respect to the comprehensibility of unfa-
miliar source code

and with respect to the modifiability of familiar
source code

from the point of view of researchers and practitioners
in the context of undergraduate students and

object-oriented software imple-
mented in Java.

In UniBas2 and W&M1, we asked participants to work
on a Java application larger than that used in UniBas1.
This allowed us to reduce possible external validity threats.

13. Possible triangulation types are: data source triangulation; ob-
server triangulation; and methodological triangulation (e.g., [29]). In
data source triangulation, data sources can vary based on the times
the data were collected, the place, or setting and from whom the data
were obtained. Investigator triangulation involves using more than
one observer, interviewer, coder, or data analyst in the study, while
methodological triangulation concerns the combination of quantitative
and qualitative approaches.

14. When no new information or themes are observed in the data
when adding new interviews.

Keeping this in mind, we had to decide to investigate
on either source code comprehensibility or modifiability,
because the investigation of both could introduce threats
to internal validity (e.g., fatigue). Therefore, we studied
comprehensibility (RQ3.a) in UniBas2 and W&M1, while
modifiability (RQ3.b) in W&M2. On the basis of the prior
considerations, we defined the main goal of UniBas2 and
W&M1 as follows:

analyze the presence of dead code
for the purpose of evaluating its effect

with respect to the comprehensibility of unfa-
miliar source code

from the point of view of researchers and practitioners
in the context of undergraduate and graduate

students, and object-oriented
software implemented in Java.

The main goal of W&M2 was defined as follows:
analyze the presence of dead code

for the purpose of evaluating its effect
with respect to the modifiability of unfamiliar

source code
from the point of view of researchers and practitioners

in the context of undergraduate and graduate
students, professionals, and
object-oriented software imple-
mented in Java.

As for comprehensibility, we focused on the following
three constructs: (i) comprehension effort (time to complete
a comprehension task); (ii) comprehension effectiveness
(ability to perform a comprehension task); and (iii) compre-
hension efficiency (ability to effectively perform a compre-
hension task without wasting time). As for the modifiability,
we focused on the following three constructs: (i) modifica-
tion effort (time to complete a modification task); (ii) mod-
ification effectiveness (ability to perform a modification
task); and (iii) modification efficiency (ability to effectively
perform a modification task without wasting time).

7.2 Participants
The participants in each experiment had the following char-
acteristics:

• UniBas1. The participants were 3rd-year undergrad-
uate students in Computer Science at the University
of Basilicata. The experiment was carried out as an
optional laboratory exercise of a course on the Design
and Implementation of Information Systems (DIIS). The
participants had passed all the exams related to the
following courses: Procedural Programming, Object-
Oriented Programming I, and Databases. Thanks to
these courses the participants had gained programming
experience in Java and had sufficient level of techni-
cal maturity and knowledge of software design, de-
velopment, and refactoring. The participants had also
experience in performing maintenance operations on
source code written by others. In particular, before the
experiment took place, we asked the participants to
perform homework on legacy code written in Java.
They had to add some functionality using the Test-
Driven-Development approach to real software they
did not know.

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 5: Information on the participants in W&M2.

ID Participant Kind Work Experience
(Months)

P1 Graduate Student -
P2 Graduate Student -
P3 Graduate Student 36
P4 Undergraduate Student -
P5 Undergraduate Student 3
P6 Graduate Student 24

• UniBas2. The participants were 2nd-year graduate
students in Computer Engineering. The experiment
was carried out as an optional laboratory exercise of
the Software Engineering course. The participants had
passed all the exams related to the following courses:
Procedural Programming, DIIS, Object-Oriented Pro-
gramming I and II, Web Programming, and Databases.
In these courses, the participants had gained program-
ming experience in Java. The participants had sufficient
level of technical maturity and knowledge of software
design, development, and refactoring.

• W&M1. The participants were both undergraduate and
graduate students in Computer Science at the College
of William & Mary. The solicitation was independent of
a class but targeted Computer Science majors and grad-
uated students, and it required that the participants had
either prior Software Development (CS301) or Software
Engineering (CS435) coursework. Thus, the students
would have been exposed to refactoring and maintain-
ing source code written by others and they would have
received sufficient experience in both Java and Object-
Oriented Programming Principles. The participants had
sufficient level of technical maturity and knowledge of
software design, development, testing, and refactoring.

• W&M2. The participants were both undergraduate and
graduate students in Computer Science at the College
of William & Mary. Three out of the six participants had
prior industrial experience ranging from 3 to 36 months
(see Table 5). Similar to W&M1, the participants were
required to have either prior Software Development or
Software Engineering coursework or prior industrial
experience (when applicable). The completed course-
work would ensure that the participants were familiar
with Java as well as refactoring and maintaining source
code written by others. The participants in W&M1 did
not take part in W&M2.

The participants in all the experiments were informed
that their grade on the course, in which the experiment was
conducted, would not be affected by their performance in
that experiment. To encourage participation in UniBas1 and
UniBas2, we rewarded the participants with a bonus in their
final mark, while in W&M1 and W&M2, we reimbursed the
students for their participation ($30). It is worth mentioning
that students in UniBas1 and UniBas2 could not be payed
for their participation, because this is forbidden in Italy
(while rewarding them with a bonus in their final mark
is allowed). Participation was strictly voluntary and the
students were not coerced to participate in any way. All
these choices were made to have motivated participants.
We also informed the participants that the collected data
would have been used only for research purposes, treated

confidentially, and shared anonymously.

7.3 Procedure

Before each experiment took place, all the participants had
to fill out a pre-questionnaire. The gathered information on
the participants allowed us to better characterize the context
of each experiment (see Section 7.2).

The participants in UniBas1, UniBas2, and W&M1 at-
tended an introduction lesson, just before the experiments
took place, where we provided detailed instructions on
the experimental procedure. The experimental tasks (see
Section 7.5) of UniBas1, UniBas2, and W&M1 were carried
out under controlled conditions in research laboratories at
either the University of Basilicata or the College of William
& Mary. We monitored the participants to avoid possible
interactions. On the contrary, the participants in W&M2
were provided with detailed instructions on the experimen-
tal procedure via e-mail. Then, they had to carry out the
experimental tasks in the environment they preferred and
asked them to work individually. We did not suggest any
strategy to perform the assigned modification task (e.g., a
participant could take a break whatever she wanted).

Independently from the experiment, the participants had
to use the Eclipse15 IDE. We opted for Eclipse, because the
participants were familiar with this IDE. The participants
could freely exploit any functionality (e.g., debugger and
text-based search) already present in the Eclipse version for
Java developer, that is, they could not install any additional
plug-in. This is to have the same development environment
for all the participants. It is worth mentioning that no plug-
in to detect dead methods or classes was present in the used
Eclipse version and we did not inform the participants that
they worked on source code deprived or not of this smell.

During the experiments, we allowed the participants to
use the Internet, because actual developers usually exploit
this medium as support for their daily work activities. In
addition, the participants needed the Internet to fill out
questionnaires/forms, since we used Google Forms to create
them. We instructed the participants not to use the Internet
to communicate to each another.

As for the comprehension task (in UniBas1, UniBas2,
and W&M1), we defined a comprehension questionnaire
comprised of five open-ended questions. Then, we asked the
participants to follow these steps: (i) indicating their name
and start-time (shown on the used PC); (ii) answering the
questions in the comprehension questionnaire by exploiting
any functionality of Eclipse already installed; and (iii) indi-
cating the end-time (shown on the used PC).

As for the modification task in UniBas1, we defined
a task comprised of five change requests and asked the
participants to implement them. The steps to follow were
the same as the comprehension task except for the step
(ii). In particular, in the step (ii), the participants had to
implement the five change requests we provided them by
exploiting any functionality already present in Eclipse.

When performing the modification task in W&M2, each
participant had to create a Git repository just before exe-
cuting the modification task that, in this case, comprised

15. www.eclipse.org

http://www.eclipse.org/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

four change requests. Once a change request was imple-
mented, the participant had to commit the changes made
and indicate in the commit message the change request the
changes refer to. Similar to UniBas1, the participants had to
use Eclipse.

We did not impose any time limits for the tasks in our
experiments. In other words, the participants could take as
long as needed to complete a given task.

7.4 Experimental Objects
The applications (i.e., LaTazza, aTunes, and LaTeXDraw)
used in the experiments are summarized in Table 6. In this
table, we report the name and a brief description of each
application, and the experiment where this application was
used. For each application, we also report some descriptive
statistics of both its original version and its version deprived
of dead code: LOC (comments were not taken into account),
the number of types (e.g., classes), and the number of
methods. Descriptive statistics were gathered by means of
the CodePro AnalytiX tool.16

The used applications were implemented in Java.
LaTazza is a small desktop application that supports the
sale and the supply of small bags of beverages (e.g., coffee).
Its domain can be considered a good compromise between
generality and industrial application. In addition, LaTazza
has been already employed in a number of empirical studies
(e.g., [34], [35], [36]). As for aTunes and LaTeXDraw, the
former is an open-source cross-platform media-player, while
the latter is a graphical drawing editor. We opted for aTunes
and LaTeXDraw, because they are both larger than LaTazza
(e.g., aTunes and LaTazza had 42,357 and 1,291 LOC, re-
spectively) and unlike LaTazza they were evolving software
systems. The choice of LaTazza, aTunes, and LaTeXDraw
as experimental objects allowed us to reduce possible con-
struct validity threats (i.e., experimenter’s expectancies/bi-
ases [19]), since none of the authors was involved in the
implementation and maintenance of these applications.

To obtain a version deprived of dead code for each
application, the first author of this paper identified dead
code and performed refactorings to remove it from the
original version of the considered application. He focused
on dead methods and classes. In particular, he followed the
steps below:

1) Inspired by Boomsma et al. [7] and Eder et al. [5], the
application was instrumented. Namely, an instruction
was added to every method in order to record which
methods were executed.

2) He lunched the instrumented application, thus the ex-
ecuted methods were gathered. To cover the highest
number of usage scenarios, and consequently as many
methods as possible, he consulted the user manual of
the application. He lunched the instrumented appli-
cation on Windows, Linux, and Macintosh operating
systems. This is because the execution of some methods
could be trigged only in Macintosh operating systems
rather than in Windows ones, for example. We assumed
that executed methods were alive.

3) Each non-executed method was further analyzed to
determine whether it was actually dead or not. To this

16. marketplace.eclipse.org/content/codepro-analytix

end, he manually inspected each method with the sup-
port of some Eclipse functionality (e.g., call hierarchy)
and ad-hoc tools for dead code detection (e.g., DUM-
Tool [14]).

4) If the analysis revealed that a method was dead, he
refactored the application (e.g., dead method removal).
Then, he tested the application to verify that the applied
refactoring did not introduce bugs.

5) If the analysis revealed that a class was dead (e.g., all its
methods are dead), he behaved as in the previous step.

The execution of these steps produced versions of LaTazza,
aTunes, and LaTeXDraw deprived of dead code (see some
descriptive statistics in Table 6).

7.5 Tasks
Independently from the experiment, the comprehension
and modification tasks were related to dead code that was
present in the original version of the experimental objects.
The participants, based on the experiment, had to perform
different experimental tasks. In UniBas1 the tasks were:

1) Comprehension task. The participants were provided
with the code base of LaTazza. Then, they had to an-
swer a comprehension questionnaire, comprised of five
open-ended questions, on the provided code base. The
questions of the comprehension questionnaire were the
same for any participant. We chose the questions on the
basis of the recommendations by Sillito et al. [17]. Some
questions required the identification and expansion of
focus points. That is, participants had to find software
entities (e.g., classes and methods) related to a given
question and then explore relationships (e.g., references
and calls) among software entities. Other questions
were related to understanding concepts in the source
code that involved multiple relationships and software
entities. All the questions were formulated using a sim-
ilar form/schema. A sample question (here translated
into English from Italian), taken from the comprehen-
sion questionnaire of LaTazza, is: “What are the kinds of
users that can buy small bags of beverages?”. The expected
answers for this sample question were: “Visitors” and
“Employees.” When answering the questions, we did not
impose any approach on the participants. For example,
a participant could skip a question and then get it back.

2) Post-comprehension task. We asked the participants
to fill out a post-questionnaire (see Table 7) consisting
of multiple-choice questions. These questions were re-
ported as statements that admitted answers according
to a 5-point rating scale. An example is “I had enough
time to complete the task”, which admitted as answers:
(1) “I totally agree”; (2) “I agree”; (3) “I neither agree
nor disagree”; (4) “I disagree”; and (5) “I totally disagree”.
The goal of this post-questionnaire was to get feedback
about participants’ perceptions of the comprehension
task execution.

3) Modification task. We provided the participants with
five change requests to the code base of LaTazza. The
change requests were the same for any participant.
We defined the change requests to mimic an actual
modification task on LaTazza. A sample change request
we used for LaTazza is: “Change the cost of the boxes of

https://marketplace.eclipse.org/content/codepro-analytix

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 6: Information on the applications used in the off-line experiments.

Experiment Application Application Description
Original Version Version Deprived of Dead Code

LOC # Types # Methods LOC # Types # Methods

UniBas1 LaTazza

It is a desktop application that helps
a secretary to manage the sale and
the supply of small bags of beverages
(coffee, tea, lemon-tea, etc.) for the cof-
feemaker.

1,291 18 116 1,078 18 72

UniBas2

W&M1

aTunes
(ver. 1.10.1)

It is an open-source cross-platform
media-player. aTunes allows play-
ing and managing audio files. It
also provides support for on-line ra-
dios, podcasts, and CD ripping. See
www.atunes.org.

42,357 778 4,067 40,483 768 3,780

W&M2 LaTeXDraw
(ver. 2.0.8)

It is an open-source graphical drawing
editor that allows translating draws
into PSTricks code or PS/PDF pic-
tures. See latexdraw.sourceforge.net.

65,320 252 3,130 63,263 252 2,875

TABLE 7: Questions used in the post-comprehension/post-
modification tasks. The first question was not used in
W&M2.

Question

1. I had enough time to complete the [comprehension/
modification] task.

2. The goals of the [comprehension/modification] task
were clear.

3. The [questions/change requests] were clear.

4. [Answering the questions/Implementing the change
requests] was easy.

5. I have found the [comprehension/modification] task
useful.

small bags of beverages. The new cost must be 28 e.” We
did not impose any approach restriction to accomplish
the modification task.

4) Post-modification task. We asked the participants to
fill out a post-questionnaire (see Table 7). The questions
in this questionnaire were similar to those used for
the post-comprehension task and aimed to get feed-
back about participants’ perceptions of the modification
task execution.

As for UniBas2 and W&M1, the tasks were:

1) Comprehension task. The participants had to answer
a comprehension questionnaire similar to that used in
UniBas1, but the experimental object was aTunes. This
comprehension questionnaire consisted of five open-
ended questions.

2) Post-comprehension task. The participants had to fill
out the same post-questionnaire as UniBas1.

Finally, the tasks in W&M2 were:

1) Modification task. The participants were asked to im-
plement four change requests to the code base of La-
TeXDraw. Similar to the modification task of UniBas1,
the change requests were conceived to mimic an actual
modification task, but its execution was different (e.g.,
the use of Git as described in Section 7.3). This task
on an actual open-source application like LaTeXDraw
together with the use of Git should allow making it
even more similar to the modification task that actual
developers usually perform.

2) Post-modification task. The participants had to fill out
a post-questionnaire similar to that used in the post-
comprehension task of UniBas1 (see Table 7).

7.6 Independent and Dependent Variables

Independent variables. Participants provided with the orig-
inal code base of LaTazza, aTunes, or LaTeXDraw comprised
the treatment group, while those provided with the code
base deprived of dead code comprised the control group.
Therefore, Method is the main independent variable, also
named main factor or main manipulated factor or main
explanatory variable. This variable is nominal and assumes
values: NoDC (i.e., code base deprived of dead code) and
DC (i.e., original code base — with dead code).

When studying RQ3.a (see Section 7.9), we considered
Exp as independent variable and analyzed the interaction
variable Method:Exp. These variable are both nominal.
The former represents the experiment and assumes the
following values: UniBas1, UniBas2, and W&M1. The latter
corresponds to the interaction between Method and Exper-
iment (e.g., UniBas1:NoDC is the value that represents the
interaction between UniBas1 and NoDC).
Dependent variables. To measure comprehension effort, we
used the following dependent variable:

• CTime. It is the time (in minutes) a participant spent
to complete the comprehension task. The higher the
value for CTime, the greater the comprehension effort
is. Using time as effort approximation is customary in
literature and it is compliant with the ISO/IEC 25000
standard [37] definition, where effort is the productive
time associated with a specific project task.

To quantitatively assess the answers to the comprehen-
sion questionnaire and thus quantify the comprehension
effectiveness construct, we used two dependent variables:

• CF. Let Api be the set of answers that a participant p
has provided to answer the question i. Let A∗

i the set
of expected answers (i.e., the oracle) for the question i.
We quantified comprehension effectiveness by using an
information retrieval-based approach [38]. In particular,

http://www.atunes.org/
http://latexdraw.sourceforge.net/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

for each question i we computed the precision and
recall measures as follows:

CPrecisionpi =
|Api ∩A∗

i |
|Api |

(1)

CRecallpi =
|Api ∩A∗

i |
|A∗
i |

(2)

From a practical point of view, CPrecisionpi and
CRecallpi estimate, respectively, correctness and com-
pletenesses of the set of answers provided by the partic-
ipant p to answer the question i. We computed the bal-
anced F-measure between CPrecisionpi and CRecallpi .
This allowed us to get a tradeoff between the precision
and recall measures:

CF pi =
2 · CPrecisionpi · CRecall

p
i

CPrecisionpi + CRecallpi
(3)

For each participant, we estimated comprehension ef-
fectiveness as the average of the F-measure values of
all the questions in the comprehension questionnaire:

CF =

∑n
i=1 CF

p
i

n
(4)

where n is the number of questions (i.e., 5 in any case).
This (ratio) metric takes values in between 0 and 1. A
value for CF close to 1 means that the comprehension
effectiveness achieved by the participant is high, be-
cause she answered rather well to all the questions in
the comprehension questionnaire. Conversely, a value
for CF close to 0 means that the source code compre-
hension was bad. F-measure has been largely adopted
in software engineering (e.g., [39], [40]).

• CAvg. Let Qpi be a boolean variable defined for the
participant p and the question i:

Qpi =

{
1 if Api = A∗

i

0 otherwise
(5)

Qpi assumes 1 as the value if and only if the set of
answers the participant p has provided to the question i
(i.e., Api) is equal to the set of expected answers to i (i.e.,
A∗
i). For each participant, the number of correctly and

completely answers can be computed as follows:

CCnt =

n∑
i=1

Qpi (6)

To measure comprehension effectiveness, we divided
CCnt by the number of answers in the comprehension
questionnaire:

CAvg =
CCnt

n
(7)

This metric assumes values in between 0 and 1. Higher
the CAvg value, the better the comprehension effective-
ness is. Unlike CF, CAvg does not take into account
partial answers.

We used two dependent variables to estimate the com-
prehension efficiency construct:

• CηF. It is computed as follows:

CηF =
CF

CTime
(8)

The larger the CηF value, the better the comprehension
efficiency is.

• CηCnt. Differently from CηF, we estimated the com-
prehension effectiveness by means of CCnt:

CηCnt =
CCnt

CTime
(9)

The larger the CηCnt value, the better the compre-
hension efficiency is. This metric can be also seen
as the number of both correct and complete answers
per minute.

We used two measures for the effectiveness and effi-
ciency constructs to reduce as much as possible construct
validity threats.

To estimate the modification effort, we used:
• MTime. It is the time (expressed in minutes) a partic-

ipant spent to execute a modification task. The higher
the MTime value, the greater the effort to complete the
modification task.

We quantified modification effectiveness by means of the
following dependent variable:

• MAvg. Let Rpi a boolean variable defined for the partic-
ipant p and the change request i:

Rpi =

{
1 if i is correctly implemented
0 otherwise

(10)

We defined an acceptance test suite for each change re-
quest. Therefore, the change request i (implemented by
the participant p) is considered correctly implemented
if and only if all the test cases of the corresponding
acceptance test suite passed. It is worth mentioning that
we did not provide the participants with any test suite.
The number of change request correctly implemented
by a participant can be computed as follows:

MCnt =

m∑
i=1

Rpi (11)

where m is the number of change requests in the
modification task (i.e., 5 for LaTazza in UniBas1 and
4 for LaTeXDraw in W&M2). To measure modification
effectiveness, we used:

MAvg =

∑m
i=1R

p
i

m
(12)

This metric assumes values in between 0 and 1. The
higher the MAvg value, the better modification effec-
tiveness is.

We estimated modification efficiency by means of the
following dependent variable:

• MηCnt. It is computed as follows:

MηCnt =
MCnt

MTime
(13)

The larger the MηCnt value, the better modification
efficiency is. This metric can be also interpreted as
the number of change requests correctly implemented
per minute.

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

7.7 Hypotheses Formulation

We formulated and tested eight null hypotheses. We de-
scribed them by means of two parameterized null hypothe-
ses with respect to RQ3.a and RQ3.b. As for RQ3.a, we
formulated the following parameterized null hypothesis:
HNCX - The presence of dead code in a code base does

not significantly affect CX (i.e., CTime, CF, CAvg,
CηF, CηCnt).

To answer RQ3.b, we formulated the following parame-
terized null hypothesis:
HNMX - The presence of dead code in a code base does

not significantly affect MX (i.e., MTime, MAvg, and
MηCnt).

Alternative hypotheses for HNCX and HNMX

(¬HNCX and ¬HNMX , respectively) admit a significant ef-
fect of Method on a given dependent variable. For instance,
if the null hypothesis HNCTime is rejected, the alternative
one (¬HNCTime) is accepted, that is “the presence of dead
code in a code base significantly affects CTime.”

7.8 Design of the Experiments

In each experiment, we used one factor with two treatments
design [19]. The design setup in each experiment uses the
same experimental object (e.g., LaTazza) for both of the
treatments (i.e., NoDC and DC). That is, each participant
in a given experiment was asked to perform a task on
only one experimental object and we administered only
one treatment to each participant. The participants were
randomly assigned to the treatments in each experiment.

In Table 8, we summarize the conducted experiments
(e.g., the number of participants in NoDC and DC). This
table also makes clearer the differences among the experi-
ments. It is worth mentioning that the participants from P1
to P3 in W&M2 (see Table 5) were in the NoDC group, while
the others in the DC one.

7.9 Analysis Procedure

To perform the data analysis, we used the R environment.17

The analysis procedure that we followed to investigate
RQ3.a and RQ3.b follows.
RQ3.a. We computed descriptive statistics for each depen-
dent variable concerning the investigation of RQ3.a (i.e.,
CTime, CF, CAvg, CηF, and CηCnt). Then, we exploited
graphical representations (i.e., boxplots and bar charts) to
summarize the values of these dependent variables and
answers to the questionnaires of the post-comprehension
tasks. To test the hypotheses concerning the effect of dead
code on source code comprehensibility (i.e., HNCTime,
HNCF , HNCAvg , HNCηF , and HNCηCnt), we used mul-
tivariate linear mixed model analysis methods. This kind
of model is an extension of the general linear model and
it is a better method for analyzing models with random
coefficients (as is the case of participants in software en-
gineering experiments) and data dependency (as it is the
case of our experiments) [41]. Thanks to the use of multi-
variate linear mixed model analysis methods, we verified

17. www.r-project.org/

the effect of Method, Exp, and their interaction.18 To apply
multivariate linear mixed model analysis methods, residuals
have to follow a normal distribution with a mean equals to
0. If the residuals do not meet the condition of normality,
transforming the response variable data is an option (e.g.,
logarithmic transformations).
RQ3.b. Given the different objectives between UniBas1 and
W&M2 (the former investigated the effect of dead code
on the modifiability of familiar source code, while the
latter focused on unfamiliar source code), we analyzed
the data from these experiments separately. In UniBas1,
we computed descriptive statistics for MTime, MAvg, and
MηCnt. Then, we graphically summarized the values of
these dependent variables by means of boxplots. We used
bar charts to represent the answers to the questionnaire of
post-comprehension task. To test HNMTime, HNMAvg , and
HNMηCnt, we used an unpaired two-sided t-test, if the data
were normally distributed. Otherwise, we used a two-sided
Wilcoxon rank-sum test [42] (also known as Mann-Whitney
U test). This test represents a non-parametric alternative
to the unpaired two-sided t-test. As far as W&M2 is con-
cerned, we present the values of the dependent variables
(i.e., MTime, MAvg, and MηCnt) for each participant. We
also showed the participants’ answers to the questionnaire
of post-modification task. We did not run any statistical test,
because we have few participants.

To verify the normality assumption of multivariate linear
mixed model analysis methods and unpaired t-test, we
used the Shapiro-Wilk W test [43] (Shapiro test, from here
onwards). For each statistical test, we decided to accept (as
customary) a probability of 5% of committing Type-I-error
(i.e., α = 0.05).

8 EXPERIMENTS: RESULTS

In this section, we first present the results from the investi-
gation of RQ3.a, then those concerning RQ3.b with respect
to familiar and unfamiliar code. We conclude discussing
threats that could affect the validity of these results.

8.1 Studying RQ3.a

Descriptive Statistics and Boxplots. In Table 9, we report
the values of mean and standard deviation for the depen-
dent variables CTime, CF, CAvg, CηF, and CηCnt, grouped
by experiment and method. For these dependent variables,
we also graphically summarized the distributions of the
values by means of the boxplots reported in Figure 5.

The descriptive statistics and boxplots for CTime (i.e.,
Figure 5.a) suggest that there is not a big difference between
NoDC and DC in all the experiments together and consider-
ing these experiments individually. Indeed, participants in
NoDC spent slightly more time to complete the comprehen-
sion tasks.

As for the variables used to quantify comprehension ef-
fectiveness (i.e., CF and CAvg), there is a difference between
NoDC and DC in favor of NoDC (see Table 9, and Figure 5.b

18. For example, we built for CTime the following linear mixed
model with fixed effects equal to CTime ∼ method ∗ exp and random
effects equal to ∼ 1|ID, where ID is the participant’s identifier.

https://www.r-project.org/

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 8: Summary of the experiments.

Characteristic UniBas1 UniBas2 W&M1 W&M2

Participants
47 Undergraduate Students
in Computer Science

19 Graduate students in
Computer Engineering

11 Under/graduate students
in Computer Science

6 Under/graduate students
in Computer Science (3 had
work experience)

NoDC/DC Group Size 20/27 9/10 5/6 3/3
Experimental Object LaTazza aTunes aTunes LaTeXDraw
Investigated RQs RQ3.a, RQ3.b RQ3.a RQ3.a RQ3.b

Constructs
(Dependent Variable/s)

Comprehension Effort Comprehension Effort Comprehension Effort Modification Effort
(CTime) (CTime) (CTime) (MTime)
Comprehension Effectiveness Comprehension Effectiveness Comprehension Effectiveness Modification Effectiveness
(CF, CAvg) (CF, CAvg) (CF, CAvg) (MAvg)
Comprehension Efficiency Comprehension Efficiency Comprehension Efficiency Modification Efficiency
(CηF, CηCnt) (CηF, CηCnt) (CηF, CηCnt) (MηCnt)
Modification Effort
(MTime)
Modification Effectiveness
(MAvg)
(MAvg)
Modification Efficiency
(MηCnt)

Experimental Tasks

1) Comprehension 1) Comprehension 1) Comprehension 1) Modification
2) Post-comprehension 2) Post-comprehension 2) Post-comprehension 2) Post-modification
3) Modification
4) Post-modification

Experimenters Researchers from the
University of Basilicata

Researchers from the
University of Basilicata

Researchers from the College
of William and Mary

Researchers from the College
of William and Mary

TABLE 9: Some descriptive statistics, grouped by experiment and method, for CTime, CF, CAvg, CηF, and CηCnt.

Experiment Method
Compr. Effort Compr. Effectiveness Compr. Efficiency

CTime CF CAvg CηF CηCnt
Mean SD Mean SD Mean SD Mean SD Mean SD

UniBas1 NoDC 35.05 6.9772 0.8467 0.0848 0.68 0.1196 0.0251 0.0055 0.1019 0.0307
DC 33.7037 7.9895 0.7363 0.1265 0.5481 0.1718 0.0238 0.0104 0.0905 0.0529

UniBas2 NoDC 86.5556 15.1831 0.6593 0.1392 0.5111 0.1453 0.0078 0.0021 0.03 0.0087
DC 82.7 13.6955 0.4073 0.1856 0.2 0.1333 0.0051 0.0027 0.0125 0.0089

W&M1 NoDC 56.4 23.5436 0.56 0.2966 0.48 0.2683 0.0108 0.0063 0.0478 0.0287
DC 47.6667 13.3965 0.2944 0.2225 0.1333 0.2066 0.0073 0.0059 0.0161 0.025

ALL NoDC 51.8235 25.5692 0.7549 0.1813 0.6059 0.174 0.0184 0.0095 0.0749 0.042
DC 47.0465 22.7648 0.5981 0.2394 0.4093 0.2467 0.0171 0.0122 0.062 0.0569

TABLE 10: Results from the multivariate linear mixed
model method for: HNCTime, HNCF , HNCAvg , HNCηF ,
and HNCηCnt.

Dependent variable Method Exp Method:Exp
CTime 0.2519 <0.0001 0.7572
CF <0.0001 <0.0001 0.1177
CAvg <0.0001 <0.0001 0.0034
CηF 0.0282 <0.0001 0.9784
CηCnt 0.0013 <0.0001 0.5194

and Figure 5.c). This pattern holds when considering both
the experiments individually and together.

For CηF and CAvg, the descriptive statistics and boxplots
(i.e., Figure 5.d and Figure 5.e) suggest that the NoDC values
are slightly better than the DC ones in all the experiments.

Hypotheses Testing. In Table 10, we summarize the re-
sults of the multivariate linear mixed model method for:
HNCTime, HNCF , HNCAvg , HNCηF , and HNCηCnt. For
each built model, we report the p-values (in bold if
smaller than α) for Method, Exp, and their interaction
(i.e., Method:Exp). In Table 11, we reported the Cliff’s δ

effect size19 values and related Confidence Intervals (CI) if
the effect of method is statistically significant. To give an
indication about the magnitude of such an effect, we also
provide a textual label that assumes the following values:
negligible if |δ| < 0.147, small if 0.147 ≤ |δ| < 0.33,
medium if 0.33 ≤ |δ| < 0.474, or large otherwise [45].

One of the assumptions, while applying the multivariate
linear mixed model method, was not satisfied for CTime.
In particular, the residuals did not satisfy the normality
assumption (the Shapiro test returned a p-value less than
α). Therefore, we had to apply a square root transformation
to meet the method assumptions. As shown in the second
column of Table 10, we could not reject HNCTime (i.e., the
p-value of the model was larger than α for CTime). The built
model indicated a significant effect of Exp. This is because
the participants in UniBas1 spent less time to perform the
comprehension task (see Figure 5.a) than the participants
in UniBas2 and W&M1. We did not observe any significant
interaction between Method and Exp (i.e., Method:Exp).

The results of the multivariate linear mixed model
method indicated that there was a statistically significant

19. While a statistical test allows for checking the presence of signif-
icant differences, such a kind of test does not provide any information
about the magnitude of these differences. There are a number of effect
size measures to estimate these differences. The Cliff’s δ effect size [44]
is used in case data are not normally distributed or the normality
assumption is discarded.

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

●

●

●

●

●

●
●

NoDC DC NoDC DC NoDC DC NoDC DC

0
20

40
60

80
10

0
12

0

UniBas1 UniBas2 W&M1 ALL

C
T

im
e

(m
in

ut
es

)

(a)

●

●

●

●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniBas1 UniBas2 W&M1 ALL

C
F

(b)

●

●

●

●

●●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniBas1 UniBas2 W&M1 ALL

C
A

vg

(c)

● ●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

UniBas1 UniBas2 W&M1 ALL

C
ηF

(d)

●

●

●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

UniBas1 UniBas2 W&M1 ALL

C
ηC

nt

(e)

Fig. 5: Boxplots for: CTime (a), CF (b), CAvg (c), CηF (d), and CηCnt (e).

TABLE 11: Cliff’s δ effect size values and the related confidence intervals (CI) for CTime, CF, CAvg, CηF, and CηCnt
grouped by experiment.

Experiment
Compr. Effort Compr. Effectiveness Compr. Efficiency

CTime CF CAvg CηF CηCnt
δ CI δ CI δ CI δ CI δ CI

UniBas1 - - –0.5167 [-0.7357, -0.1998] -0.4278 [-0.6556, -0.1287] -0.2481 [-0.5372, 0.093] -0.2722 [-0.5537, 0.0651](large) (medium) (small) (small)

UniBas2 - - -0.7667 [-0.9673, 0.0234] -0.8889 [-0.9728, -0.5992] -0.4889 [-0.8137, 0.0685] -0.8667 [-0.9744, -0.4352](large) (large) (large) (large)

W&M1 - - -0.5667 [-0.9041, 0.2063] -0.7333 [-0.971, 0.2341] -0.2667 [-0.7442, 0.3913] -0.6667 [-0.9428, 0.1518](large) (large) (small) (large)

difference between DC and NoDC (the p-value for method
was less than 0.0001) on CF. Therefore, we could reject
HNCF and accepted the alternative hypothesis. That is,
the effect of dead code significantly penalizes comprehen-
sion effectiveness and the effect size is large in all the
experiments (see Table 11). The built model also showed a
significant effect of Exp. This is due to the better CF values
the participants obtained in UniBas1 (see Figure 5.b). We did
not observe any significant effect of Method:Exp.

As for CAvg, we had to apply a logarithmic transforma-
tion because the normality assumption of the residuals was
not satisfied (the p-value the Shapiro test returned was less
than α). This model allowed us to reject HNCAvg (the p-
value for method was less than 0.0001). Thus, the effect of
dead code significantly penalizes comprehension effective-
ness (assessed by CAvg) and the effect size is either medium

(in UniBas1) or large (in UniBas2 and W&M). The model
also suggested significant effects of Exp and Method:Exp.

The residuals of the multivariate linear mixed model,
which we built for the variable CηF, did not follow a normal
distribution (the Shapiro test returned a p-value less than
α). Then, we had to apply a rank transformation to satisfy
the assumptions. The build model included two significant
variables: Method and Exp. Therefore, we rejected HNCηF
in favor of its alternative hypothesis. That is, the presence of
dead code significantly penalizes comprehension efficiency
(assessed by CηF) and the effect size is either small (in
UniBas1 and W&M1) or large (in UniBas2).

As for CηCnt, we had to apply a rank transformation
because the residuals of the multivariate linear mixed model
were not normally distributed (the Shapiro test returned a
p-value less than α). The built model indicated a significant

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

UniBas1 UniBas2 W&M1

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

(a) Q1
I had enough time to complete the

comprehension task.

UniBas1 UniBas2 W&M1

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

(b) Q2
The goals of the comprehension task

were clear.

UniBas1 UniBas2 W&M1

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

(c) Q3
The questions were clear.

UniBas1 UniBas2 W&M1

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

(d) Q4
Answering the questions was easy.

UniBas1 UniBas2 W&M1

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

(e) Q5
I have found the comprehension task

useful.

Fig. 6: Stacked bar charts depicting the answers to the questionnaire of the post-comprehension task.

effect of Method and allowed us to reject HNCηCnt. That is,
the participants in DC achieved CηCnt values significantly
worse than the participants in NoDC. The value of the
effect size was either small (in UniBas1) or large (in UniBas2
and W&M1). The variable Exp was significant as well.
Post-Comprehension Tasks. In Figure 6, we graphically
summarize, by means of stacked bar charts, the answers
the participants gave to the questionnaire of the post-
comprehension task. In particular, each stack summarizes
the answers to a question in a given experiment. The partici-
pants considered the given time to complete the comprehen-
sion task appropriate (see Figure 6.a). In all the experiments,
most of the answers were I totally agree or I agree. Both
the goals (see Figure 6.b) and questions (see Figure 6.c) of
the comprehension task were considered clear. The greater
part of the participants answered I totally agree or I agree.
This pattern holds in all the experiments. As for Q4 (see
Figure 6.d), the participants in UniBas1 and UniBas2 found
the task easy (most of them answered I totally agree or I
agree), while in W&M1 the greater part of the participants
found it to be not easy (they answered I disagree). The
participants in all the experiments found the task useful
from a practical point of view (see Figure 6.e). Most of them
answered I totally agree or I agree.
Further Analysis. We performed a further analysis to under-
stand whether dead methods and dead classes are equally
harmful. To this end, we analyzed the answers to each ques-
tion individually. We computed the values of the dependent
variables CFi (see Equation 3) and Qi (see Equation 5) for
each question i. We took into account only the dependent

variables CFi and Qi because we did not know the time
each participant spent to answer a given question (i.e.,
CTime), and thus we could not compute the values for
CηF, and CηCnt per question. We tested the following null
hypotheses: (i) the presence of dead classes in a code base
does not significantly affectCFi (orQi); and (ii) the presence
of dead methods in a code base does not significantly affect
CFi (or Qi). Comparing the results from the testing of
the hypotheses (i) with the results from the testing of the
hypotheses (ii) would allow understanding whether dead
methods and dead classes are equally harmful. That is, if
we would find that there is an effect of dead methods on
CFi and Qi and, on the contrary, there is no effect of dead
classes, we could say that dead classes are less harmful than
dead methods. To test theses null hypotheses, we exploited
permutation tests. This kind of tests can be applied to
continuous, ordered, and categorical (e.g., Qi) data, and to
normal and non-normal distributions [46]. Permutation tests
can be also used for multivariate analyses [47]. The results
from the hypotheses testing are summarized in Table 12.

In this further analysis, we did not take into account
the data from UniBas1 because this experiment focused
on dead methods only. The questionnaire for UniBas2 and
W&M2 included one question (i.e., the question number 3 in
Table 12) concerning a dead class, while the other questions
concerned dead methods. These results indicated that there
is a statistically significant effect of dead methods on both
CFi and Qi for three out of four questions. Indeed, the p-
values for method are less than α = 0.05 for the first, fourth,

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

TABLE 12: Results from the permutation tests concerning
the dependent variables CFi and Qi.

Question Dependent Variable Method Exp Method:Exp

1 CFi <0.0001 0.9286 0.7677
Qi <0.0001 0.9796 0.2994

2 CFi 0.7547 0.6546 0.881
Qi 0.1175 0.4773 0.5915

3 CFi 0.8401 0.6947 0.5694
Qi 0.7214 0.5412 0.4423

4 CFi 0.0362 0.1371 0.5463
Qi 0.0104 0.2663 0.3198

5 CFi 0.0192 0.3027 0.8547
Qi 0.0255 0.6249 0.5975

TABLE 13: Some descriptive statistics for MTime, MAvg,
and MηCnt grouped by method.

Method
Mod. Effort Mod. Effectiveness Mod. Efficiency

MTime MAvg MηCnt
Mean SD Mean SD Mean SD

NoDC 52.95 8.153 0.54 0.2162 0.0541 0.0284
DC 51.6667 12.7189 0.5333 0.2353 0.0543 0.0306

NoDC DC

0
10

20
30

40
50

60

M
T

im
e

(m
in

ut
es

)

NoDC DC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
A

vg

NoDC DC

0.
00

0.
05

0.
10

0.
15

0.
20

M
ηC

nt

Fig. 7: Boxplots for UniBas1 with respect to MTime, MAvg,
and MηCnt.

and fifth questions. As for the question number 3, the p-
values for CFi and Qi did not allow us to reject the null
hypotheses (i). Although caution is needed, it seems that
dead methods are more harmful than dead classes.

8.2 Studying RQ3.b - Familiar Source Code
Descriptive Statistics and Boxplots. In Table 13, we show
the values of mean and standard deviation (grouped by
method) obtained in UniBas1 (the only experiment where
we investigated the effect of dead code on modifiability
of familiar source code) for MTime, MAvg, and MηCnt.
The boxplots for these dependent variables are shown in
Figure 7. The descriptive statistics and boxplots for MTime
indicate that there is not a big difference between NoDC and
DC as well as for MAvg and MηCnt.
Hypotheses Testing. To test HNMTime, we applied the
Mann-Whitney U test because the MTime values (in Uni-
Bas1) did not follow a normal distribution (the Shapiro test
returned a p-value less than α for both DC and NoDC). The
Mann-Whitney U test was not able to reject HNMTime (p-
value was 0.5752).

Since the normality condition was not satisfied for MAvg
(the Shapiro test returned a p-values less than α for both

Q1 Q2 Q3 Q4 Q5

0
10

20
30

40

1−I totally agree
2−I agree
3−I neither agree nor disagree
4−I disagree
5−I totally disagree

Fig. 8: Bar charts depicting the answers to the questionnaire
of the post-modification task in UniBas1.

DC and NoDC), we applied the Mann-Whitney U test.
According to the p-value returned by this test (0.8933), we
could not reject the null hypothesis HNMAvg .

As for the dependent variable MηCnt, the Shapiro test
returned a p-value less than α for DC. Therefore, we applied
the Mann-Whitney U test, which was not able to reject
HNMηCnt (p-value was 0.7298).
Post-Modification Task. In Figure 8, we report the staked
bar charts that graphically summarize the participants’ an-
swers to the questionnaire of the post-modification task. In
these charts, each stack represents the answers to a given
question. The time needed to complete the modification
task was considered appropriate (see Figure 8). Most of the
participants answered I totally agree or I agree to Q1 (I had
enough time to complete the modification task). The goals of the
task were considered clear as well as the change requests.
The greater parts of the answers to Q2 (The goals of the
modification task were clear) and Q3 (The change requests were
clear) were I totally agree or I agree. As for the difficulty and
usefulness (from a practical point of view) of the modifica-
tion task, the participants stated that the task was easy and
useful. Most of the participants answered I totally agree or
I agree to Q4 (Implementing the change requests was easy) and
Q5 (I have found the modification task useful).
Further Analysis. We performed a qualitative analyses in-
spired by work of Robillard et al. [48]. That is, we evaluated
the source code that a participant wrote to implement a
change request by means of the following classification:

• Success. The participant provided a correct solution
that respects the original design of LaTazza.

• Inelegant. The participant provided a correct solution
that did not respect the design of LaTazza (e.g., by hard-
coding a value that should have been obtained from a
property object);

• Buggy. The participant provided a generally workable
solution that contains one or more bugs;

• Unworkable. The participant provided a solution that
does not work in most cases;

• Not attempted. The participant did not provide any
solution.

A change request can be also classified as attempted when a

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

TABLE 14: Count of the participants’ solutions (in UniBas1) we classified as: success, inelegant, buggy, unworkable, not
attempted, and attempted.

Classification CR1 CR2 CR3 CR4 CR5 ALL
NoDC DC NoDC DC NoDC DC NoDC DC NoDC DC NoDC DC

Success 13 18 16 25 4 5 5 4 15 17 53 69
Inelegant 0 0 0 0 0 0 0 0 1 3 1 3
Buggy 0 0 0 0 15 18 0 0 1 0 16 18
Unworkable 7 9 3 2 1 4 14 21 2 6 27 42
Not attempted 0 0 1 0 0 0 1 2 1 1 3 3
Attempted 20 27 19 27 20 27 19 25 19 26 97 132
Modification to dead code - 0 - 0 - 11 - 0 - 3 - 14

TABLE 15: Percentage (approximated) values of the participants’ solutions (classified as success, inelegant, buggy, and
unworkable) with respect to the attempted solutions in UniBas1.

Classification CR1 CR2 CR3 CR4 CR5 ALL
NoDC DC NoDC DC NoDC DC NoDC DC NoDC DC NoDC DC

Success 65% 67% 84% 93% 20% 19% 26% 16% 79% 65% 55% 52%
Inelegant 0% 0% 0% 0% 0% 0% 0% 0% 5% 12% 1% 2%
Buggy 0% 0% 0% 0% 75% 67% 0% 0% 5% 0% 16% 14%
Unworkable 35% 33% 16% 7% 5% 15% 74% 84% 11% 23% 28% 32%

participant provided a solution for such a change request.
That is, a change request is attempted if it is: success,
inelegant, buggy, or unworkable.

We also inspected the source code to verify if the partic-
ipants in the DC group modified existing dead code. This
is to get indications on the possible negative effect of dead
code while performing a modification task.

In Table 14, we report the count of the participants’
solutions we classified as: success, inelegant, buggy, un-
workable, not attempted, and attempted. In the last row of
this table, we also show how many times the participants
modified existing dead code when dealing with a given
change request. To better compare the solutions of the par-
ticipants in the NoDC group with those of the participants
in the DC group, we report the participants’ solutions in
percentage values (with respect to the attempted solutions)
in Table 15. Independently from the group, the participants’
solutions to CR1 were mostly classified as success: 65% for
the NoDC group and 67% for the DC one. The other so-
lutions were unworkable. We did not observe a substantial
difference between the solutions of the participants in the
NoDC and DC groups. As for CR2, most of the participants’
solutions were correct and respected the original design of
LaTazza (i.e., classified as success). We observed a slight
difference between the solutions of the participants in the
NoDC and DC groups (e.g., the percentage values of the
solutions classified as success were equal to 84% and 93%
for the NoDC and DC groups, respectively). No participant
modified existing dead code when dealing with CR1 or
CR2. Most of the solutions to CR3 were correct or partially
correct (i.e., classified as success or buggy, respectively). In
particular, we observed that for participants who worked
on a code base deprived of dead code performed slightly
better than those who dealt with dead code (75% vs. 67%
of buggy solutions). We also observed 11 modifications to
existing dead code when accomplishing CR3, of which three
concerned unworkable solutions, five buggy solutions, and
three success solutions. As for CR4, few solutions were
correct and respected the original design of LaTazza. The
results also indicate that the participants who tackled CR4 in

TABLE 16: Dependent variable values (i.e., MTime, MAvg,
and MηCnt), grouped by method, for each participant
in W&M2.

Method ID (Mod. Effort) (Mod. Effectiveness) (Mod. Efficiency)
MTime MAvg MηCnt

NoDC
P1 87 0.75 0.0345
P2 113 0.25 0.0088
P3 259 0.25 0.0039

DC
P4 231 0.25 0.0043
P5 115 0.5 0.0174
P6 199 0.25 0.005

the presence of dead code produced slightly worse solutions
than the others (the percentage of solutions classified as
success were equal to 26% for the NoDC group, while
equal to 16% for the DC group). No participant modified
existing dead code. The greater part of the solutions to CR5
were correct (i.e., classified as either success or inelegant)
or partially correct. We observed that the participants in
the DC group performed slightly worse than those in the
NoDC group (e.g., the unworkable solutions were 23% for
DC and 11% for NoDC). In addition, three participants in
the DC group modified dead code when dealing with the
change request. In two cases, the modifications concerned
unworkable solution (the other case concerned a success
solution). Overall, we observed that those participants who
performed the modification task without dead code pro-
duced slightly better solutions than who carried out the
same task exposed to dead code. Moreover, in 10 cases out
of 14, where the participants modified existing dead code,
we observed that they were not able to produce correct
solutions to the change requests.

8.3 Studying RQ3.b - Unfamiliar Source Code

Dependent Variable Values. In Table 16, we report the
values of MTime, MAvg, and MηCnt for each participant
in W&M2. The values for MTime suggest that participants
working on source code deprived of dead code spent less
time than those working on source code with dead code.
The participants in NoDC spent 153 minutes on average
to complete the modification task — P3 obtained the worst

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

time (259 minutes), while P1 the best time (87 minutes). The
participants in the DC group spent 182 minutes on average
— P4 obtained the worst time (231 minutes), while P5 the
best time (115 minutes).

As for MAvg, the results in Table 16 show that the MAvg
values in the NoDC group were slightly better than those
of the DC group (the mean values for the NoDC and DC
groups are 0.4166 and 0.3333, respectively). The best value
for MAvg in the NoDC group is 0.75, while it is 0.5 in the
DC one.

The MηCnt values suggest that the participants in the
NoDC group were more efficient in performing the mod-
ification task with respects to those in the DC one. The
mean values of MηCnt for the NoDC and DC groups were
0.0157 and 0.0089, respectively. The best value of MAvg in
the NoDC group was 0.0345, while it was 0.0174 in the DC
one. In each group, the worst values for this variable were
very close, 0.0039 (NoDC) vs 0.0043 (DC).
Post-Modification Task. In Table 17, we report the answers
each participant gave to the questionnaire of the post-
modification task. The answers to Q1 (The goals of the mod-
ification task were clear) indicate that the participants, with
the only exception of P6 (DC group), considered the goals
of the modification task clear independently from his/her
treatment (DC vs. NoDC). As for Q2 (The change requests
were clear), all the participants in NoDC found the change re-
quests clear, while two out of three participants in DC stated
that the change requests were not clear. The participants in
NoDC considered the change requests easy to implement,
as suggested by their answers to Q3 (Implementing the change
requests was easy). On the contrary, there was not unanimity
in the answers that the participants in the DC group gave.
Finally, the answers to Q4 (I have found the task useful)
indicate that most of the participants, independently from
the treatment, found the task useful. Summarizing, it seems
that the overall perception on the modification tasks is more
negative for the participants in the DC group.
Further Analysis. We performed the same further analysis
as UniBas1 (see Section 8.2). The results from this further
analysis are shown in Table 18. We also highlighted in bold
if a participant (in the DC group) modified existing dead
code when dealing with a change request.

As shown in Table 18, no participant was able to provide
a correct solution for all the change requests. As for the
NoDC group, the best participant was P1 (this is also the
best participant in the study). He provided the correct
solution that respected the original design of LaTeXDraw
for all the change requests (i.e., the implementations were
classified as success) with the only exception of CR2 (no so-
lution was provided, i.e., his solution was considered as not
attempted). The P2 and P3 participants performed similarly
to one another. The solution for CR1 was workable, but it
contained one or more bugs (i.e., the solution was classified
as buggy). As for CR4, P2 and P3 provided correct solutions
that respected the original design of the experimental object
(i.e., the solutions were classified as success). They were
unable to correctly implement the change requests CR2
and CR3, namely the solutions to these change requests
were classified as either not attempted or unworkable (the
solution did not work in most cases). As for the DC group,
the best participant was P5, whose solution for CR1 was

classified as success. The solution for CR2 was classified
as inelegant (i.e., this solution was correct, but it did not
respect the design of LaTeXDraw). To be classified as suc-
cess, this solution needed the initialization of a field of class;
conversely, P5 implemented several changes in different
parts of the source code of LaTeXDraw. As for CR3 and
CR4, P5 provided source code classified as unworkable. It
is worth noting that when dealing with CR3, the participant
wasted his time modifying the body on an existing dead
method. This was the only modification performed to solve
this change request. The solution for CR1 was buggy for
P4, while that for CR4 was classified as success. The other
solutions of P4 were either not attempted or unworkable. As
for P6, the source code he wrote was unworkable except for
CR4 (its solution was classified as success). When dealing
with CR1, this participant modified both alive and dead
methods. In addition, P6 wasted his time modifying a dead
method, while dealing with the solution of CR3. In this case,
P6 modified only the existing dead code. This was why the
solution provide for CR3 was classified as unworkable.

8.4 Threats to Validity

We report and discuss threats to validity by following the
guidelines by Wohlin et al. [19].
Internal Validity. Fatigue effect might negatively affect
the modification task in UniBas1 (i.e., maturation). To mit-
igate this effect, we used a small experimental object (i.e.,
LaTazza) and we gave the participants a break before
starting the modification task. As for the replications, the
used experimental object (i.e., aTunes and LaTeXDraw) were
medium/semi-large. Therefore, we decided to investigate
the effect of dead code on either source code compre-
hensibility or modifiability. This should allow mitigating
fatigue effects. In W&M2, fatigue effects should be further
mitigated since participants could execute the tasks when
and whatever they want, so they could take a break in case
they felt tired.

The effect of letting volunteers take part in UniBas1 and
UniBas2 might influence the results, because volunteers are
generally more motivated (selection) . In W&M1 and W&M1,
the participants were remunerated. This might influence the
results as well.

Instrumentation is the effect caused by the artifacts used
for the experiment execution. For example, the version
deprived of dead code of LaTazza, aTunes, and LaTeXDraw
might affect the results as well as the experimental tasks.

Diffusion or imitation of treatments concerns the infor-
mation exchanged among the participants. In W&M2, we
did not have any means to prevent the participants from
communicating to one another. However, we analyzed the
source code the participants gave back to look for simi-
larities among the solutions they wrote to implement the
change requests.
External Validity. Interaction of selection and treatment con-
cerns the involvement of students as participants since this
might affect the generalizability of the results with respect
to practitioners [49], [50]. However, the participants had
knowledge of Java programming and software maintenance
as it is the case of majority of young software professionals
working in small-medium companies. With regard to the

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

TABLE 17: Answers to the questionnaire of the post-modification task (in W&M2).

Method ID
Q1. Q2. Q3. Q4.

The goals of the
modification task were clear.

The change requests were
clear.

Implementing the change
requests was easy. I have found the task useful.

NoDC
P1 I agree I agree I agree I agree
P2 I agree I agree I agree I agree
P3 I totally agree I agree I agree I neither agree nor disagree

DC
P4 I agree I totally disagree I neither agree nor disagree I agree
P5 I totally agree I agree I agree I agree
P6 I disagree I totally disagree I totally disagree I totally disagree

TABLE 18: Participants’ solutions (in W&M2) classified as:
success, inelegant, buggy, unworkable, and not attempted.
In bold, the solutions modifying existing dead code.

Method ID Classification
CR1 CR2 CR3 CR4

NoDC
P1 Success Not attempted Success Success
P2 Buggy Not attempted Unworkable Success
P3 Buggy Unworkable Unworkable Success

DC
P4 Buggy Not attempted Unworkable Success
P5 Success Inelegant Unworkable Unworkable
P6 Unworkable Unworkable Unworkable Success

participants in UniBas2, they will soon be integrated into
the software industry market, so they can be considered
as representatives of young professionals [33]. Finally, three
participants in W&M2 had some industrial experience.

Interaction of setting and treatment concerns the use of non-
representative experimental setting or material. The chosen
experimental objects might affect the validity of results. To
mitigate this threat, we varied the experimental objects in
the replications. Also the versions deprived of dead code
might affect the validity of results.
Construct Validity. To mitigate threats to confounding con-
structs and levels of constructs, we randomly assigned partic-
ipants to treatments.

Both the number of questions (i.e., five) and of the change
requests (i.e., either five or four) was chosen to mitigate
threats to mono-operation bias.

We mitigated threats to mono-method bias by considering
different measures for comprehension effectiveness and ef-
ficiency. We used a single measure for the other constructs.
This might introduce a measurement bias.

Knowing the experimental hypotheses might affect par-
ticipants’ behavior (hypothesis guessing). We did not inform
the participants on the experimental hypotheses. In addi-
tion, each of them was assigned to only one treatment. Con-
sequently, it should be difficult to guess the experimental
hypotheses for the participants.

We mitigated threats to evaluation apprehension in two
ways. We informed the participants that they would not
have been evaluated/remunerated on the basis of the results
they had achieved. They also knew that the achieved results
would be shared anonymously.

Experimenters can bias results both consciously and un-
intentionally based on their expectancies. We mitigated this
kind of threat (experimenters’ expectations) in several ways.
The application used in our experiments were downloaded
from the web. The researchers who analyzed the artifacts
produced by the participants were different from those who
performed the data analysis.
Conclusion Validity. Reliability of measures concerns how
dependent variables were measured. The methods used to

quantify comprehension effectiveness and efficiency, and
modification effectiveness and efficiency might affect the
results. Regarding the comprehension and modification ef-
forts, we asked the participants to write down their start-
and end-times. This might affect the results.

There could be a risk that the experimental objects used
in the treatment and control groups are different from one
another (reliability of treatment implementation). Therefore, the
observed differences in the results could be due not only be-
cause of the treatment but also because of the experimental
objects. For example, the size of the applications used in
the control groups was larger than that of the applications
used in the treatment groups, because they were deprived
of dead code.

There could be heterogeneity among participants within
each experiment (random heterogeneity of participants). If par-
ticipants are heterogeneous, results could be affected due
to their individual differences. To deal with this threat, we
drew fair samples and conducted our experiments with
participants belonging to these samples.

9 OVERALL DISCUSSION

In the rest of this section, we first discuss our findings by
linking them to the investigated research questions, which
are summarized in Table 19. Then, we delineate the practical
implications of our findings together with future directions.

9.1 Linking Results and Research Questions
RQ1. When and why do developers introduce dead code?
We found that source code fragments can be either:

1) created dead;
2) made dead;
3) or inherited dead.

The case 1) can occur during software development: pro-
grammers are aware that they have just written dead code,
but they plan to use it someday. The case 2) can happen
during any software maintenance activity (e.g., adaptive
maintenance): developers can be either aware or not that
their changes have made some code fragments dead. The
case 3) occurs when developers inherit software systems
with dead code from another company.
RQ2. How do developers perceive and cope with dead code?
Developers perceive dead code as harmful when compre-
hending and modifying source code. They also believe that
dead code can negatively impact software performances.
Nevertheless, it seems that developers consider dead code
as means of anticipating changes and reusing code.

In the management of software projects, no specific
work activity is planned to cope with dead code. There

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

TABLE 19: Summary of main findings grouped by research questions.

RQ Finding Software Engineering Topics

RQ1
F1 Source code was born dead Software design and construction
F2 Source code is made dead Software maintenance
F3 Source code is inherited dead Software maintenance

RQ2

F4 Dead code is perceived to worsen comprehension and maintenance Software quality
F5 Dead code is believed to worsen software performances Software quality
F6 Dead code is considered as a means to anticipate changes and reuse code Software design and construction
F7 No specific activity is planned to cope with dead code Software engineering management
F8 There is a lack of tool support to cope with dead code Software engineering management
F9 Canonical IDE features and execution trace are exploited to identify dead code Software testing and engineering management
F10 Dead code removal is performed if low-risk and low-cost Software maintenance and engineering management
F11 Dead code removal is ignored if high-risk Software maintenance and engineering management
F12 Dead code removal is postponed if high-cost Software maintenance and engineering management
F13 Version control systems are used to keep track of dead code removal Software maintenance and engineering management
F14 Dead code is commented out to take note of its removal Software maintenance and engineering management
F15 Source code comments are used to warn developers about dead code presence Software maintenance and engineering management

RQ3.a
F16 Dead code does not significantly affect effort to comprehend unfamiliar code Software quality and maintenance
F17 Dead code significantly worsens comprehension of unfamiliar code Software quality and maintenance
F18 Dead methods are more harmful than dead classes Software maintenance

RQ3.b
F19 Dead code does not significantly affect modifiability of familiar code Software quality and maintenance
F20 Dead code seems to worsen modifiability of unfamiliar code Software quality and maintenance
F21 Developers unconsciously modify dead code Software maintenance

is also a lack of tool support to identify and remove this
kind of smell. Developers exploit only canonical features
of IDEs (e.g., debugging and call hierarchy) and analyze
execution traces.

When a developer identifies dead code, its removal is:
1) performed if this operation is low-risk and low-cost;
2) ignored if it is high-risk;
3) postponed if it is high-cost.

When dead code is removed, developers exploit either
version control systems to keep track of the performed
changes or they comment out dead code. On the other hand,
when the removal of dead code is ignored or postponed,
developers use comments to warn other developers about
the presence of dead code.
RQ3.a Is dead code harmful to comprehend source code?
Since we did not reject HNCTime, we can postulate that the
presence of dead code did not impair comprehension effort
of unfamiliar source code. On the other hand, we could
reject the null hypotheses on both comprehension effective-
ness (i.e., HNCF and HNCAvg) and efficiency (i.e.,, HNCηF
and HNCηCnt): dead code has a significant negative effect
on effectiveness and efficiency when comprehending unfa-
miliar source code. That is, dead code significantly worsens
comprehension of unfamiliar code. The results of a further
analysis suggest that dead methods are more harmful than
dead classes. Based on the obtained results, we can posi-
tively answer RQ3.a although caution is needed and future
work is advisable.
RQ3.b Is dead code harmful to perform change tasks?
We were not able to reject the defined null hypotheses in
UniBas1 on modification effort (i.e., HNMTime), effective-
ness (i.e., HNMAvg), and efficiency (i.e., HNMηCnt). The
results from W&M2 suggest that the participants dealing
with dead code achieved on average worse values for mod-
ification effort, effectiveness, and efficiency than the other
participants. Summarizing, the results seem to indicate that
dead code is not harmful in cases where participants accom-
plished comprehension tasks and then modification tasks
on the same code base, while dead code appears to be
harmful in cases where the participants dealt with modifi-
cation tasks without having accomplished a comprehension

task on that code base before. We can speculate that this
difference is due to the fact that in UniBas1 the participants
were forced to inspect more parts of the source code in a
more systematic and methodical fashion,20 while in W&M2
the participants had possibly used a more opportunistic
approach to implement the modifications given also the
size of the software system used in the experiment [48]. We
also found that some participants wasted time modifying
existing dead code while implementing a change request
and it seems that they were not aware of changing dead
code. On the basis of our outcomes, we cannot provide a
definitive answer to RQ3.b. However, our results justify fu-
ture research (including replication studies) on this subject.

9.2 Implications

We highlight findings (using frames) focusing on possible
implications from the practitioner and researcher perspectives.

Removing dead code improves (unfamiliar) source
code comprehensibility and seems to better support
(unfamiliar) source code modifiability (F8, F9, F17, F20,
and F21).

Practitioner: Providing developers with source code de-
prived of dead code could reduce a number of issues related
to well-known software engineering processes: mainte-
nance, testing, quality assurance, reuse, and integration [51].
An effective tool support to detect and remove dead code is
then advisable.
Researcher: She could be interested in defining approach-
es/tools for detecting and removing dead code since cur-
rently developers analyze execution traces and/or exploit
canonical features of IDEs (e.g., debugger).

20. The term methodical in its general sense indicates a behavior
characterized by method and order. This term can be contrasted with
systematic that refers to a line-by-line investigation of the entire source
code. The term opportunistic is an antonym of methodical [48].

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

Every participant, regardless of their experience and
background, achieved a better source code compre-
hension when dealing with source code without dead
code (F17).

Practitioner: Developers with different profiles and skills
can benefit from the removal of dead code.

Dead code is harmful, it is perceived as harmful, and it
is consciously introduced to anticipate future changes
or consciously left (F1, F2, F4, F6, F17, and F20).

Practitioner: She needs to be aware of the risks due to
introducing or leaving dead code in the source code.
Researcher: She could be interested in defining approaches
and tools to make dead code less harmful. For example, it
would be advisable to define tools to hide dead code and to
unhide it when need.

The removal of dead code is performed when it is both
low-risk and low-cost (F10, F11, and F12).

Researcher: She could be interested in defining approach-
es/tools to let the professionals know when the removal of
dead code is low-risk and low-cost and whether the cost
for this operation is adequately paid back by an improved
source code comprehensibility and modifiability.

The familiarity of the participants with the codebase
could affect source code modifiability (F19 and F20).

Researcher: A first improvement over the current design is
to have treatment groups at different levels of familiarities
with source code.

10 CONCLUSION

We first conducted a preliminary mining study to motivate
the multi-study investigation presented in this paper. This
multi-study investigation has been designed to answer the
following questions: when and why developers introduce
dead code, how they perceive and cope with it, andwhether
or not dead code is harmful. We first conducted semi-
structured interviews with professional developers and then
three off-line experiments and one on-line experiment with
graduate and undergraduate students. The most important
results are that (i) source code can be either created dead
(e.g., developers plan on using it someday), made dead
during software evolution (e.g., developers unintentionally
make source code dead), or inherited dead (e.g., a company
performs maintenance on source code developed by others);
(ii) developers perceive dead code as harmful when compre-
hending and modifying source code and this harmfulness is
well-founded since the presence of dead code significantly
penalizes the comprehension of unfamiliar source code, and
it also negatively affects modification of unfamiliar source
code; and (iii) when dead code is identified, refactorings are

●

●

●

●

●

●

●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniBas1 UniBas2 W&M1 ALL

C
P

re
ci

si
on

(a)

●

●

NoDC DC NoDC DC NoDC DC NoDC DC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniBas1 UniBas2 W&M1 ALL

C
R

ec
al

l

(b)

Fig. 9: Boxplots for CPrecision (a) and CRecall (b).

TABLE 20: Results from the multivariate linear mixed model
methods with respect to CPrecision and CRecall.

Dependent Variable Method Exp Method:Exp
CPrecision <0.0001 <0.0001 0.0053
CRecall 0.0006 <0.0001 0.9629

usually not performed to remove it (e.g., developers add a
comment before dead code to take a note that it is dead or
could be potentially dead).

ACKNOWLEDGMENTS

The authors would like to thank all the software profession-
als and students from both continents who participated in
our multi-study investigation.

APPENDIX A
In this appendix, we delineate whether the significant effect
of dead code on CF (see Section 8.1) was due to little correct-
ness or little completeness (or both) of the answers provided
by the participants who comprehended source code in the
presence of dead code. To this end, we estimated correctness
and completeness of participants’ answers through the de-
pendent variables CPrecision and CRecall, respectively. We
computed these variable as follows:

CPrecision =

∑n
i=1 CPrecision

p
i

n
(14)

CRecall =

∑n
i=1 CRecall

p
i

n
(15)

where n is the number of questions in the comprehension
questionnaire, while CPrecisionpi and CRecallpi are the
precision and recall measures defined for the participant p
and the question i (see Equation 1 and Equation 2).

In Figure 9, we graphically summarize, by means of
boxplots, the distributions for CPrecision and CRecall. The
boxplots in Figure 9.a suggest that the CPrecision values
achieved by the participants in the NoDC group were better
than those achieved by the participants in the DC group.
We observed a similar trend, but less pronounced, for the
dependent variable CRecall (see Figure 9.b).

To understand whether the differences observed in the
boxplots were statistically significant, we exploited multi-
variate linear mixed model methods. We built a multivariate
linear mixed model for CPrecision by using the following

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

independent variables: Method, Exp, and Method:Exp. Sim-
ilarly, we built a model for the CRecall. The results from
the multivariate linear mixed model methods are presented
in Table 20 (p-values less than α = 0.05 are reported
in bold). As for CPrecision, the built model indicated a
statistically significant effect of Method as well as of Exp
and Method:Exp. With respect to CRecall, the built model
included two significant variables: Method and Exp. Based
on these results, we can conclude that the presence of dead
code significantly affects both correctness and completeness
of the answers provided by the participants who compre-
hended source code in the presence of dead code.

REFERENCES

[1] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy and
an initial empirical study of bad smells in code,” in Proc. of
International Conference on Software Maintenance. IEEE CS Press,
2003, pp. 381–384.

[2] W. C. Wake, Refactoring Workbook, 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[3] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2008.

[4] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code
smells,” in Proc. of International Working Conference on Source Code
Analysis and Manipulation. IEEE CS Press, 2013, pp. 116–125.

[5] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K. H.
Prommer, “How much does unused code matter for mainte-
nance?” in Proc. of International Conference on Software Engineering.
IEEE CS Press, 2012, pp. 1102–1111.

[6] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mow-
bray, Anti-Patterns: Refactoring Software, Architectures, and Projects
in Crisis. New York: Wiley, 1998.

[7] H. Boomsma, B. V. Hostnet, and H. Gross, “Dead code elimination
for web systems written in PHP: lessons learned from an industry
case,” in Proc. of International Conference on Software Maintenance.
IEEE Computer Society, 2012, pp. 511–515.

[8] S. Romano, G. Scanniello, C. Sartiani, and M. Risi, “A graph-
based approach to detect unreachable methods in java software,”
in Proceedings of the Symposium on Applied Computing. New York,
NY, USA: ACM, 2016, pp. 1538–1541.

[9] A. F. Yamashita and L. Moonen, “Do developers care about code
smells? an exploratory survey.” in Proc. of Working Conference on
Reverse Engineeringg. IEEE CS Press, 2013, pp. 242–251.

[10] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code starts
to smell bad,” in Proc. of the International Conference on Software
Engineering. IEEE CS Press, 2015, pp. 403–414.

[11] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[12] S. K. Debray, W. S. Evans, R. Muth, and B. D. Sutter, “Compiler
techniques for code compaction.” ACM Trans. Program. Lang. Syst.,
vol. 22, no. 2, pp. 378–415, 2000.

[13] K. Chen and V. Rajlich, “Case study of feature location using de-
pendence graph,” in Proc. of 8th International Workshop on Program
Comprehension, 2000, pp. 241–247.

[14] S. Romano and G. Scanniello, “DUM-Tool,” in Proceedings of Inter-
national Conference on Software Maintenance and Evolution. IEEE
Computer Society, 2015, pp. 339–341.

[15] G. Scanniello, “Source code survival with the Kaplan Meier esti-
mator,” in Proc. of International Conference on Software Maintenance.
IEEE CS Press, 2011, pp. 524–527.

[16] ——, “An investigation of object-oriented and code-size metrics
as dead code predictors,” in Proc. of EUROMICRO Conference on
Software Engineering and Advanced Applications. IEEE CS Press,
2014, pp. 392–397.

[17] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions
on Software Engineering, vol. 34, no. 4, pp. 434–451, Jul. 2008.

[18] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk, “There and back again: Can you
compile that snapshot?” Journal of Software: Evolution and Process,
vol. 29, no. 4, pp. e1838–n/a, 2017, e1838 smr.1838. [Online].
Available: http://dx.doi.org/10.1002/smr.1838

[19] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer,
2012.

[20] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “Are
unreachable methods harmful? results from a controlled experi-
ment,” in Proc. of International Conference on Program Comprehension.
IEEE CS Press, 2016, pp. 1–10.

[21] O. S. Gómez, N. J. Juzgado, and S. Vegas, “Understanding repli-
cation of experiments in software engineering: A classification,”
Information & Software Technology, vol. 56, no. 8, pp. 1033–1048,
2014.

[22] J. C. Carver, N. Juristo, M. T. Baldassarre, and S. Vegas, “Repli-
cations of software engineering experiments,” Empirical Software
Engineering, vol. 19, no. 2, pp. 267–276, Apr 2014.

[23] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[24] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys,
ankle sprains, and keepers of quality: How is video game de-
velopment different from software development?” in Proc. of the
International Conference on Software Engineering. ACM, 2014.

[25] R. Francese, C. Gravino, M. Risi, G. Tortora, and G. Scanniello,
“Mobile app development and management: Results from a qual-
itative investigation,” in Proc. of the International Conference on
Mobile Software Engineering and Systems, 2017.

[26] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, Eds., Guide to
the Software Engineering Body of Knowledge - SWEBOK. IEEE Press,
2001.

[27] N. King, “Using templates in the thematic analysis of text,” in
Essential Guide to Qualitative Methods in Organizational Research,
C. Cassell and G. Symon, Eds. Sage, 2004, pp. 256–270.

[28] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

[29] R. Stake, The Art of Case Study Research. SAGE Publications, 1995.
[30] V. A. Thurmond, “The point of triangulation,” Journal of Nursing

Scholarship, vol. 33, no. 3, pp. 253–258, 2001.
[31] G. Guest, A. Bunce, and L. Johnson, “How many interviews are

enough?: An experiment with data saturation and variability,”
Field Methods, vol. 18, no. 1, p. 59, 2006.

[32] N. Juristo and A. Moreno, Basics of Software Engineering Experimen-
tation. Kluwer Academic Publishers, 2001.

[33] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El
Emam, and J. Rosenberg, “Preliminary guidelines for empirical
research in software engineering,” IEEE Trans. on Soft. Eng., vol. 28,
no. 8, pp. 721–734, 2002.

[34] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, P. Tonella, and
C. A. Visaggio, “Are fit tables really talking? a series of experi-
ments to understand whether fit tables are useful during evolu-
tion tasks,” in Procedeeings of International Conference on Software
Engineering. IEEE Computer Society, 2008, pp. 361–370.

[35] A. Marchetto and F. Ricca, “From objects to services: toward a
stepwise migration approach for java applications,” International
Journal on Software Tools for Technology Transfer, vol. 11, no. 6, pp.
427–440, 2009.

[36] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano,
“Assessing the effect of screen mockups on the comprehension
of functional requirements,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 1, pp. 1:1–1:38, 2014.

[37] International Organization for Standardization (ISO), ISO/IEC
25000:2005, Software Engineering - Software Product Quality Require-
ments and Evaluation (SQuaRE), Std., 2005.

[38] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York: McGraw Hill, 1983.

[39] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato,
“How developers’ experience and ability influence web applica-
tion comprehension tasks supported by uml stereotypes: A series
of four experiments,” IEEE Trans. on Softw. Eng., vol. 36, no. 1, pp.
96–118, 2010.

[40] G. Scanniello, C. Gravino, M. Genero, J. Cruz-Lemus, and G. Tor-
tora, “On the impact of uml analysis models on source-code com-
prehensibility and modifiability,” ACM Transactions on Software
Engineering and Methodology, vol. 23, no. 2, 2014.

http://dx.doi.org/10.1002/smr.1838

SUBMISSION TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

[41] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software
engineering experiments: Benefits and perils,” IEEE Transactions
on Software Engineering, vol. 42, no. 2, pp. 120–135, Feb 2016.

[42] W. J. Conover, Practical Nonparametric Statistics. Wiley, 3rd Edition,
1998.

[43] S. Shapiro and M. Wilk, “An analysis of variance test for normal-
ity,” Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.

[44] N. Cliff, Ordinal methods for behavioral data analysis. New-York,
USA: Psychology Press, Sep. 1996.

[45] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and Cohen’sd for evaluating group differences on the NSSE
and other surveys?” in annual meeting of the Florida Association of
Institutional Research, February, 2006, pp. 1–3.

[46] P. Good, Permutation Tests: A Practical Guide to Resampling Methods
for Testing Hypotheses. Springer, 2000.

[47] M. J. Anderson, “A new method for non-parametric multivariate
analysis of variance.” Austral Ecology, vol. 26, pp. 32–46, 2001.

[48] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective
developers investigate source code: An exploratory study,” IEEE
Trans. on Soft. Eng., vol. 30, no. 12, pp. 889–903, 2004.

[49] M. Ciolkowski, D. Muthig, and J. Rech, “Using academic courses
for empirical validation of software development processes,” EU-
ROMICRO Conference, pp. 354–361, 2004.

[50] J. Hannay and M. Jørgensen, “The role of deliberate artificial
design elements in software engineering experiments,” IEEE Trans.
on Soft. Eng., vol. 34, pp. 242–259, March 2008.

[51] G. Canfora and M. Di Penta, “New frontiers of reverse engineer-
ing,” in Workshop on the Future of Software Engineering, 2007, pp.
326–341.

Simone Romano received his masters degree
in Computer Engineering from the University of
Basilicata, Italy, in October 2014. Currently, he
is a PhD student in Computer Science at the
University of Basilicata (in collaboration with the
University of Salento) under the supervision of
Prof. Giuseppe Scanniello. He is a member of
the BASELab research group at the University of
Basilicata. His research interests include empir-
ical software engineering, reverse engineering,
software maintenance and testing, peopleware,

and agile software development methodologies. He is a member of
IEEE. More information at: http://www2.unibas.it/sromano/

Christopher Vendome is a Ph.D. student at The
College of William & Mary. He is a member of the
SEMERU Research Group and is advised by Dr.
Denys Poshyvanyk. He received a B.S. in Com-
puter Science from Emory University in 2012
and he received his M.S. in Computer Science
from The College of William & Mary in 2014.
His main research areas are software mainte-
nance and evolution, mining software reposito-
ries, program comprehension, software prove-
nance, and software licensing. He is a mem-

ber of ACM, IEEE, and IEEE Computer Society. More information at:
http://www.cs.wm.edu/∼cvendome/.

Giuseppe Scanniello received his Laurea and
Ph.D. degrees, both in Computer Science, from
the University of Salerno, Italy, in 2001 and 2003,
respectively. In 2006, he joined, as an Assistant
Professor, the Department of Mathematics and
Computer Science at the University of Basilicata,
Potenza, Italy. In 2015, he became an Associate
Professor at the same university. His research in-
terests include requirements engineering, empir-
ical software engineering, reverse engineering,
reengineering, software visualization, workflow

automation, migration, wrapping, integration, testing, green software
engineering, global software engineering, cooperative supports for soft-
ware engineering, visual languages and e-learning. He has published
more than 160 referred papers in journals, books, and conference
proceedings. He serves on the organizing of major international con-
ferences (as general chair, program co-chair, proceedings chair, and
member of the program committee) and workshops in the field of soft-
ware engineering (e.g., ICSE, ASE, ICSME, ICPC, SANER, and many
others). Giuseppe Scanniello leads both the group and the laboratory
of software engineering at the University of Basilicata (BASELab). He
recently obtained the Italian National Scientific Qualification as Full
Professor in Computer Science. He is a member of IEEE and IEEE
Computer Society. More on http://www2.unibas.it/gscanniello/.

Denys Poshyvanyk is the Class of 1953 Term
Distinguished Associate Professor of Computer
Science at the College of William and Mary in
Virginia. He received the MS and MA degrees
in Computer Science from the National Uni-
versity of Kyiv-Mohyla Academy, Ukraine, and
Wayne State University in 2003 and 2006, re-
spectively. He received the PhD degree in Com-
puter Science from Wayne State University in
2008. He served as a program co-chair for IC-
SME’16, ICPC’13, WCRE’12 and WCRE’11. He

currently serves on the editorial board of IEEE Transactions on Software
Engineering (TSE), Empirical Software Engineering Journal (EMSE,
Springer) and Journal of Software: Evolution and Process (JSEP, Wiley).
His research interests include software engineering, software main-
tenance and evolution, program comprehension, reverse engineering,
software repository mining, source code analysis and metrics. His
research papers received several Best Paper Awards at ICPC’06,
ICPC’07, ICSM’10, SCAM’10, ICSM’13 and ACM SIGSOFT Distin-
guished Paper Awards at ASE’13, ICSE’15, ESEC/FSE’15, ICPC’16
and ASE’17. He also received the Most Influential Paper Awards at
ICSME’16 and ICPC’17. He is a recipient of the NSF CAREER award
(2013). He is a member of the IEEE and ACM. More information avail-
able at: http://www.cs.wm.edu/ denys/.

http://www2.unibas.it/sromano/
http://www.cs.wm.edu/~cvendome/
http://www2.unibas.it/gscanniello/

	Introduction
	Background and Related Work
	Background
	Related Work

	Dead Code
	Dead Code vs. Comprehensibility and Modifiability
	Dead Code Study
	Planning and Execution
	Results
	Threats to Validity

	Wrap-up

	Multi-Study Investigation
	Interviews: Planning and Execution
	Goal
	Participants
	Procedure
	Analysis Procedure

	Interviews: Results
	Studying RQ1 and RQ2
	Threats to Validity

	Experiments: Planning and Execution
	Goal
	Participants
	Procedure
	Experimental Objects
	Tasks
	Independent and Dependent Variables
	Hypotheses Formulation
	Design of the Experiments
	Analysis Procedure

	Experiments: Results
	Studying RQ3.a
	Studying RQ3.b - Familiar Source Code
	Studying RQ3.b - Unfamiliar Source Code
	Threats to Validity

	Overall Discussion
	Linking Results and Research Questions
	Implications

	Conclusion
	Appendix A
	References
	Biographies
	Simone Romano
	Christopher Vendome
	Giuseppe Scanniello
	Denys Poshyvanyk

