
A Reevaluation of Why Crypto-detectors Fail: A Systematic Revaluation of
Cryptographic Misuse Detection Techniques

Scott Marsden

Sherman Oaks, California, United States of America

Bachelor of Science, Elon University, 2020
Master of Science, College of William & Mary, 2023

A Thesis presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Master of Science

Department of Computer Science

College of William & Mary
April 2023

© Copyright by Scott Marsden 2023

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of
the requirements for the degree of

Master’s of Science in Computer Science

Scott Marsden

Approved by the Committee, April 2023

Committee Chair

Professor Denys Poshyvanyk, Computer Science

College of William & Mary

Assistant Professor Dmitry Evtyushkin, Computer Science

College of William & Mary

Assistant Professor Adwait Nadkarni, Computer Science

College of William & Mary

ABSTRACT

The correct use of cryptography is central to ensuring data security in modern
software systems. Hence, several academic and commercial static analysis tools
have been developed for detecting and mitigating crypto-API misuse. While
developers are optimistically adopting these crypto-API misuse detectors (or
crypto-detectors) in their software development cycles, this momentum must be
accompanied by a rigorous understanding of their effectiveness at finding
crypto-API misuse in practice. The original paper presents the MASC framework,
which enables a systematic and data-driven evaluation of crypto-detectors using
mutation testing. MASC was grounded in a comprehensive view of the problem
space by developing a data-driven taxonomy of existing crypto-API misuse,
containing 105 misuse cases organized among nine semantic clusters. 12
generalizable usagebased mutation operators were developed and three mutation
scopes that can expressively instantiate thousands of compilable variants of the
misuse cases for thoroughly evaluating crypto-detectors. Using MASC, nine major
crypto-detectors were evaluated and 19 unique, undocumented flaws that severely
impact the ability of crypto-detectors to discover misuses in practice were found.

For my thesis I built upon this previous research and greatly expanded the MASC
framework. MASC was expanded in all areas by adding new functionality, new
operators, new misuses, and expanding the taxonomy. In addition, I reevaluated
the most up to date versions of the original 9 crypto-detectors and evaluated 5
additional crypto-dectors. On top of this I also doubled the amount of applications
I used to evaluate the tools.

To analze crypto-dectors I looked at both the 9 crypto-detectors evaluated in the
original work and 5 new crypto-detectors. For the original crypto-detectors I
evaluated them with the updated MASC against their most up to date versions to
determine if old flaws that have previously been fixed have a tendency to reappear.
Both old and new crypto-detectors were evaluated with mutated Android and Java
applications that were used in the original MASC paper, 15 newly mutated
Android and Java applications, and minimal examples of cryptographic misuse.

TABLE OF CONTENTS

Acknowledgments iii

List of Tables iv

List of Figures v

1 Introduction 2

1.1 Overview . 3

1.1.1 Motivation and Background . 6

1.1.2 Threat Model . 7

1.2 Related Works . 9

1.3 Bibliographical Notes . 12

2 The MASC Framework 13

2.1 Overview . 13

2.1.1 Extended Taxonomy . 15

2.1.2 Extended Operators . 19

2.1.3 Threat Based Mutation Scopes 22

3 Implementation 24

3.1 New Features . 26

3.2 Sensitivity Evaluator . 27

3.3 Automated Evaluation . 29

3.4 MASC Web . 31

i

4 Evaluation and Methodology 33

5 Results and Findings 38

5.1 Analyzing Flaws . 38

5.2 Comparing Original Results to New 40

5.3 Exhaustive Results . 42

6 Conclusion 47

6.1 Limitations . 47

6.2 Discussion . 49

6.3 Lessons Learned . 51

6.4 Conclusion . 52

A Appendix A 53

A.1 Code Snippets . 53

A.2 Total Mutations . 59

ii

ACKNOWLEDGMENTS

I would like to first acknowledge Amit Seal Ami for helping guide me through the
thesis. We met nearly weekly to help ensure I was making progress and that it was
consistent with the original work. Amit was a great help as both a mentor and
someone who could double check my work.

I would also like to thank the developers of all the tools that were evaluated within
the paper. Without these developers working to provide these tools I would not be
able to find ways to improve them. I also appreciate that they were open to a
discussion to find ways to improve the tools.

Finally, for early portions of the project I worked in collaboration with other
students for class projects. These other students are Trevor Stalnaker, Johnny
Clapham, and Jake Zappin I would like to thank them as well for contributing to
the project. In addition, I would also like to thank Syed Yusuf Ahmed and
Radowan Mahmud Redoy for adding additional features to the automated analysis
component of MASC.

iii

LIST OF TABLES

2.1 New misuse cases added to the taxonomy 16

2.2 Papers added to the taxonomy . 18

5.1 Descriptions of Original Flaws discovered by Analyzing crypto-detectors. 44

5.2 Descriptions of Newly discovered Flaws by Analyzing crypto-detectors. 45

5.3 Flaws observed in different static crypto-detectors 46

5.4 Mutants analyzed vs detected by crypto-detectors 46

A.1 Mutations Generated Across New Applications 60

iv

LIST OF FIGURES

2.1 A basic overview diagram showing how the MASC Framework was designed . . . 13

2.2 The original derived taxonomy of cryptographic misuses the extended taxonomy

is based on. (n) indicates misuse was present across n artifacts. A Xindicates that

the specific misuse case was instantiated with MASC’s mutation operators for our

evaluation. 15

3.1 A high level diagram showing the architecture design of MASC. This further

demonstrates how each component of MASC is designed and how to run the

framework . 26

v

A Reevaluation of Why Crypto-detectors Fail: A Systematic
Revaluation of Cryptographic Misuse Detection Techniques

Chapter 1

Introduction

Cryptography is essential in making sure data is confidential and secure in the modern

world. Making sure cryptography primitives are used correctly, however, has always been

difficult problem to solve whether it be in critical systems like banking or the widespread

misuse of cryptographic API found in mobile and web apps. These misuses can lead to

vulnerabilities that allow for data leaks. To solve this problem researchers have designed

tools that can be integrated into the development pipeline that catch these misuses and

allow developers to find the problems before they release their software to the public. These

tools are known as crypto-API misuse detectors also known as crypto-detectors. These

crypto-detectors are vital to helping keep development of applications secure. However,

these crypto-detectors are not without their own faults.

Crypto-detectors see widespread use across IDEs, corporate testing suites, by source

control platforms (such as GitHub), and commercial use. Crypto-detectors are relied upon

by many developers that deal with sensitive information, there is an expectation and an

assumption that they are reliable. Developers utilize these crypto-detectors to help have

peace of mind that their code is now more secure. However, a lot is still unknown about

how effective they are at detecting crypto-API misuse despite how eager developers are

to adopt them. The MASC framework [7], tried to provide a solution to this problem

2

by providing a framework to evaluate crypto-detectors beyond simple manually created

benchmarks.

As described in the original paper MASC is "the first systematic, data-driven frame-

work that leverages the well-founded approach of Mutation Analysis for evaluating Static

Crypto-API misuse detectors." MASC is used by a user similarly to typical mutation anal-

ysis. MASC is capable of "mutating Android/Java apps by seeding them with mutants"

containing crypto-API misuse. The mutated apps can then be analyzed by a crypto-

detector and by seeing which mutants are not located during the analysis reveals both

design and implementation flaws in that crypto-detector.

For my thesis I took the already existing MASC framework and extended it. This

was done by adding a variety of new functionality and greatly expanding the functionality

that was previously built. I expanded MASC in both depth and breadth. The updated

MASC framework was also used to reevaluate 8 crypto-detectors that were evaluated by

the original paper and additionally evaluate five other crypto-detectors. With the new

additions to MASC and new evaluation I was able to determine: do misuses that are

reported and fixed have a tendency to reappear in future builds, have crypto-detectors

improved since the original paper, can MASC discover new flaws in crypto-detectors, what

are the characteristics of these flaws, and what is the impact of the flaws on the effectiveness

of crypto-detectors in practice?

1.1 Overview

The original MASC framework was built based on a Crypto-API Misuse Taxonomy. At the

time it was the first comprehensive taxonomy of crypto-API misuse containing 105 cases.

These were found using a data driven process that systematically identified, studied, and

extracted misuse cases from both academic and industrial sources published from 1998-

2018. This taxonomy provided the main building block for designing mutants that can

3

emulate realistic misuses. For my thesis we expanded this taxonomy to cover papers from

2019-2022. The extended taxonomy includes 19 more papers and 13 more misuses.

MASC also had several Crypto-Mutation Operators and Scopes. These different ab-

stractions were designed to allow flexibility in MASC to create a large variety of feasible

mutants. The threat model MASC is based on consists of three types of threats that

crypto-detectors are likely to face: benign developer accidental misuse (T1), benign de-

veloper harmful fix (T2), and evasive developer harmful fix (T3). In addition, MASC

also consisted of usage base mutation operators which were general operators that contain

common characteristics that can leverage a diverse set of crypto APIs to create misuse

cases that can be found within the taxonomy. These operators consist of two main cat-

egories: restrictive, where a developer can only instantiate certain objects by providing

values from a predefined set such Cipher.getInstance(<parameter>) and flexible which consists

of operators with a large amount of extensibility such as developers can customize the

hostname verification component of the SSL/TLS handshake by creating a class extending

the HostnameVerifier, and overriding its verify method, with any content. The original

set of operators consisted of 12 operators (six restrictive and six flexible). For my thesis

I focused on expanding the amount of restrictive operators since more are necessary to

fully represent the taxonomy. This is due to the fact that restrictive operators take in a

specific set of inputs from the user and represent one or more misuse cases while the flexi-

ble operators are designed to represent many possible misuse cases. Due to this focus was

placed on the expansion of restrictive operators since more are necessary to capture the

entire taxonomy. I added seven additional restrictive operators to the total count based

both on misuses that were not represented from the original taxonomy and to represent

the extended taxonomy. I also added restrictive operators to further extend representation

of the evasive developer (T3) since the original work was intentionally conservative with

imagining what evasive developers were capable of. After more research it was determined

that new operators could be created to emulate more evasive behavior while still being

statically computable and fair to the crypto-detectors. MASC also includes three types of

4

mutation scopes that allow for seeding of mutants variable fidelity to realistic API-use and

threats.

I also expanded MASC to contain several new features. These consist of adding an

automated analysis tool and the sensitivity evaluator. The automated analysis provides

MASC with a way to automatically evaluate a crypto-detector’s output and determine

which misuses were caught or not. It leverages Static Analysis Results Interchange Format

(SARIF) files (a file type similar to JSON) to determine where misuses were. It is also

designed to catch flaws with crypto-detectors based on output. The new component can

test a variety of cases against a crypto-detectors that range in complexity and will report

if a simple case fails to be caught and stop running, since a more complex case cannot be

feasibly caught if the simple version fails. Since all evaluation from the original paper was

done by hand, it was very time-consuming to ensure accuracy. This tool was designed to

help researchers and users save time while evaluating crypto-detectors and ensure accuracy.

This tool was further expanded by other developers to be capable of doing full end to end

analysis with crypto-detector by running the crypto-detector as a part of MASC.

The other main new feature introduced as a part of MASC is the sensitivity evaluator.

This tool defined the different types of sensitivities commonly associated with crypto-

detectors: flow, object, context, path, and alias sensitivity. Certain tools claim to be built

with these sensitivities in mind. These were used to categorize all the operators contained

under one or more of these categories. MASC can then be run and will generate mutants

only for the specified sensitivity type. This allows for a lower barrier to entry for users and

to allow users to test mutants specifically against the claims of a crypto-detector.

For the evaluation of crypto-detectors I used the same methodology as the original

paper but extended the number of operators and the number of applications. I evaluated

eight of the major crypto-detectors used in the original paper and also evaluated five

addition crypto-detectors. The original paper also evaluated the crypto-detectors with a

15 different Android/Java applications and a group of minimal cases. All of these same

applications and minimal cases were used again in evaluation with the addition of 16 new

5

Android/Java applications that were mutated using the newly extended MASC as well as

a group of new minimal cases to test the new operators. Additionally, my findings were

disclosed to the designers/maintainers of the tools.

1.1.1 Motivation and Background

The motivation for extending MASC remains consistent with the original motivation be-

hind MASC, "Insecure use of cryptographic APIs is the second most common cause of soft-

ware vulnerabilities after data leaks." Many developers are likely to use crypto-detectors in

their development pipeline since they are not experts in the area but wish to catch vulner-

abilities before releasing software. This means that the reliability of crypto-detectors and

their ability to locate misuses directly impacts the security of the end user and their data.

Evaluating crypto-detectors is an ongoing problem. New misuses are discovered frequently

and it is important to have a tool that can keep up with new misuses. The idea behind

expanding the MASC framework came from the need to keep up with new misuses and

still be a reliable tool for evaluating crypto-detectors.

The crypto-detectors evaluated in the original paper needed to be reevaluated because

bugs that get fixed have a tendency to reappear in future patches. [16] The newest versions

of these tools needed to be reevaluated to see if they have made any improvements with

catching misuses and ensure that flaws that were found have truly been fixed. The set

of evaluated crypto-detectors was also expanded so that flaws can be reported to other

widely used tools to help improve them as well. In addition, since the original paper was

published new tools have appeared and gained traction such as Amazon CodeGuru. I

wanted to ensure MASC conducted an evaluation on as many crypto-detectors as possible.

Since MASC’s viability was proven in the original work it was important to extend and

improve the work as well as extend its reach. The MASC framework, like many software

engineering projects, is an ever evolving framework that is designed to be a reliable way

to help evaluate the effectiveness of crypto-detectors.

6

The motivating example for this new component of the research would be a scenario

like the following. Consider Alice, a Java Developer who uses SonarQube as a part of her

development pipeline, a state of the art crypto-detector known for being able to detect

security vulnerabilities found in software prior to release. Alice had reported that there

was flaw in the crypto-detector that allowed the following line of code to pass without

detection:

Cipher cipher = Cipher . getInstance (" des ");

She was told that in the new version of the tool that this would be fixed. Her team

upgrades to the latest version and sees that it now detects this misuse. Then some time

goes by and another new version is released. Alice’s team upgrades to this but one of

her team members, Bob, puts the same line of code in the software unaware that it is a

misuse. It is able to get through to production since the crypto-detector did not detect it

even though Alice reported it previously and is under the belief that it is no longer present.

In addition, I continued using the motivation from the original paper of Alice being an

unaware developer using:

Cipher cipher = Cipher . getInstance (" des ");

and it not being detected by the crypto-detector. DES is the common version of the

misuse, however, Java supports both the uppercase and lowercase versions of this misuse.

A crypto-detector would be expected to detect this common mistake.

1.1.2 Threat Model

The threat model remains the same between both this extension of work and the orig-

inal. In the original paper they defined the scope of their evaluation by leveraging the

documentation of popular crypto-detectors to understand how to position their tool and

what they claim to be capable of. When evaluating the new tools I looked through their

documentation as well and ensured that they made similar claims as the originally eval-

uated crypto-detectors to ensure the model was consistent across all evaluated crypto-

detectors. As an example, Snyk’s documentation claims "Empower developers to become

7

quasi-security professionals with Snyk Code’s comprehensive security tooling." [97] Simi-

larly, Amazon Code Guru claims "Our security detectors use machine learning and auto-

mated reasoning to analyze data flow to perform whole-program inter-procedural analysis,

across classes, methods, and files to detect hard-to-find security vulnerabilities." [6] and

"Java Crypto Library Best Practices help you check common Java cryptography libraries,

such as Javax.Crypto.Cipher, to identify that they are initialized and called correctly" or

SonarQube says "maximum protection with taint analysis." [105] All five of the newly

evaluated crypto-detectors make similar claims of security assurance. Just like the original

nine crypto-detectors that were evaluated and now reevaluated they need to be evaluated

by a 3rd party to verify their claims and assure developers that they can truly do what

claim they can.

For my threat model I continued off the same model used in the original paper. It

assumed that there are some circumstances where they might be deployed in adversarial

circumstances due to their claims of being useful for security audits and similar tasks.

There are some circumstances where security audits are required and one of the parties

involved is opposed to this such as verification for deploying an app in the Google Play

Store. To reiterate the threat model consists of three types of adversaries (T1-T3). This

threat model is how components of MASC are designed and guide how evaluation was

conducted:

T1 Benign developer, accidental misuse - this model assumes the developer acci-

dentally misuses crypto-API, but attempts to detect and address the vulnerabilities with

the assistance of crypto-detector.

T2 Benign developer, harmful fix - This scenario shares some similarities to the

first as it assumes the developer does not fully understand crypto-API but they are using

a tool to help identify misuses. When a misuse gets flagged the developer attempts to fix

it but introduces a new vulnerability in its place.

T3 Evasive developer, harmful fix - This assumes the developer is trying to finish

the task quickly or with low effort and is intentionally trying to evade the crypto-detector.

8

When the alert from a detector is received the developer will do quick fix that results in

potentially hiding the misuse rather than truly fixing it.

Once again like the original design of MASC the threats are meant to mimic how

crypto-detectors have to operate in practice and the evaluation is designed based on what

the crypto-detectors should be detecting. However, there is a gap between what should be

and what is. This is why just like the design of the original MASC I kept all use cases in

consideration.

However, I did try to further capture the T3 developer compared to the original work.

In the original work the T3 developer was initially designed to be somewhat conservative

to ensure that cases were as close to reality as possible. The original developer were aware

that they could go further but they wanted to be more conservative than some real life

examples they had seen. For this extension it was discovered that there are cases far more

complex and malicious than was originally realized. So in the expansion of MASC some

operators were added to include more complex T3 cases.

1.2 Related Works

Security researchers have recently shown significant interest in the external validation of

static analysis tools [88, 30, 57, 84, 16]. Particularly, there is a growing realization that

static analysis security tools are sound in theory, but soundy in practice, i.e., consisting of

a core set of sound decisions, as well as certain strategic unsound choices made for practical

reasons such as performance or precision [70].

Soundy tools are desirable for security analysis as their sound core ensures sufficient

detection of targeted behavior, while also being practical, i.e., without incurring too many

false alarms.

However, given the lack of oversight and evaluation they have faced so far, crypto-

detectors may violate this basic assumption behind soundiness and may in fact be un-

sound, i.e., have fundamental flaws that prevent them from detecting even straightforward

9

instances of crypto-API misuse observed in apps. This intuition drives our approach for

systematically evaluating crypto-detectors, leading to novel contributions that deviate from

related work.

To the best of our knowledge, MASC is the first framework to use mutation testing, com-

bined with a large-scale data-driven taxonomy of crypto-API misuse, for comprehensively

evaluating the detection ability of crypto-detectors to find design/implementation flaws.

However, in a more general sense, Bonett et al. [16] were the first to leverage the intuition

behind mutation testing for evaluating Java/Android security tools, and developed the µSE

framework for evaluating data leaks detectors (e.g., FlowDroid [11] and Argus [36]). MASC

significantly deviates from µSE in terms of its design focus, in order to address the unique

challenges imposed by the problem domain of crypto-misuse detection. Particularly, µSE

assumes that for finding flaws, it is sufficient to manually define "a" security operator and

strategically place it at hard-to-reach locations in source code. This assumption does not

hold when evaluating crypto-detectors as it is improbable to cast cryptographic misuse as

a single mutation, given that cryptographic misuse cases are diverse, and developers may

express the same type of misuse in different ways. For example, consider three well-known

types of misuse that would require unique mutation operators: (1) using DES for encryp-

tion (operator inserts prohibited parameter names, e.g., DES), (2) trusting all SSL/TLS

certificates (operator creates a malformed TrustManager), and (3) using a predictable ini-

tialization vector (IV) (operator derives predictable values for the IV). In fact, developers

may even express the same misuse in different ways, necessitating unique operators to ex-

press such distinct instances, e.g., the DES misuse expressed differently in Listing 1.1 and

Listing 1.2.

Listing 1.1: Instantiating “DES” as a cipher instance.

1 String algorithm = "DES";

2 Cipher cipher = Cipher.getInstance(algorithm);

Listing 1.2: Instantiating DES as a cipher instance in lower case.

10

1 Cipher cipher = Cipher.getInstance("des");

Thus, instead of adopting µSE’s single-operator approach, MASC designs general usage-

based mutation operators that can expressively instantiate misuses from our taxonomy

of misuses. In a similar manner, MASC’s contextualized mutation abstractions (i.e., for

evaluating crypto-detectors) distinguish it from other systems that perform vulnerability

injection for C programs [29], discover API misuse using mutation [108, 38], or evaluate

static analysis tools for precision using handcrafted benchmarks or user-defined policies [88,

84].

Finally, the goal behind MASC is to assist the designers of crypto-detectors [33, 31, 23,

62, 63, 27, 97, 105, 6, 22] in identifying design and implementation gaps in their tools, and

hence, MASC is complementary to the large body of work in this area. Particularly, prior

work provides rule-sets or benchmarks [18, 19] consisting of a limited set of cryptographic

“bad practices” [17], or taxonomies of smaller subsets (e.g., SSL/TLS misuse taxonomy

by Vasan et al. [76]). However, we believe that the new extended taxonomy is the most

systematically-driven and comprehensive taxonomy of crypto-API misuse, that is further

expanded upon into numerous unique misuse instances through MASC’s operators. Thus,

relative to prior handcrafted benchmarks, MASC can thoroughly test detectors with a far

more comprehensive set of crypto-misuse instances.

In addition to the previous work while working on the extension I also looked at other

tools trying to accomplish similar goals to MASC such as [3] and [93]. I compared what

we have done to what these tools are trying to do to ensure that MASC is still state of

the art and is keeping up to date with other tools. MASC is still capable of doing more

with mutation testing and its operators than these other tools. I still believe MASC is the

state-of-the-art tool for identifying flaws in crypto-detectors especially after the extension

of work.

11

1.3 Bibliographical Notes

The paper supporting the content described in this Chapter was written in by other mem-

bers of the SEMERU group at William & Mary:

Ami, A., Cooper, N., Kafle, K., Moran, K., Poshyvanyk, D., and Nadkarni, A., "Why

Crypto-detectors Fail: A Systematic Evaluation of Cryptographic Misuse Detection Tech-

niques", in Proceedings of IEEE Symposium on Security and Privacy (SP’22) May 22,

2022, pp. 614-631

This paper is the basis for the extension described throughout this work. MASC is also

motivated partially by another project called µSE done by the SEMERU group at William

& Mary:

Ami, A., Kafle, K., Moran, K., Nadkarni, A., and Poshyvanyk, D., “Systematic Mutation-

based Evaluation of the Soundness of Security-focused Android Static Analysis Tech-

niques”, ACM Transactions on Security & Privacy (TOPS), vol. 24, no. 3, February

2021, pp. 1-37

Bonett, R., Kafle, K., Moran, K., Nadkarni, A., and Poshyvanyk, D., “Discovering

Flaws in Security-Focused Static Analysis Tools for Android using Systematic Mutation”,

in Proceedings of 27th USENIX Security Symposium (USENIX’18), Baltimore, MD, USA,

August 15-17, 2018, pp. 1263-1280

Ami, A., Kafle, K., Moran, K., Nadkarni, A., and Poshyvanyk, D., “µSE: Mutation-

based Evaluation of Security-focused Static Analysis Tools for Android”, in Proceedings of

the 43rd IEEE/ACM International Conference on Software Engineering (ICSE’21), Formal

Tool Demonstration, Virtual (originally Madrid, Spain), May 25th - 28th, 2021, pp. 53-56

12

Chapter 2

The MASC Framework

Crypto-API Misuse TaxonomyData-Driven
Taxonomy Generation

Misuse Sources
Research
Papers

Industry
Tools

Advisories …

Open Source
Apps

source
code

 Mutation
Operators
Mutation
Scopes

misuse cases

Target
Crypto-detector

Mutated
App(s)

analyze
apps

uncaught
 mutants

Design/
Implementation

flaws

Creating mutants

Evaluating tools

Figure 2.1: A basic overview diagram showing how the MASC Framework was designed

2.1 Overview

The original work proposed a framework for Mutation-based Analysis of Static Crypto-

misuse detection techniques (or MASC). Figure 2.1 above shows the design of the MASC

framework as described in the original work. The framework remains the same and all

the ideas from this original framework were intentionally consistent throughout my work

as well. Cryptographic libraries contain many sets of API with a variety of potential

misuse cases, this resulted in an incredibly large design space. Due to this the original

13

work decided to start MASC by creating a "data-driven taxonomy crypto API misuse."

This allows for the misuse cases to be grounded based on what is seen in practice. This

both allows for a more focused design space and helps justify the misuses MASC puts

into practice. For this extension, the taxonomy was expanded to include more cases than

the prior work and updated with newer misuses and additional confirmation of previous

misuses.

Misuses had to be handled in a way that allowed for some flexibility since misuses

can appear in a variety of ways. For example the original paper provides the example

of DES can be provided as a variable in Cipher.getInstance(<parameter>) and can also

be provided in lowercase. To be able to express both of these without hard coding them

as examples MASC is designed by defining usage-characteristics of cryptographic APIs.

These can then be leveraged to design "general, usage based mutation operators." These

operators being designed in this way allows for a single operator to be able to handle a

variety of misuses. This was made clearer when the taxonomy was expanded due to the

fact that it was found that some operators previously designed for MASC were already

capable of expressing these misuses with little to no effort. A substantial amount of work

was put into extending operators to cover misuses that were not already represented in

both the original and extended taxonomy.

Instantiating mutants is done by applying the mutation operators to the cases found in

the taxonomy, MASC injects the mutants into Java/Android applications. How mutations

are seeded is based on one of three scopes: the main scope, exhaustive scope, and similarity

scope. These scopes are designed to emulate practical scenarios described in the threat

model. Once mutated the apps can then be used to analyze a crypto-detector targeted for

evaluation. Based on the results produced by the target it is possible to determine based

on undetected mutants where design and implementation flaws exist. This is especially

true in the case of reemerging cases.

14

2.1.1 Extended Taxonomy

Compromising Integrity through
Improper Checksum Use (10)

* CBC is insecure in TLS/client-server context; + applicable in specific situations; some misuse are newer compared to other in same cluster, # PKCS5 suggestion based

Compromising Non-Repudiation (3)

Key Signing Misuses
• Low entropy with DSA (1)
• Low entropy with ECDSA (1)
• Using 1024 bit DSA (2)

Compromising Client & Server Secrecy (20)

Compromising Secret Keys (12)

Unclustered (6)

Compromising Secrecy of Cipher Text (26)

Compromising Communication Secrecy
with Intended Receiver (6)

API/Program Specific Misuses (17)

Compromising Randomness (5)

Small Key Size
• Using RSA with < 1024 bit key (7)
• Using RSA with < 2048 bit key (3) +
• Using RSA with 2048 bit private key (1)

Weak Algorithm
• Using RSA with CBC (1)
• Using RSA with no padding (2)
• Using RSA with PKCS1 padding (5)

Weak Certificate Management
• Improper certificate validation expiry check (2) ✔
• Trusting all certificates (3) ✔
• Missing certificate validation (3) ✔
• Improper following of a cert’s chain of trust (1)✔

Weak SSL Protocol
• Using weak SSL context

{SSLContext.getInstance(“SSL”)} (1)
• Using SSL and not using TLS as context (1)
• Using SSLV3 (1)
• Using SSLV2 (1)
• HMAC for TLS with SHA1 (1)
• Using CBC for SSL/TLS with AES (1) *
• Using TLS < v 1.2 (1)
• Using TLS < v 1.1 (3)

Weak Hostname Management
• Allowing all hostnames (10) ✔
• Using Default hostname verifier (1) +

Insecure Key Size
• ECC < 224 bit (2)
• Using AES with < 128 bit key (1)
• Using RC2 with < 64 bits (1)

Insecure Number of Iterations/Cycles
• Using < 500 iterations for PBE (1)
• Using < 1000 iterations for PBE (6)#

Using Unsafe Mode
• Using ECB for symm. encryp. with AES (2) ✔
• Using AES with CBC for encryption with

PKCS5Padding (1)
• Using Electronic Code Book Mode (ECB) for

encryption (11) ✔
• Using AES with CBC for Encryption * (2)
• Using DESede with ECB (1)
• Using DES with CBC3 SHA (1)
• Using CBC without HMAC (1)
• Using 3DES with EDE CBC SHA (1)
• Using non-random IV in Cipher Block Chaining

(CBC) for encryption (6)

Using Non-Random Salt
• Using constant salts for PBE (6)

Unsafe Algorithm Usage
• Using RC2 for symmetric encryption (4)
• Using NullCipher to encrypt plain text (1)
• Using Blowfish Algorithm for Encryption (4)
• Using ESAPI Encryptor (1)
• Using 3DES/DESEDE for encryption (4)
• Using RC4 (3)
• Using IDEA Algorithm for Encryption (3)
• Using DES for encryption (8) ✔
• Using EXP1024 for ciphers (1)
• Using Seed Cipher (1)
• Using blowfish with less than 128 bit key (1)

Communication Secrecy Compromised
• Use of a key past its expiration date (1)
• HTTP and HTTPs mixing (3)
• Key Exchange without Entity Authentication (1)
• Improper Check for Certificate Revocation (1) ✔
• Improper Validation of Certificate with Host

Mismatch (1) ✔
• Untrusted CA Signed Certificate (1) ✔

API/Program Specific
• Apache HTTPClient no host verification (1)
• Gnutls_certificate_verify_peers2	returns 0

when self signed certificate (1)
• Constant password for android keystore (2)
• JSSE checkTrusted method does not check identify if

the algorithm field is null or empty string (1) ✔
• Android Webview incorrect certificate verification (2)
• Java	defaults to ECB for encryption with “AES"
• Weberknecht does not have host verification (1)
• Using DefaultHttpClient (due to no TLSv1.2) (1)
• ignoring onReceivedSSLError	(3)
• SSLSocketFactory without verifying Hostname (1)
• Reusing counter value in encryption (2)
• Apache HttpHost data allows mixed schemes (1)
• Using obsolete algorithm (11) ✔
• Storing sensitive data in Java String (3)
• Using Socket directly for connection (1)
• No clearPassword call after using PBEKeySpec (2)
• PBEKeySpec	initialized without salt (2)

Secret Key Misuses
• Using low entropy seeds in key generation (1)
• Password Based Key Derivation Function (PBKDF)

Using < SHA224 (1)
• Not using Salts while hashing password (1)
• PBKDF Using HMAC (1)
• PBKDF Using MD5 (3)
• PBKDF Using MD2 (2)
• IVs generated w/o random num generator (1) ✔
• Static IV (4) ✔
• Zeroed IV (2)
• Using hardcoded key / password (3)
• Using Constant Encryption Key (9)
• Using < 64bit salt for password (2)

Misuse of Randomness
• Bad derivation of IV (file/text) (4) ✔
• Low entropy in key generation/ RNG (3)
• Using static seeds for Secure Random RNG (7)
• Not using Secure Pseudo RNG (7)
• Using Setseed (3)

• Inscure pinning with ambiguous values
• Trusting Self-signed Certificates +
• Using unencrypted server socket
• Using unencrypted socket
• Using export quality ciphers
• Using stateless encryption

Compromised Checksums
• Hashing credentials - MD5 (5) ✔
• Hashing Credentials - MD4
• Hashing Credentials - MD2
• Digital Signature Hashes - MD4
• Obsolete Hash Algorithm (7) ✔
• Hashing Credentials - SHA1
• Digital Signature Hashes - MD5 (5) ✔
• Using a custom MessageDigest instead of relying

on the SHA-224 (1)
• Digital Signature Hashes - MD2 (4)
• Digital Signature Hashes - SHA1 (5)

Figure 2.2: The original derived taxonomy of cryptographic misuses the extended taxonomy
is based on. (n) indicates misuse was present across n artifacts. A Xindicates that the specific
misuse case was instantiated with MASC’s mutation operators for our evaluation.

In expanding MASC as a framework it was necessary to update the taxonomy to bring

it up to date since it was created in 2018. Figure 2.2 the original taxonomy is shown and

was the basis of this extension. Since the taxonomy is serving as expansion rather than

a replacement the same methodology was used from its initial creation to extend it. This

was done to ensure the taxonomy as a whole was consistent and one whole work rather

than two different taxonomies. In order to locate academic and research papers related

to Crypto-API misuse, it was first necessary to identify a set of search terms that would

15

Table 2.1: New misuse cases added to the taxonomy

Misuse # Occurrences
Storing sensitive data in Java String 5

Key reuse in stream ciphers 1
Use of expired keys 1

No clearPassword call after using PBEKeySpec 1
Using AES-CTR 1

Weak algorithm for password-based encryption - PBKDF1 1
HMAC for TLS with MD5 1

Using RC5* 1
Using ARCFOUR 1

PBEWithMD5AndDES 1
Hashing Credentials - SHA-224 1

Reusing IVs & key pairs 1
Manually changing hostname verifier 1

adequately narrow the search space. The authors of the original MASC paper had already

identified a sufficiently narrowing set of search terms.

These search terms were used, as well as combinations of these search terms, as a

foundation in conducting our searches for academic and industrial papers published be-

tween 2019 and 2022 identifying Crypto-API misuse cases. This was also done to ensure

the methods used to collect papers were consistent with the methods used in the original

paper.

With respect to academic papers, searches were conducted using the search terms

laid out in the original work, as well as combinations of those terms on Google Scholar,

IEEE Xplore & ACM Digital Library as the primary search engines (these were also the

engines used when creating the taxonomy for the original paper). In addition, each citing

reference in each of the papers concerning Crypto-API misuse found through searching

these databases and search engines was also looked at. By doing this, it was possible to

locate approximately 5-6 academic papers, concerning Crypto-API misuse, that were not

readily visible through searches alone. This method helped expand the search domain for

obtaining relevant academic papers.

For industrial sources, Google, Bing, and StackOverflow were relied upon for searching.

While it was possible to locate some relevant documents, they were few and far between

16

compared to the academic papers that we uncovered. In an effort to ensure completeness of

the search space, when an industrial document relevant to Crypto-API misuse was located,

the references it cited if any were also considered.

Additionally, a search was conducted through the Common Weakness Enumeration

(CWE) from the MITRE Corporation [74]. The CWE is a database of known hardware

and software vulnerabilities, which are classified and categorized. Many crypto-detectors

use CWE as a base for misuses that they detect. Notably, it includes known weaknesses

that involve software using an API (or Crypto API) in a manner contrary to its intended

use. A search was conducted using the CWE for new misuse cases not already identified

in the original MASC Taxonomy or not already revealed in academic papers located from

2019 to 2022. Unfortunately, the CWE did not contain any Crypto-API misuses that were

not already contained in the MASC Taxonomy or based on our searches of academic papers

from 2019 to 2022.

To ensure that selected papers were only relevant to Crypto-API misuse in the MASC

Taxonomy extension, the inclusion and exclusion criteria outlined in the original MASC

paper was followed. Specifically, to decide whether to consider a paper for further analysis,

we used the inclusion criterion that the paper should discuss Crypto-API misuse or its

detection. Exclusion criterion was used that the Crypto-API misuse described by the

paper will be excluded if it does not relate to the Java programming environment or

ecosystem, if the paper was published prior to 2019 or if the paper did not contain relevant

information related to the subject of MASC.

In addition to these criteria, an additional exclusion criterion was included specifically

with respect to the MASC Taxonomy extension. That is, if a paper discussed Crypto-

API-related misuses, but did not identify specific misuse cases in its text, the paper was

added to the general list of sources. However, these papers were not included in the final

list of taxonomy sources from which misuse cases were extracted for the MASC Taxonomy

extension. A complete list can be seen in Table 2.2.

17

Table 2.2: Papers added to the taxonomy

ID Title Year Venue
37 Ensuring correct cryptographic algorithm and provider usage at compile time [111] 2021 ACM
38 Why Eve and Mallory Still Love Android: Revisiting TLS (In)Security in Android Applications [79] 2021 USENIX
39 Towards HTTPS Everywhere on Android: We Are Not There Yet [86] 2020 USENIX
40 CRYPTOAPI-BENCH: A Comprehensive Benchmark on Java Cryptographic API Misuses [2] 2019 IEEE
41 CRYPTOREX: Large-scale Analysis of Cryptographic Misuse in IoT Devices [113] 2019 USENIX
42 Negative Results on Mining Crypto-API Usage Rules in Android Apps [38] 2019 IEEE
43 Java Cryptography Uses in the Wild [56] 2020 arXiv
44 Python Crypto Misuses in the Wild [109] 2021 IEEE
45 Understanding How to Use Static Analysis Tools for Detecting Cryptography Misuse in Software [19] 2019 IEEE
46 A Comparative Study of Misapplied Crypto in Android and iOS Applications [35] 2019 SECRYPT
47 A Dataset of Parametric Cryptographic Misuses [110] 2019 IEEE
48 CogniCryptGEN: generating code for the secure usage of crypto APIs [64] 2020 IEEE
49 CryptoTutor: Teaching Secure Coding Practices through Misuse Pattern Detection [96] 2020 ACM
50 Using Graph Embeddings and Machine Learning to Detect Cryptography Misuse in Source Code [91] 2020 ICMLA
51 Evaluation of Static Vulnerability Detection Tools with Java Cryptographic API Benchmarks [3] 2022 IEEE
52 Automatic Detection of Java Cryptographic API Misuses: Are We There Yet? [114] 2023 IEEE
53 Hotfixing Misuses of Crypto APIs in Java Programs [77] 2021 ACM
54 CRYScanner: Finding cryptographic libraries misuse [21] 2022 IEEE

After compiling the master list of misuse sources, a misuse case extraction was per-

formed. Two researchers independently identify and record misuse cases present within

each of the sources. After this extraction process occurred, the two people met and had

what was termed an “agreement/disagreement meeting”, as described in the original paper,

in order to discuss their findings with respect to our extractions. This was done to ensure

consistency across the different papers and ensure that each misuse case was found as well

as confirmed. If the two members had any sort of disagreement over if something was a

misuse case or not a third independent party was brought in to ensure correctness.

Misuses were extracted and organized with the same methodology as the original paper.

The same clusters were used that were designed for the original paper to organize each of

the misuses into categories. The clusters were created based on two differentiating criteria:

"(1) the security goal/property represented by the misuse case (e.g., secrecy, integrity, non-

repudiation) and (2) its level of abstraction within the communication/computing stack

(e.g., confidentiality in general, or confidentiality with respect to SSL/TLS)"

In addition to this another misuse extraction was performed at a later date based on the

misuses that were extracted. I went through each paper in the taxonomy and located each

misuse that was listed for each of these new papers. This was done to confirm the work

that had already been done but ensure that it was thorough. This step was meant to be

redundant and ensure the correctness of the taxonomy but resulted in some disagreements

18

of misuses within three of the sources and a disagreement with one of the new sources in

the taxonomy as a whole.

The approach for this additional step was for me to look at each individual paper.

Based on the updated taxonomy that was produced I would go through the paper and

look for each misuse that was specified to be contained within this paper. If the misuse

was found it would be marked down and confirmed. If it was not found that misuse in the

taxonomy would be flagged and would be brought up again with the original third party.

Then if confirmed it would stay in the taxonomy, if not it would be removed. Since the

taxonomy is an extension I wanted to give extra cation to ensure not only correctness but

consistency to ensure the taxonomy was one whole versus being two separate parts.

By the end of this process 13 new misuse cases were identified (see Table 2.1) and

added to the MASC Taxonomy. In addition, I was also able to further confirm many of

the misuses that were already present in the taxonomy with the additional papers.

I believe that this is a solid basis for MASC as a whole and helped give ideas for

expansion of operators to ensure that MASC is keeping up with the changing requirements.

This taxonomy will likely have to be updated again in the future since security misuses

come up frequently and the field is ever-changing. I feel that this taxonomy is a good

representation of cryptographic misuses through 2022.

2.1.2 Extended Operators

When designing mutation operators I continued building them based on the trade-off of

representing as many misuses cases as possible while also creating a number of operators

that can still feasibly maintained. As the project grows this will continue to be a challenge.

This is why it is important when operators were designed to make them as flexible to as

many misuse cases as possible. This requires a lot of time and planning to ensure the

design of the operators is maintainable. The other goal of operators as laid out in the

original work is that they are not designed to exploit general soundiness limitations such

as dynamic and implicit calls. This is important to ensure that the results that are found

19

are actual flaws versus something that a tool cannot be reasonably expected to compute.

The operators were designed to be expressive of multiple misuse cases to allow for more

coverage. Design of operators is also guided by the threat model described previously.

When an operator is designed which threat model it covers is considered as well. I felt

there was a lot of room to expand upon the evasive developer (T3) so most of the new

operators focus on this threat model.

The MASC framework consists of two main types of operators: flexible and restrictive

operators. These two types are based on the common characteristics that were found

amongst misuses of crypto-API. The restrictive operators are operators where a developer

can only instantiate certain objects by providing values from a predefined set such the

method Cipher.getInstance(<parameter>) only accepts predefined configuration values

for the parameter in String form. While other crypto-APIs allow significant amount of

customizability and extendability resulting in the flexible type of operators. For this work

I exclusively focused on extending the restrictive operators.

Due to the nature of restrictive operators having more limitations it leaves plenty of

room for expansion. In addition, since the taxonomy was expanded it was possible to utilize

some of the ideas that already existed in the taxonomy as well as newly discovered misuse

case. Since these operators have limitations, there are many possibilities for expanding

the restrictive operators. For the extension of MASC I have focused heavily on expanding

the number of restrictive operators as well as the functionality of some of the restrictive

operators that already existed.

While expanding the operators there was also more of a focus placed on the (T3)

cases. The initial paper was intentionally conservative with what was considered an evasive

developer. This was due to the work being new and wanting to ensure that the operators

were considered fair based on research conducted. After some time and further research I

felt that it was possible to push further with this type of developer and after seeing further

examples of evasive developers in real life cases. I wanted to ensure MASC is well-rounded

20

when simulating different types of developers and provide the most use cases possible for

crypto detectors.

OP13: Iterative Method Chaining – Similar to in MASC OP5 (Method Chains)

this operator implements method chaining to hide the value. Where this operator differs

from OP5 is that it can take a value specified by the user and create that many method

calls. The method calls are then chained in succession. Every method call will have a safe

value until the final call which transforms the value into an unsafe value. This was created

to test the limits of how far crypto detectors check method calls and can allow a user to

determine where their fault point is. Just like OP5 this behavior would simulate a (T3)

developer. An example can be seen in Appendix A at A.16.

OP14: Iterative Nested Conditionals – This operator shares some similarities

with the idea behind OP13: b – ut instead of using method calls based on the iteration

value it creates nested conditionals based on the value. Within the if statement there is

an unsafe value and in the else a safe value. The nested conditionals will always pass the

unsafe value but like OP13: t – his operator tests how many nested conditionals a crypto

detector can evaluate. An example can be seen in Appendix A at A.18.

OP15: Method Builder – This case takes method calls to build the String of a

vulnerable call. The object class has methods that each contain a letter such as “D”, “E”,

and “S”. Then it has a method that will add the letters together by calling each method

and setting them equal to the variable in the class. This variable would now be "DES" and

could be passed into an unsafe method. This operator also simulates (T3) behavior and is

not something a developer would accidentally do. An example can be seen in Appendix A

at A.19.

OP16: Object Sensitive – The operator creates two versions of a base object that

has method calls to make a String either secure or unsecure. One object sets the variable to

secure while the other sets itself to insecure. Then we set the object that is currently secure

equal to the object that contains the insecure String. Then the originally secure object

String is passed into the vulnerable API. This is done to test how well crypto detectors

21

can handle object sensitivity. This was designed to give MASC more options for testing

object sensitivity since this was an area that was originally lacking. The behavior also fits

under our T3 developer. An example can be seen in Appendix A at A.20.

OP17: Build Variable – For this operator I converted an insecure String into a char

array. Then when the vulnerability is passed into the API the char array is then converted

back to a String during the method call. This would fall under the (T1, T2) developer.

This is because a developer could be doing some form of String manipulation that requires

converting a String to a char array and then passing that into the method call. An example

can be seen in Appendix A at A.21.

OP18: Substring – The idea behind this case is a user pulling the misuse out of a

substring. In this case we took something like “HelloWorldDES” and passed the substring

“DES” into the vulnerable API. Once again this is a (T1, T2) developer since they might

pull something out of String and pass it in not knowing that it is vulnerable. Since it is

not being passed in simply as a String if the crypto detector does not process the change

this is easily a misuse that could slip by. An example can be seen in Appendix A at A.22.

OP19: Static Keystore – This operator is designed to handle static bytes being

passed in insecure ways. For example, if a developer attempted to pass static bytes that

are stored in a variable into Android Keystore since this is considered unsecure behavior.

This would emulate a T1 developer since this is a very easy mistake to make if someone is

unaware of the rules associated with crypto API and vulnerabilities. An example can be

seen in Appendix A at A.23.

2.1.3 Threat Based Mutation Scopes

The mutation scopes are designed to emulate the three types of developers described in

the threat model. The scopes try to closely simulate placements of vulnerable code for the

benign (T1, T2) and evasive developers:

The main scope creates base case mutations and generates simple Java files to be tested.

This is used mainly to determine if a crypto-detector is even capable of detecting misuses

22

by providing files that contain only the misuse. These mutants are seeded in simple Java

or Android templates at the beginning of the main method. This ensures that the mutants

are found and analyzed. This is meant to simulate the behavior of a benign (T1 and T2)

developer.

The exhaustive scope looks at seeding mutations in every possible location such as

class definitions, conditional segments, method bodies and anonymous inner class object

declarations. Note that it is seeded in places that ensure the app is still compilable.

Typically, this is used with a single misuse that is known to be detected by the operator

and is used to determine how thorough the crypto-detectors when analyzing files. This

scope is meant to analyze a T3 developer they may hide misuses in places that one would

not normally expect misuses to appear.

The similarity scope seeds mutants in places where a similar security API is already

in use. It emulates taking possibly secure uses and making them insecure while not over-

writing the previous code. This emulates where the benign developers (T1 and T2) would

potentially place misuses and is meant to test how well the crypto-detectors analyze real-

istic areas misuses might appear.

23

Chapter 3

Implementation

The implementation of MASC remains consist with the original work. It involves the same

three original components: "(1) selecting misuse cases from the taxonomy for mutation,

(2) implementing mutation operators that instantiate the misuse cases, and (3) seeding/in-

serting the instantiated mutants in Java/Android source code at targeted locations." The

extension of the framework was built upon the foundation that was previously laid. All

additions remained consistent with the implementation of the original work. A high level

diagram of MASC’s design is shown in Figure 3.1.

1. Selecting misuse cases from the Taxonomy: In the original work 19 misuses were

chosen from the taxonomy for mutation utilizing the original 12 operators. Misuses were

chosen based on two main factors to ensure that different categories of cryptographic

misuse were represented as well as ensuring the more prevalent cases appeared as well.

For the extended work only a few additional misuse cases were added such as a static key

in android keystore. However, with the expansion of the operators it is possible to create

many more mutants with the misuses that were already present. For this extension the

previous misuses were leveraged when creating mutations. However, they were designed

with other possible misuses in mind similarly to the original 12 operators.

2. Implementing mutants: The mutation operators described in the previous chapter

along with the original 12 operators were designed to be applied to one or more crypto-API,

24

for instantiating specific misuse cases. The goal of generating mutants in programs is to

ensure that they are still compilable. To ensure that this remains possible, MASC consid-

ered the necessary syntactic requirements of each API that is being implemented (such as

the requirement of surrounding try-catch block with appropriate exception handling) and

the semantic requirement of the specific misuse that is being instantiated. MASC used

Java Reflection to determine all the necessary syntax to automatically create compilable

mutants. After this MASC is designed to combine this component with the parameters to

create the mutants.

MASC also ensures that mutants generated for evaluation are compilable using two

mains steps: "(1) Using Eclipse JST’s AST-based to check for identifying syntactic anoma-

lies in the generated mutated apps, and (2) compile the mutated app automatically using

build/test scripts provided with the original app." Since the portion is fully automated this

is how MASC has made it possible to generate many mutants to evaluate a crypto-detector

with little effort from the user.

3. Identifying Target Locations and Seeding Mutants: To locate target locations to

seed mutants using the similarity scope the MDroid+ mutation analysis project was lever-

aged as a component of MASC. For the original work the process it used to determine

mutant locations was changed to fit the scope of MASC and support was added to include

dependencies that crypto mutations introduce. When I began work on MASC this com-

ponent was connected to MASC where it needed to be but contained a lot of unnecessary

components leftover from the original MDroid+ project that MASC was not utilizing. For

the extension I identified the parts of MDroid+ that MASC was using and fully integrated

them within MASC. This was done to help consolidate MASC into one project rather

than a project using components from two additional projects. The components that were

leveraged from MDroid+ still exist but now are fully integrated within MASC.

Similarly, MASC also extended µSE to create the exhaustive scope. The extended

µSE was used to find locations where crypto-APIs can be inserted in a program and still

25

allow the program to be compilable. Just like MDroid+ I integrated the parts of µSE that

MASC utilized into the main program.

In addition, the same flaw of corner cases with mutants causing compilation errors still

exists within MASC. Due to how MASC is implemented this is something that is not easy

to change. These cases still have a change to appear in 0.098% of cases.

Figure 3.1: A high level diagram showing the architecture design of MASC. This further demon-
strates how each component of MASC is designed and how to run the framework

3.1 New Features

While many of the new additions to MASC came in the form of extending work that

was already there and the heavily extended the evaluation. I also introduced a couple of

new features into MASC to help make the framework more user-friendly and allow a new

perspective of evaluation to be conducted.

26

3.2 Sensitivity Evaluator

The sensitivity evaluator is a new component of the MASC framework designed as an

alternative way for users to evaluate crypto-detectors. This tool is designed to help users

generate mutants without having to understand the specifics of what each operator does.

In security analysis, there are sensitivities that are commonly discussed in relation to

static analysis tools. These crypto-detectors are built with these sensitivities in mind

and claim to be able to logically handle some of them. The main sensitivities I found

when looking through past work were: flow sensitivity, alias sensitivity, context sensitivity,

path sensitivity, and object sensitivity. For this work the sensitivities are defined as the

following:

Flow Sensitivity - Flow sensitivity is an incredibly precise form of sensitivity. It rec-

ognizes the order that statements are performed and can keep track of the state of the

program at that point in time. A flow sensitive analysis performs its analysis based on

the sequence of statements. It can tell if two variables are assigned after line 23 while a

flow insensitive analysis will only know that the two variables were assigned at some point

within the scope of their analysis. A flow analysis will only take into consideration portions

of the program that would be run based on the previous lines. Flow sensitivity analysis is

an extremely expensive computationally.

Context Sensitivity - Context sensitivity takes into account the information throughout

the program when method calls are made to determine if there is a vulnerability. It

can differentiate between two different function calls to the same method with different

variables. A context insensitive approach would flag both function calls if one of them was

considered vulnerable while a context-sensitive approach can differentiate between the two

calls. A less sophisticated version of this is interprocedural sensitivity.

Alias Sensitivity - Alias sensitivity is typically a variation of context or flow sensitivity.

In Java, alias sensitivity is typically type based, this is because Java is a type safe language.

Alias sensitivity is the ability to keep track of a variable that has been aliased to another

27

variable and still keeping track of the value. If there is a variable named x that equals one

and we pass this into a method this passed value would be an alias of x.

Path/Conditional Sensitivity - Path sensitivity only takes into consideration paths

through the program that are feasible. It has a heavy focus on things such as conditionals.

Within programs some paths or statements can not be reached by the code, a path sensitive

analysis would not flag a vulnerability that is unreachable. Path sensitive analysis is only

concerned with the path of the program that is possible to be executed.

Field/Index Sensitivity - The ability to differentiate different fields that are a part of

the same object. If an object contains two variables one tainted and one that is not tainted

and the non-tainted one is called a field sensitive analysis would not flag the object as a

vulnerability. This requires keeping track of all the contents of objects separately and

understanding when certain aspects of an object are called by the program.

Object Sensitivity - Takes into account different versions of the same object. It has

the ability to understand the difference between a version of an object that contains a

vulnerability and one that does not contain a vulnerability. If we create two versions of

object FOO called f1 and f2 and place a vulnerability in f2 but only interact with f1, an

object sensitive tool would be able to recognize if a vulnerability is not present.

With these definitions in mind for the sensitivities I designed the sensitivity evaluator.

This tool allows MASC to be run and generate mutants that fit into each specified def-

inition. Once these definitions were clearly defined, I categorized each operator into the

category or categories that it fit under. Then with this knowledge I designed the sensitivity

runner so that MASC would only produce output based on a specified sensitivity. This

was done to lower the barrier of entry for MASC as well as create a new way of evaluating

crypto-detectors using MASC. By defining operators in this way it is possible to put more

emphasis on cases that fit the description of a crypto-detector. If a crypto-detector made

a claim that it was flow sensitive now it is possible to easily run all the cases that are

defined to be flow sensitive and see how well it performs against those mutants instead of

trying to determine which operators might fit this definition. It would be expected that a

28

crypto-detector that claims to handle a certain sensitivity would be better suited to handle

those cases.

The sensitivity evaluator combines the input of all the various cases and allows the user

to specify how they want to run it in one file. It then handles creating all the operators

that are related to the selected sensitivity. It will create the operators with the parameters

provided by the user within each operator. This tool should make MASC more accessible

to those with some knowledge of security without having to get a full grasp about how

the operators and specifics of MASC work. I believe both the user interactivity aspect of

this and the new perspective will be greatly beneficial to performing research on crypto-

detectors. Currently, it only creates minimal examples but was designed to easily be

expanded to the other scopes.

3.3 Automated Evaluation

In the original paper all analysis from all the crypto-detectors was done by hand, so it

required many man-hours and double-checking to ensure there were no errors. To help

determine results for researchers and users an additional tool was created for MASC, this

tool is the automated analysis. The tool allows researchers to run MASC on certain

crypto-detectors and MASC will automatically parse the results and let the user know if

the crypto-detector failed and how it failed. The tool can also take output from various

crypto-detectors that were given MASC code and can tell where the crypto-detector failed.

This is done using a Static Analysis Results Interchange Format or SARIF parser that was

created. This file format is becoming the standard output for Static Analysis tools and is

being pushed heavily by GitHub. At the time of creating this tool this file format was fairly

new and did not have many tools created to parse its contents. To build the automated

analysis component it required first to build a tool that could parse the SARIF format.

SARIF format shares a lot of similarities with JSON, this made it possible to leverage

some Java JSON libraries such as the Google JSON simple library. I built a SARIF layer

29

on top of this library to create a tool for parsing output. The SARIF parser tool I created

takes in two SARIF files as input one of the code before mutation that was passed into the

crypto-detector and one SARIF file that was mutated and seeded with misuses. This is

done so that if there were any misuses present in the program before MASC was run that

are not taken into account and added to the total of misuses the crypto detector found

because of MASC.

More specifically, I created a tool that is able to parse a SARIF output from a Crypto-

API Misuse Detector to determine which seeded misuse cases were caught by the detector.

Put another way, this component checks to make sure the Crypto-API Misuse Detectors

were actually able to catch the misuses seeded in the program. Currently, this tool only

works for the Main scope of the MASC Framework. However, it can easily be expanded

to work with the Exhaustive and Selective scopes in the next extensions of the MASC

Framework.

In terms of how the tool works, it takes the SARIF output files obtained from the

Crypto-API Misuse Detectors as input along with the MASC configuration file used for

mutation. Using this information the tool parses through the MASC configuration file

to determine where the created mutated Java files were placed and what the Crypto-API

name is being tested. Using this information, the mutated Java files that were created are

scanned to find the line that contains the misuse. Once the misuses are found it is then

possible to scan through the results of the SARIF file using Flow Analysis.

Flow Analysis in terms of how it is used in this project is the idea that each misuse cre-

ated by an operator can be represented as a different level of complexity. MASC inherently

has levels of complexity already designed into it. To put it simply, a Crypto-API Misuse

Detector will have an easier time catching a misuse like “AES” than “A∼ ES”.replace(“∼”,” ”)

since the former example is less syntactically complex than the latter example. By design-

ing it this way, the SARIF files can then be analyzed in order of complexity starting with

the most basic misuse (or “base case” misuse) and increasing to the more complex ones

until the Crypto-API Misuse Detector fails to catch one. If the crypto-detector fails then

30

the analysis can stop because if a tool cannot find a less complex misuse it would not be

expected to find a more complex or mutated misuse case. Implementing the evaluator in

this way makes it a lot easier to determine where Crypto-API Misuse Detectors fail and

saves a lot of manual effort since this can all be done in an automated fashion. This process

also reduces the risk created by manual evaluation.

The tool was later expanded and used a part of the main MASC configuration file. It

was made possible that when MASC was run it could run the output it creates against a

crypto detector then check that output and let the user know which mutants were found.

This additional step was built on top of the SARIF Parsing tool to create the full end to end

automated analysis. This step was the integration of the SARIF Parsing analysis tool with

the entire main project since the original tool looked at outputs of crypto-detectors that had

MASC mutants run on them. The new full automated analysis takes that work and brings

together with MASC being run as well combines crypto-detectors such as CogniCrypt by

running it as a part of the analysis.

Both the SARIF parsing tool and the combination with automated analysis should

help users as well as researchers save a lot of time when examining crypto-detectors. This

automated analysis is less error-prone and can help automatically determine if a mutation

was caught but also what the likely cause of the failure was. It can determine with its

Flow Analysis what level of complexity caused the failure and help more easily identify

the potential flaws found within detectors. Overall the tool helps MASC become a more

complete project and continues to make it more accessible. This helps to further MASC’s

goal of improving crypto-detectors by better identifying exactly where they fail.

3.4 MASC Web

In another attempt to make MASC user-friendly. I designed the initial version of a website

for MASC. Currently, a second version of MASCWeb is in active development using Django

instead of Flask (which was originally used). The goal of the website was to introduce users

31

to MASC and allow them to mutate files directly on the website. I integrated MASC into

the website and made it possible for users to upload a file and specify the parameters they

wanted to mutate as well as the operator they wanted to use. The website would then

provide them with both the original version and the mutated version of the file. Eventually,

the goal is to deploy the website to help increase visibility of MASC and allow for additional

options for users to access MASC.

32

Chapter 4

Evaluation and Methodology

The goal of the evaluation was to find flaws in crypto-detectors using MASC once again.

The main objectives were to (1) measure the effectiveness of the new operators at uncover-

ing flaws in crypto-detectors and the old ones at uncovering flaws in new crypto-detectors

(since the original operators were proven to be effective), (2) continue to learn the charac-

teristics of the flaws found and their real world impacts, and (3) determine how likely flaws

are to reappear in future versions of crypto-detectors. Based on these goals to evaluate

MASC the same three original research questions were used to conduct evaluation with

the addition of another:

RQ1: Can MASC discover new flaws in crypto-detectors?

RQ2: What are the characteristics of these flaws?

RQ3: What is the impact of the flaws on the effectiveness of crypto-

detectors in practice?

RQ4: How likely is it for flaws to reappear in newer versions of crypto-

detectors?

To answer RQ1-RQ4, I used the same methodology described in the initial MASC

paper. I took the original set of nine crypto-detectors and found their most up-to-date

versions if possible (Xanitizer is no longer freely available) and then added an additional

five crypto-detectors to the set that were not evaluated in the original paper. The crypto-

33

detectors that were evaluated were CogniCrypt, SpotBugs with FindSecBugs, QARK,

LGTM, GitHub Code Security, LGTM, ShiftLeft Scan, Amazon Code Guru, SonarQube,

Codiga, Deepsource, and Snyk. All tools used are under active maintenance (excluding

QARK) since the goal of MASC is to provide feedback on potential improvements to the

crypto-detectors it is important that they are still in active use. Similar to the original

paper the results of the evaluation are not intended to demonstrate comparative advantages

of tools and are not intended as an endorsement of any such tools, each tool is evaluated

separately from the others using the same techniques.

For evaluation of the crypto-detectors the steps used to conduct evaluation remained

the same. I expanded on the techniques used but ensured they were still consistent with

the original work since RQ1-RQ3 are the same as the original paper.

Step 1 - Selecting and mutating apps: In the original work 13 open source Android

apps and four sub-systems of Apache Qpid Broker-J were found and used for mutation.

For the extension these same apps with their original mutations were used as a part of the

evaluation. In addition, I located 15 open-source Android apps on GitHub and included

Tink, a Java project from Google, for mutation. To locate these additional candidates for

mutation I used a similar methodology as the original work. The way the new Android

apps were located was by using GitHub’s advanced search to locate Android apps that had

at least 200 stars, these were then sorted by how recently they were updated to help ensure

they would be both compilable and up to date with dependencies. All apps that were used

were tested to ensure they were compilable prior to mutation. In addition to help get

a variety of different types of apps I also searched for apps that contained tags such as:

security, cryptography, secure, games, tools, calendar, exercise, and location. Out of the

15 new Android apps, five of them were specifically found to include crypto-graphic API’s

(Cipher, MessageDigest, X509TrustManager) and were mutated using the Similarity scope.

In addition to the 20,303 mutations found in the original MASC evaluation, I introduced

26,765 mutants within the new Android apps and Java project. This gives a grand total

of 47,068 mutants generated by MASC used for evaluation, more than double the original

34

amount of mutants. Generating all the new mutants took about 20 minutes total on MASC

which addresses RQ3, and did not require any human intervention. MASC is capable

of generating mutants very quickly the bottleneck of time comes from crypto-detectors

evaluating the mutants.

Step 2 - Evaluating crypto-detectors and identifying unkilled/undetected mutants: To

conduct the evaluation on a crypto-detector I analyzed the mutants that were produced

using the crypto-detector. Afterwards, mutants that were not detected by the crypto-

detector were identified and flagged as unkilled. To conduct this full evaluation I kept

track of logs produced by MASC for all the apps, this log contained information such

as line numbers where mutations were placed and what type of mutations were placed

in those locations. Initially I ran the unmutated version of the app against each crypto-

detector. Using the output produced I made a note of any cryptographic related misuses

that were found on the unmutated version to ensure that these were not counted as a

mutation produced by MASC. Then the mutated version of the app could be analyzed by

the crypto-detector and results could be compared. Once the similarities of the reports

were eliminated I looked at the remaining results and any remaining cryptographic misuse

that was found is considered a mutant inserted by MASC that was killed by the crypto-

detector. Each killed mutant is confirmed by comparing it with the log to ensure that

a mutant was inserted at this location and the correct flag was produced by the crypto-

detector. In addition, this analysis was also conducted automatically by the automated

analysis mentioned in section 3.3 for any tool that could produce SARIF output such

as CogniCrypt. The approach taken for this is done to ensure that misuses found by

the crypto-detector that were not inserted by MASC are not considered as part of the

evaluation. The main goal is to ensure all mutants that were inserted by MASC are

located and marked as killed or unkilled. Across the five new crypto-detectors the average

number of found mutants is 14,070.

Step 3 - Identifying Flaws (RQ1): For the apps using the exhaustive approach I ran-

domly analyzed many of mutants that went undetected to locate potential flaws. I took

35

the same approach as the original work and looked at misuses that the crypto-detector

claims it can detect but in reality fails to detect it. To make sure all flaws were novel I ex-

empted the exceptions that were stated specifically in the crypto-detector’s documentation

to ensure a fair evaluation. After all the goal is to determine flaws where crypto-detectors

make claims but fail to meet those claims. Since this work was done in the original MASC

the claim remains consistent that "while a crypto-detector may seem flawed because it

does not detect a newer, more recently identified misuse pattern, we confirm that all the

flaws we report are due to misuse cases that are older than the tools in which we find

them." This is because misuses that were used to evaluate the detectors are still the most

discussed misuses between 1998-2022 and since all the tools used either have new versions

or were recently deployed (Amazon Code Guru). In addition to confirm flaws I used the

minimal app created for the original work that contained only the undetected misuses to

re-analyze the all the tools. This app was also altered to include mutations created by the

new operators to verify these as well.

Step 4 - Characterizing flaws (RQ2): Flaws were grouped into the same flaw classes,

based on most likely cause, used for the original evaluation. The only difference was the flaw

classes were updated to include the new mutants, but the original flaw classes still remain

intact. This was done to help further grasp why are the tools might fail. In addition, all 13

crypto-detectors were evaluated using the minimal examples represented by each flaw to

gain a further understanding as to why a flaw might be missed despite the documentation

make claims as such. Flaws were reported to their respective tool maintainers, and so far

SonarQube has created five high priority issues in response to the reported flaws.

Step 5 - Understanding the practical impact of flaws (RQ3): To answer this research

question for the extension I analyzed repositories to ensure that the new misuses that were

introduced could also be found in real world applications. This was done using GitHub

Code Search and was additionally confirmed manually.

Step 6 - Attributing flaws to mutation vs base instantiation: To ensure that a flaw that

MASC found was due to a mutation and not simply a lack of coverage of the base case,

36

each crypto-detector was evaluated with the most basic version of the misuse to determine

if it was able to catch that. An example of this would be directly testing something such

as Cipher.getInstance("DES"), if this use case is caught it is then possible for it to detect

mutations of this statement.

Step 7 - Reevaluation of the original eight crypto-detectors: To reevaluate the original

crypto-detectors I used the same approach that was used on them in the original work. I

ensured that they had new versions since the original work was published. To ensure that

what I found was a flaw that reappeared rather than a flaw that had not been fixed from

the original work, I made sure that the issue that was reported by the original authors was

closed. This was to ensure that the bug was addressed. I also report if any of the flaws

present in the original work that were never fixed are still present in the new version.

37

Chapter 5

Results and Findings

5.1 Analyzing Flaws

The new analysis of the 13 crypto-detectors results in six new flaws being found. Addi-

tionally, the analysis found 19 flaws across the 5 new crypto-detectors that were located

in the original set of flaws found by MASC. For this work I included an updated version

of the flaw classes with the newly located flaws and present an updated table that maps

the flaws to the new versions of the crypto-detectors and new crypto-detectors. Similarly,

to the original work I found that the majority of total flaws found could be attributed to

mutations rather than just using the base case versions of the misuse. This continues to

prove that mutation testing provides better results for finding flaws than just using the

base cases alone to determine flaws.

Since I reevaluated crypto-detectors found in the original paper I used the patched

versions that included a fix for the multidex issue presented in the initial paper. However I

noticed, notably with Amazon Code Guru, there does appear to be a limit to the number of

recommendations it creates for a specific misuse. For example, when I used the exhaustive

scope to evaluate the tool the misuse produced a "weak cipher algorithm" warning but it

only reported 100 of these despite many more being seeded within each program. This

would then mean after the user fixes the flaws they would have to know to run another

38

analysis on their code. Similar to the first group this does affect the reliability of the

results and makes it challenging to determine how well it evaluates many misuses. I will

further discuss this fault with Amazon Code Guru and the crypto-detectors that did not

fully analyze the code in the Discussion section.

FC1: String Case Mishandling (F1): This class was the motivating example found for

the original work and for consistency remains in its own class for this work. This example

can be found in Table 1 as F1. For this case a developer may use des or dEs (instead of the

expected DES) in Cipher.getInstance(<parameter>) without any errors being raised. This

was not found by Snyk despite being able to detect the base case version of this misuse.

Condiga and QARK were also unable to detect this flaw but were unable to detect this

base case as well.

FC2: Incorrect Value Resolution (F2 – F9): For these flaws 11/13 crypto-detectors

failed to successfully detect all 9 flaws. Notably though the crypto-detectors that were

evaluated in the initial paper did perform better on average than the 5 new tools that

were evaluated. Snyk and SonarQube performed on par with some of the tools that were

initially evaluated.

SonarQube was able to detect some of the more simple cases but failed due to the tool

not evaluating method invocations. SonarQube is only capable of detecting String literals

and can detect it if it is contained in a variable.

FC3: Incorrect Resolution of Complex Inheritance and Anonymous Objects (F10 –

F13): Flaws in this class occur because 10 crypto-detectors were unable to resolve the

complex inheritance relationships among classes. These flaws were found specifically by

using the flexible mutation operators. As found in the original paper this is clearly a

consideration for some crypto-detectors while others did not consider this in design.

FC4: Insufficient Analysis of Generic Conditions in Extensible Crypto-APIs (F14 –

F16): The flaws in this section represent the inability of crypto-detectors to identify fake

conditions and also true conditionals. This determines if a crypto-detector is capable of

following path sensitivity.

39

FC5: Insufficient Analysis of Context-specific Conditions in Extensible Crypto-APIs

(F17 – F19): The flaws found within this class are similar to those found in FC4, however,

the fake conditionals are contextualized to the overidden function. This would simulate

the behavior of an evasive developer because one my try to add further realism to fake

conditions to avoid tools that are capable of detecting simple generic conditions.

FC6: Newly Introduce Flaws (F20 - F25): These flaws mostly focus on interprocedural

behavior and are similar to flaws found within FC2, however, they were separated to

help provide more of an emphasis on these newly introduced flaws. F23 - F25 are more

complicated cases of F7 and due to F7 being present in 11/13 crypto-detectors it was not

surprising that none of these three flaws were found by the crypto-detectors.

F20 was the least present flaw among the newly introduced flaws where the mutations

were found by 4 of the crypto-detectors. F21 and F22 were found by only two crypto-

detectors and interestingly were not able to be located by the two with the minimal case

evaluation. They were only revealed when placed within Android apps in the similarity

scope for the two crypto-detectors.

Finally, with the newly introduced operators that allowed for a user specified number

of method calls and nested conditionals (F7 and F25), I had planned to test a varying

number of method calls and nested conditionals. I did run minimal cases with 3, 4, 5, 10,

15, and 20 method calls/conditionals. However, since the simple versions of these were

not able to be located I could not fully test the limits of how many calls or conditionals

the crypto-detectors actually evaluated before stopping as planned when creating these

operators. As these tools improve these operators will be able to be more fully utilized

and help test the limits of the crypto-detectors.

5.2 Comparing Original Results to New

As a part of the extension the goal was also to look at the differences between what

was found in the evaluation of the original work and the extension. For the most part

40

new versions of tools did appear to see some improvements from their original evaluation.

In fact seven out of eight tools had some improvement from the original evaluation, the

exception being QARK because it is no longer being maintained. LGTM had the most

differences between the original work and the new evaluation by eliminating four flaws that

were originally found within the tools. The most from the other tools was eliminating one

flaw or improving a partially present flaw to be completely eliminated.

In addition, I also found that on average tools that were reevaluated by MASC had

fewer flaws present than those who were being evaluated for the first time for this work.

This could have occurred for a variety of reasons but one of the likely causes for this is

the work done by the original MASC work. This is due to the fact that the flaws found

in the original work was reported to the maintainers. While they did not eliminate every

flaw that was reported they did overall see some improvements and did have fewer flaws

than their counterparts that were being evaluated for the first time.

I also found that there were two cases where flaws that were not present in the original

evaluation appeared in the reevaluation of the new version. This occurred in the LGTM

evaluation with F3 and CogniCrypt with F7. This shows that flaws do have a tendency

to reappear and demonstrates that evaluation of crypto-detectors is not a one time thing,

it needs to be ongoing. While it is clear that it is not a common occurrence for flaws to

reappear it is clear from the results that it can happen. Each release has the potential to

reveal more bugs and possibly bring back old misuses. In addition, across the reported flaws

a total of 58 are still present in the new versions of the crypto-detectors even after these

issues were reported. However, notably seven of the eight reevaluated crypto-detectors

did see improvements since the original evaluation was done. Due to the issues that

were reported by the original authors this shows that MASC at least help create some

improvements in the tools. QARK is the only crypto-detector that saw no change since

the original work.

41

5.3 Exhaustive Results

For the 5 new crypto-detectors it is notable how many misuses SonarQube is able to

identify. Out of the apps that were able to easily be run on it, it had the highest percentage

of found misuses. This seems to demonstrate that SonarQube is the most thorough when

analyzing files. However, running Android apps on SonarQube led to many failures as well

and this is why currently the number is so low.

It is also notable how well Snyk performed in this section. It misses many of the

minimal examples but is capable of looking through many of the files and conducts a fairly

thorough analysis. While it did miss 7,000 cases it still performed very well compared to

the rest of the group. Snyk has more issues with the variety of misuses it can detect but

does check every Java file for them.

I wanted to also take not of how poorly Code Guru appeared to perform. While this

is the number of reported misuses it is possible that Code Guru detected more while not

reporting them. Several of the applications run reached 100 insecure cipher algorithm

warnings and stopped there. It is unlikely that Code Guru happened to find exactly 100

instances in each of these apps. This is why I believe once it reaches a certain number of

a specific misuse it does not continue reporting. This makes it difficult to determine how

well Code Guru looks through files.

Finally, I also want to address the differing number of total mutations tested on each

crypto-detectors. This occurs due to a variety of reasons across the tools. Many of the

tools have different criteria for how code is analyzed whether they look at source code,

JARs, or APKs. Based on how these tools are built and all the apps being open source

this leads to some issues with evaluating all the apps. For example, some applications

from the older works have out of date versions for dependencies which leads to issues with

evaluation. Specifically, I had issues with outdated Gradle versions working correctly with

SonnarScanner. While it is likely possible to resolve these issues and run the code given

time. Focus was not placed on fixing issues within each individual app if it was not a

42

simple fix. This was because I did not develop the apps and there could be a variety of

components preventing evaluation that I am not fully aware of and this would require

being entirely familiar with each project. I ensured before evaluation that each app was

compilable before and after mutation but that was the extent of changes made to apps.

The reasons many apps were used was to ensure that I had a reasonable sample size to

evaluate each crypto-detector.

43

Table 5.1: Descriptions of Original Flaws discovered by Analyzing crypto-detectors.

ID Flaw Name (Operator) Description of Flaws
Flaw Class 1 (FC1): String Case Mishandling +

F1 smallCaseParameter (OP1) Not detecting an insecure algorithm provided in lower case; e.g.,Cipher.
getInstance("des");

Flaw Class 2 (FC2): Incorrect Value Resolution +
F2 valueInVariable (OP2) Not resolving values passed through variables. e.g.,String value = "DES";

Cipher.getInstance(value);
F3* secureParameterReplaceInsecure

(OP4)
Not resolving parameter replacement; e.g., MessageDigest.getInstance("
SHA-256".replace("SHA-256", "MD5"));

F4* insecureParameterReplaceInsecure
(OP4)

Not resolving an insecure parameter’s replacement with another insecure param-
eter e.g.,
Cipher.getInstance("AES".replace("A", "D")); (i.e., where "AES" by
itself is insecure as it defaults to using ECB).

F5* stringCaseTransform (OP3) Not resolving the case after transformation for analysis; e.g.,Cipher.
getInstance("des".toUpperCase(Locale.English));

F6* noiseReplace (OP4) Not resolving noisy versions of insecure parameters, when noise is removed through
a transformation; e.g.,
Cipher.getInstance("DE$S".replace("$", ""));

F7 parameterFromMethodChaining
(OP5 OP13)

Not resolving insecure parameters that are passed through method chaining,
i.e., from a class that contains both secure and insecure values; e.g.,Cipher.
getInstance(obj.A().B().getValue()); where obj.A().getValue() returns
the secure value, but obj.A().B().getValue(), and obj.B().getValue() return the
insecure value.

F8* deterministicByteFromCharacters
(OP6)

Not detecting constant IVs, if created using complex loops, casting, and string
transformations; e.g., a new IvParameterSpec(v.getBytes(),0,8), which
uses a String v=""; for(int i=65; i<75; i++){ v+=(char)i;}

F9 predictableByteFromSystemAPI
(OP6)

Not detecting predictable IVs that are created using a predictable source (e.g.,
system time), converted to bytes; e.g.,new IvParameterSpec(val.getBytes
(),0,8);, such that val = new Date(System.currentTimeMillis()).
toString();

Flaw Class 3 (FC3): Incorrect Resolution of Complex Inheritance and Anonymous Objects
F10 X509ExtendedTrustManager (OP12) Not detecting vulnerable SSL verification in anonymous inner class objects

created from the X509ExtendedTrustManager class from JCA; e.g., see List-
ing A.7 in Appendix).

F11 X509TrustManagerSubType (OP12) Not detecting vulnerable SSL verification in anonymous inner class objects cre-
ated from an empty abstract class which implements the X509TrustManager
interface; e.g., see Listing A.10).

F12 IntHostnameVerifier (OP12) Not detecting vulnerable hostname verification in an anonymous inner class
object that is created from an interface that extends the HostnameVerifier
interface from JCA; e.g., see Listing A.11 in Appendix.

F13 AbcHostnameVerifier (OP12) Not detecting vulnerable hostname verification in an anonymous inner class
object that is created from an empty abstract class that implements the
HostnameVerifier interface from JCA; e.g., see Listing A.9 in Appendix.

Flaw Class 4 (FC4): Insufficient Analysis of Generic Conditions in Extensible Crypto-APIs
F14 X509TrustManagerGenericConditions

(OP7, OP9, OP12)
Insecure validation of a overridden checkServerTrusted method created
within an anonymous inner class (constructed similarly as in F13), due to
the failure to detect security exceptions thrown under impossible con-
ditions; e.g., if(!(true||arg0 == null||arg1 == null)) throw new
CertificateException();

F15 IntHostnameVerifierGenericCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method
within an anonymous inner class (constructed similarly as in F14), due to the fail-
ure to detect an always-true condition block that returns true; e.g.,if(true
|| session == null) return true; return false;

F16 AbcHostnameVerifierGenericCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method
within an anonymous inner class (constructed similarly as in F15), due to the fail-
ure to detect an always-true condition block that returns true; e.g.,if(true
|| session == null) return true; return false;

Flaw Class 5 (FC5): Insufficient Analysis of Context-specific, Conditions in Extensible Crypto-APIs
F17 X509TrustManagerSpecificConditions

(OP7, OP12)
Insecure validation of a overridden checkServerTrusted method created within
an anonymous inner class created from the X509TrustManager, due to the failure
to detect security exceptions thrown under impossible but context-specific
conditions, i.e., conditions that seem to be relevant due to specific variable
use, but are actually not; e.g.,if (!(null != s || s.equalsIgnoreCase
("RSA")|| certs.length >= 314))throw new CertificateException
("RSA");

F18 IntHostnameVerifierSpecificCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method
within an anonymous inner class (constructed similarly as in F14), due to
the failure to detect a context-specific always-true condition block that re-
turns true; e.g.,if(true || session.getCipherSuite().length()>=0)
return true; return false;

F19 AbcHostnameVerifierSpecificCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method
within an anonymous inner class (constructed similarly as in F15), due to
the failure to detect a context-specific always-true condition block that re-
turns true; e.g.,if(true || session.getCipherSuite().length()>=0)
return true; return false;

+ flaws were observed for mulitple API misuse cases
*Certain seemingly-unrealistic flaws may be seen in or outside a crypto-detector’s “scope”, depending on the perspective; see
Section 6.2 for a broader treatment of this caveat.

44

Table 5.2: Descriptions of Newly discovered Flaws by Analyzing crypto-detectors.

ID Flaw Name (Operator) Description of Flaws
F20 StaticBytesInKeystore (OP19) Not detecting bytes that are created using a static source con-

verted to bytes and passed into IV; e.g.,new IvParameterSpec(
val.getBytes(),0,8);, such that byte[] val = "12345678".
getBytes();

F21 CharArrayToString (OP17) Being unable to convert an array of Char into a String object and pars-
ing the value; e.g.,javax.crypto.Cipher.getInstance(String.
valueOf(cryptoVariable));, such that char[] cryptoVariable
= "DES".toCharArray();

F22 UnsafeValueFromSubstring (OP18) Not detecting a Substring misuse being parsed from a longer string;
e.g.,javax.crypto.Cipher.getInstance("secureParamAES".
substring(11));,

F23 ObjectSensitivity (OP16) Not being able to differentiate between two instances of the
same object type one containing a misuse and one containing
a safe value; e.g.,String securecipher = new CipherPack().
safe().getpropertyName(); String unsecurecipher = new
CipherPack().unsafe().getpropertyName(); securecipher
= unsecurecipher; javax.crypto.Cipher cryptoVariable =
javax.crypto.Cipher.getInstance(securecipher);

F24 parameterBuiltFromMethodCalls (OP15) Unable to detect the construction of a misuse String based on calls to
methods that construct the misuse; e.g., e.g., see Listing A.19 in Ap-
pendix

F25 parameterFromNestedConditionals (OP14) Being unable to keep track of a variable as it is passed through a nested
number of conditional statements; e.g., see Listing A.18 in Appendix

+ flaws were observed for mulitple API misuse cases
*Certain seemingly-unrealistic flaws may be seen in or outside a crypto-detector’s “scope”, depending on the perspective; see
Section 6.2 for a broader treatment of this caveat.

45

Table 5.3: Flaws observed in different static crypto-detectors

Class ID AC SQ SY CD DS NLGTM NCG NCC NSB NTX NQA NSL NGCS
FC1 F1 3 3 7 Ø 3 3 3 3 3 3 Ø 3 3

FC2

F2 3 3 3 Ø pr 3 3 3 3 3 Ø 3 3
F3* 7 7 7 Ø 7 7 pr 7 7 7 Ø 7 3
F4* 7 7 7 Ø 7 7 3 7 7 7 Ø 7 7
F5* pr 7 7 Ø 7 3 3 7 3 7 Ø 3 3
F6* 7 7 7 Ø 7 7 pr 7 7 7 Ø 7 7
F7 7 7 7 Ø 7 3 7 7 7 7 Ø 7 3
F8 Ø 3 7 Ø Ø 7 7 3 3 3 Ø 3 Ø
F9 Ø 3 7 Ø Ø 7 7 3 3 3 Ø 3 Ø

FC3

F10 Ø 3 3 Ø 3 7 7 - 3 3 pr 3 Ø
F11 Ø 3 3 Ø 7 7 7 - 3 3 pr 3 Ø
F12 Ø 3 7 Ø 3 7 7 - 3 3 - 3 Ø
F13 Ø 3 7 Ø 7 7 7 - 3 3 - 3 Ø

FC4
F14 Ø 7 3 Ø 7 7 7 3 3 3 7 3 Ø
F15 Ø 7 7 Ø 7 3 7 - 3 3 - 3 Ø
F16 Ø 7 7 Ø 7 3 7 - 3 3 - 3 Ø

FC5
F17 Ø 7 3 Ø 7 7 7 3 3 3 7 3 Ø
F18 Ø 7 7 Ø 7 3 7 - 3 3 - 3 Ø
F19 Ø 7 7 Ø 7 3 7 - 3 3 - 3 Ø

FC6

F20 7 3 3 Ø 7 7 7 3 7 7 7 3 7
F21 7 7 7 Ø 7 3 7 7 7 7 7 7 3
F22 7 7 7 Ø 7 3 7 7 7 7 7 7 3
F23 7 7 7 Ø 7 7 7 7 7 7 7 7 7
F24 7 7 7 Ø 7 7 7 7 7 7 7 7 7
F25 7 7 7 Ø 7 7 7 7 7 7 7 7 7

7 = Flaw Present, 3 = Flaw Absent, pr = Flaw partially present, -= detector does not claim to handle
the misuse associated with the flaw, Ø= detector claims to handle but did not detect base version of
misuse nr = not yet run; AC = Amazon Code Guru, SQ = SonarQube, SY = Snyk, CD = Codiga,
DS = DeepSource, NCG = CryptoGuard version 04.05.03, NCC = CogniCrypt version 2.7.3,
NSB = SpotBugs with FindSecBugs version 1.12.0 , NTX = Coverity version 2022.6.0 , NQA = QARK
version 4.0.0 , NSL = ShiftLeft version 2.1.1, NGCS = GitHub Code Security version 2.12.6,
NLGTM = LGTM version 2.12.6 .
*Certain seemingly-unrealistic flaws may be seen in/outside a crypto-detector’s “scope”, depending on the
perspective; see Discussion for a broader treatment of this caveat.

Table 5.4: Mutants analyzed vs detected by crypto-detectors
Tool Input Type Analyzed Detected
Snyk Java Src Code 47,002 40,877

DeepSource Java Src Code 47,002 17,028
Codiga Java Src Code 26,725 0

SonarQube Java Src Code 13,749 11,601
Amazon Code Guru Java Src Code 46,967 840

CryptoGuard apk or jar 45,763 25,299
CogniCrypt apk or jar 23,601 4,576

ToolX Android or Java Src Code 9,774 8,547
SpotBugs jar 17,702 13,848
QARK Java Src Code or apk 46,324 0
LGTM Java Src Code 34,846 21,474
GCS Java Src Code 34,846 21,440

ShiftLeft Java Src Code 46,252 35,200

46

Chapter 6

Conclusion

MASC has been demonstrated once again that it is effective at finding flaws in crypto-

detectors. The work has been greatly expanded but there are still more areas that would

benefit further improvements. This new extension of MASC has also reintroduced some

areas of discussion initially brought to light by the original work. Since some time has

passed some perspectives of these discussions have shifted.

6.1 Limitations

MASC is still designed to help find flaws in crypto-detectors and still cannot guarantee

all flaws in a crypto-detector will be found. In fact formal verification should still be

done in conjunction with MASC. MASC’s design from the very beginning was to allow

for "systematic evaluation of crypto-detectors, which is an advancement over manually

curated benchmarks. "This still remains true while the extension has expanded MASC’s

functionality and coverage it is still not representative of all misuses. MASC is still held

back by the following limitations:

1. Completeness of the Taxonomy: The same approach was used to ensure the tax-

onomy was comprehensive as the original work. All steps were performed carefully and

utilized the same best practices found in other work. However, it is still possible that some

cases or sources could be missed during extraction. The extra evaluation step was added

47

to help ensure accuracy but it is still possible that some subtle contexts were once again

missed. Up to current date though I believe that this is still, to the best of my knowledge,

the most comprehensive taxonomy found in recent works within this area of research.

2. Focus on Generic Mutation Operators: This was a concern of the original paper

since the goal was to apply as many misuses from the taxonomy as possible. This was a

main area of expansion for this extension. MASC now contains many more new operators

that do represent some of the more specific cases found in the taxonomy. However, the

taxonomy is still not fully represented and many of the new operators were still designed

to have multiple use cases. Priorities for new operators were still focused on covering

more potential misuse even though the focus was exclusively on expanding the restrictive

operators.

3. Focus on Java and JCA: MASC’s approach is still informed by JCA and Java. No

work has been done since the original paper to adapt MASC to other languages at this

time.

4. Evolution of APIs: Since changes are still made to how JCA operates this may

eventual lead to changes being necessary in MASC. Up to now MASC is current and

the operators from the original paper do still function correctly. However, as time passes

some changes may become necessary despite MASC using reflection and automated code

generation to ensure flexibility. In addition, it is still an ongoing project to include more

misuse cases within MASC to get closer to fully representing the current taxonomy and

beyond.

5. Relative Effectiveness of Individual Operators: My research did not look into this

limitation that was present in the original paper. This paper looks further into what

MASC is capable of doing as a whole but does not evaluate how effective each operator is

at finding flaws. This still requires its own study.

6. Consistency with the Original Work: I was in constant communication with the

original authors and confirming with them how the original work was created. I incorpo-

rated feedback from them and had them review changes to the tool to help ensure as much

48

consistency as possible. In addition, for evaluation and expansion I followed all the steps

laid out by the original work to ensure that the work could stand as one whole project

rather than an add-on. I believe that this was done to the best of my ability and MASC

now stands as an expanded and more comprehensive tool. Since I was not directly involved

in the original work there may be some small details that were not done exactly the same

as the original work.

6.2 Discussion

Security-centric Evaluation Design: MASC still places a heavy focus on security

centric design. From the perspective of this framework it is believed that security should

come first no matter how unlikely or evasive a case may be. This is part of why some

new operators were designed to create more evasive cases. This idea still clashes with the

idea that designers of tools look more into a technique-centric perspective. Many of these

tools are not designed with a threat model in mind or directly from a security perspective.

In fact many of the tools analyze best coding practices in addition to looking for security

misuses. This leads to a gap between what is expected of a tool that claims it can perform

security checks.

What is scope for Technique-centric Design: There is still an ongoing discussion

on the space on what the scope should be. Should there be more of a focus placed on what

is most common and uncommon or should it be on what can easily be computed statically

vs cannot easily be computed. Even from a security perspective this is challenge since

common misuses would be expected to be caught, however, new misuses pose a bigger

threat due to the lack of awareness of the looming threat. Optimally most tools would like

to cover all possible cases but since this is not feasible the debate is what is most important

and what should be expected on crypto-detectors.

The Need to Strengthen Crypto-Detectors: Many detectors make claims with

the assurance that they can detect certain misuses. When tested many of these claims are

49

proven to still fall short of expectations. If crypto-detectors claim to be able to secure your

code it is important that they actually can. This means detecting uncommon cases and

being held accountable for falling short. MASC has shown that it is possible to find gaps

in crypto-detectors and help them improve but they are still a long way off from being able

to detect hard to statically compute misuses cases. This leads to the question of should

crypto-detectors be able to make the claims they do to secure your code?

Shifting toward security centric design: The original work showed that there is

interest in developers to make tools more secure. This was something they strived for and

it was proven that some of the tools that were evaluated did improve since the first paper.

This demonstrates that not only did the express interest they demonstrated interest. Even

in the new tools that were evaluated when issues were reported to them they were eager

to make a fix to improve their tool. Many developers have expectations that these tools

help make their code secure and a lot of times are not aware of common misuses. The

further these tools can expand with security centric design in mind the more developers

can expect to rely on them.

Pushing toward SARIF: As mentioned SARIF is a relatively new SAST output

format. Some crypto-detector designers have been reached out to and expressed interest in

being able to produce this format for their tool. MASC integrated this in hopes of helping

to encourage more crypto-detector designers to look into this format. If there is a standard

output not only does it make it easier to evaluate how well tool perform it also allows for

new tools to be produced to help users evaluate their applications. Having a standard

output as an expectation can lead to easier evaluation and can help create a way to fully

automize the evaluation of crypto-detector. This would help users be able to easily know

how reliable any tool is before they use it. In addition, if this was a standard output this

would also allow tools to more easily report all misuses found. As mentioned in a prior

section some crypto-detectors such as Amazon Code Guru do not provide a full report for

their analysis. This is likely due to UI limitations since the whole codebase is still scanned.

Having an output in the style of SARIF can help provide a full report to the user since it

50

likely would not have to be directly consumed by the user, it would be parsed and display

the output that way.

The Need for constant evaluation: As shown in the reevaluation of the original

crypto-detectors some bugs or flaws have the potential to reappear in future versions of

a tool. Due to the ongoing iteration of crypto-detectors it is important for them to be

reevaluated. While obviously an evaluation would be necessary when a new misuse appears

reevaluating the old misuses is equally important. Bugs have a tendency to reappear while

refactoring and making changes and as found the same thing goes for flaws. Having a

constant evaluation will help ensure that once a flaw is found and eliminated that it stays

that way.

Improvements seen due to MASC: As noted in the results it was found that on

average the tools that were previously evaluated by MASC located more flaws than the

five crypto-detectors that were evaluated for the first time. This can be attributed to a

variety of factors such as age of the crypto-detector, how focused they are on security, and

how they are designed. However, it is worth mentioning that the tools from the initial

paper did have their flaws reported to them and clearly made some fixes. This does help

demonstrate that MASC has had an impact on crypto-detectors in the industry at least

to some degree. It is important that MASC continues to expand and be used to evaluate

tools because it helps reveal flaws to the maintainers that they may not already be aware

of and shows that users care about these ideas especially in the context of security.

6.3 Lessons Learned

Throughout my time working on this project I went from someone who had never worked on

a large software engineering project to someone conducting research and greatly expanded

on the project. Throughout my time I have learned a lot about how to conduct research in

a methodical way and what that means in the field of Software Engineering. I have faced

many challenges throughout my work but each one has allowed me to become both a better

51

developer and researcher. Each challenge has pushed me to obtain a new skill set. For this

project I started small by simply trying to understand the codebase I was working on. As

time went on, I got a further grasp I was able to build new tools such as the automated

analysis. As time pushed further I was tasked with conducted research and producing

my own ideas for ways to improve MASC this led to the addition of new operators and

sensitivity evaluator. This project has truly helped me grow as an individual.

6.4 Conclusion

The creation of a tool like MASC has helped shift the mindset of the crypto-detectors

designers into looking further into a more security-focused design. They have made claims

and as found in this extension they have improved in some areas. There is still a long

way to go and by reaching out to the designers and reporting flaws I have seen that there

is interest in ensuring security. With the MASC framework existing and being known to

the crypto-detector makers it is possible for them to easily perform self evaluation and

continue to improve. As MASC continues to expand in the future it is possible to help

push crypto-detectors into become more secure as well. With MASC existing in the same

ecosystem as crypto-detectors it is possible to help push towards a more security centric

design for tools and one day users can truly expect when their code is analyzed that it is

secure.

52

Appendix A

Appendix A

A.1 Code Snippets

Listing A.1: Method Chaining (OP5).

1 Class T { String algo="AES/CBC/PKCS5Padding";

2 T mthd1(){ algo = "AES"; return this;} T mthd2(){ algo="DES";

return this;} }

3 Cipher.getInstance(new T().mthd1().mthd2 ());

Listing A.2: Predictable/Non-Random Derivation of Value (OP6)

1 val = new Date(System.currentTimeMillis ()).toString ();

2 new IvParameterSpec(val.getBytes () ,0,8);}

Listing A.3: Exception in an always-false condition block (OP7).

1 void checkServerTrusted(X509Certificate [] x, String s)

2 throws CertificateException {

3 if (!(null != s && s.equalsIgnoreCase("RSA"))) {

4 throw new CertificateException("not RSA");}

Listing A.4: False return within an always true condition block (OP8).

1 public boolean verify(String host , SSLSession s) {

2 if(true || s.getCipherSuite ().length () >=0)}

53

3 return true;} return false;}

Listing A.5: Implementing an Interface with no overridden methods.

1 interface ITM extends X509TrustManager { }

2 abstract class ATM implements X509TrustManager { }

Listing A.6: Inner class object from Abstract type (OP12)

1 new HostnameVerifier (){

2 public boolean verify(String h, SSLSession s) {

3 return true; } };

Listing A.7: Anonymous Inner Class Object of X509ExtendedTrustManager (5.1)

1 new X509ExtendedTrustManager (){

2 public void checkClientTrusted(X509Certificate [] chain , String a)

throws CertificateException {}

3 public void checkServerTrusted(X509Certificate [] chain , String

authType)throws CertificateException {}

4 public X509Certificate [] getAcceptedIssuers () {return null;} ...};

Listing A.8: Specific Condition in checkServerTrusted method (5.1)

1 void checkServerTrusted(X509Certificate [] certs , String s)

2 throws CertificateException {

3 if (!(null != s || s.equalsIgnoreCase("RSA") || certs.length >=

314)) {

4 throw new CertificateException("Error");}}

Listing A.9: Anonymous Inner Class Object of An Empty Abstract Class that implements

HostnameVerifier

1 abstract class AHV implements HostnameVerifier {} new AHV(){

2 public boolean verify(String h, SSLSession s)

3 return true ;}};

54

Listing A.10: Anonymous inner class object with a vulnerable checkServerTrusted method

(F13)

1 abstract class AbstractTM implements X509TrustManager {} new

AbstractTM (){

2 public void checkServerTrusted(X509Certificate [] chain , String

authType) throws CertificateException {}

3 public X509Certificate [] getAcceptedIssuers () {return null ;}}};

Listing A.11: Anonymous Inner Class Object of an Interface that extends HostnameVerifier

1 interface IHV extends HostnameVerifier {} new IHV(){

2 public boolean verify(String h, SSLSession s) return true ;}};

Listing A.12: Misuse case requiring a trivial new operator

1 KeyGenerator keyGen = KeyGenerator.getInstance("AES");

2 keyGen.init (128); SecretKey secretKey=keyGen.generateKey ();

Listing A.13: CryptoGuard’s code ignoring names with "android"

1 if (! className.contains("android."))

2 classNames.add(className.substring (1, className.length () - 1));

return classNames;

Listing A.14: Generic Conditions in checkServerTrusted

1 if(!(true || arg0==null || arg1==null)) {

2 throw new CertificateException ();}

Listing A.15: Transformation String formation in Apache Druid similar to F2 which uses AES in

CBC mode with PKCS5Padding, a configuration that is known to be a misuse [37].

1 this.name = name == null ? "AES" : name;

2 this.mode = mode == null ? "CBC" : mode;

3 this.pad = pad == null ? "PKCS5Padding" : pad;

4 this.string = StringUtils.format(

5 "%

55

Listing A.16: Iterative Method Chaining

1 Class T {

2 int i = 0;

3 cipher = "AES/GCM/NoPadding";

4 public void A(){

5 cipher = "AES/GCM/NoPadding";

6 }

7 public void B(){

8 cipher = "AES/GCM/NoPadding";

9 }

10 public void C(){

11 cipher = "AES/GCM/NoPadding";

12 }

13 public void D(){

14 cipher = "AES";

15 }

16 public String getVal (){

17 return cipher

18 } }

19

20

21 Cipher.getInstance(new T().A().B().C().D().getVal ()) ;

Listing A.17: Iterative Conditionals

1 Class T {

2 int i = 0;

3 cipher = "AES/GCM/NoPadding";

4 public void A(){

5 if (i == 0){

6 if (i == 0){

7 if(i == 0){

8 cipher = "AES";

9 }

10 else{

56

11 cipher = "AES/GCM/NoPadding";

12 }

13 }

14 else{

15 cipher = "AES/GCM/NoPadding";

16 }

17 } else{

18 cipher = "AES/GCM/NoPadding";

19

20 }}

21

22 public String getVal (){

23 return cipher

24 } }

25

26

27 Cipher.getInstance(new T().A().getVal ()) ;

Listing A.18: Iterative Conditionals

1 Class T {

2 int i = 0;

3 cipher = "AES/GCM/NoPadding";

4 public void A(){

5 if (i == 0){

6 if (i == 0){

7 if(i == 0){

8 cipher = "AES";

9 }

10 else{

11 cipher = "AES/GCM/NoPadding";

12 }

13 }

14 else{

15 cipher = "AES/GCM/NoPadding";

57

16 }

17 } else{

18 cipher = "AES/GCM/NoPadding";

19

20 }}

21

22 public String getVal (){

23 return cipher

24 } }

25

26

27 Cipher.getInstance(new T().A().getVal ()) ;

Listing A.19: Method Builder

1 Class T {

2 int i = 0;

3 cipher = "AES/GCM/NoPadding";

4 public String A(){

5 return "D";

6 }

7 public String B(){

8 return "E";

9 }

10 public String C(){

11 return "S";

12 }

13 public void add(){

14 cipher = A() + B() + C();

15 }

16 public String getVal (){

17 return cipher

18 } }

19

20

58

21 Cipher.getInstance(new T().add().getVal ()) ;

Listing A.20: Object Sensitive, using the object created in Listing A.1

1 T secure = new T();

2 T insecure = new T().mthd2 ();

3 secure = insecure;

4 Cipher.getInstance(secure.getVal ());

Listing A.21: Build Variable

1 String cryptoVariable = "AES";

2 char[] cryptoVariable1 = cryptoVariable.toCharArray ();

3 javax.crypto.Cipher.getInstance(String.valueOf(cryptoVariable1));

Listing A.22: Substring

1 javax.crypto.Cipher.getInstance("secureParamAES".substring (11));

Listing A.23: Static Keystore

1 byte[] cryptoTemp = "12345678".getBytes ();

2 javax.crypto.spec.IvParameterSpec ivSpec = new javax.crypto.spec.

IvParameterSpec.getInstance(cryptoTemp ,"AES");

A.2 Total Mutations

59

Table A.1: Mutations Generated Across New Applications

App Scope Total Mutations
Fake Traveler Exhaustive 3234
Simple Solitaire Exhaustive 3234
Open Tracks Exhaustive 4796
Purchases Exhaustive 489
Orbot Exhaustive 1061

Mastodon Exhaustive 4988
Snap Drop Exhaustive 431
Open Tasks Exhaustive 4308

Notes Android Exhaustive 2087
Mifare Exhaustive 1459

Armadillo Similarity 28
Authorizer Similarity 30

Android Goldfinger Similarity 14
OVAA Similarity 5
Tink Similarity 40

60

Bibliography

[1] H.r.1668 - 116th congress (2019-2020): Internet of things cybersecurity improvement

act of 2020 | congress.gov | library of congress. https://www.congress.gov/bill/

116th-congress/house-bill/1668, December 2020. Accessed Jul, 2021.

[2] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. Cryptoapi-bench:

A comprehensive benchmark on java cryptographic api misuses. In 2019 IEEE Cy-

bersecurity Development (SecDev), page 49–61, Sep 2019.

[3] Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton Miller, and Dan-

feng Daphne Yao. Evaluation of static vulnerability detection tools with java

cryptographic api benchmarks. IEEE Transactions on Software Engineering, page

1–1, 2022.

[4] Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton P Miller, and

Danfeng Yao. Evaluation of static vulnerability detection tools with java crypto-

graphic api benchmarks. IEEE Transactions on Software Engineering, 49(2):485–497,

2022.

[5] Sven Amann, Sarah Nadi, Hoan A. Nguyen, Tien N. Nguyen, and Mira

Mezini. Mubench: A benchmark for api-misuse detectors. In 2016 IEEE/ACM

13th Working Conference on Mining Software Repositories (MSR), page 464–467,

May 2016.

[6] Amazon code guru. https://aws.amazon.com/codeguru/. Accessed Mar, 2023.

61

https://www.congress.gov/bill/116th-congress/house-bill/1668
https://www.congress.gov/bill/116th-congress/house-bill/1668
https://aws.amazon.com/codeguru/

[7] Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys

Poshyvanyk, and Adwait Nadkarni. Why crypto-detectors fail: A systematic

evaluation of cryptographic misuse detection techniques. In 2022 IEEE Symposium

on Security and Privacy (SP). IEEE, may 2022.

[8] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and

Denys Poshyvanyk. Systematic Mutation-Based Evaluation of the Soundness of

Security-Focused Android Static Analysis Techniques. ACM Transactions on Privacy

and Security, 24(3):15:1–15:37, February 2021.

[9] Ross Anderson. Why Cryptosystems Fail. In Proceedings of the 1st ACM Con-

ference on Computer and Communications Security, CCS ’93, page 215–227, New

York, NY, USA, 1993. Association for Computing Machinery.

[10] Security with HTTPS and SSL - Android Developers. https://developer.android.

com/training/articles/security-ssl. Accessed Nov, 2020.

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,

Alexandre Bartel, Jacques Klein, Yves le Traon, Damien Octeau, and

Patrick McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive and

Lifecycle-aware Taint Analysis for Android Apps. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

2014.

[12] BCX509ExtendedTrustManager (Bouncy Castle Library 1.66 API Specifica-

tion). https://www.bouncycastle.org/docs/tlsdocs1.5on/org/bouncycastle/

jsse/BCX509ExtendedTrustManager.html. Accessed Jul, 2021.

[13] JGDMS/FilterX509TrustManager.java at pfirmstone/JGDMS. https://github.

com/pfirmstone/JGDMS/blob/a44b96809783199b5fd69ffb803e0c4ceb9fad67/

JGDMS/jgdms-jeri/src/main/java/net/jini/jeri/ssl/

FilterX509TrustManager.java, December 2018. Accessed Jul, 2021.

62

https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://www.bouncycastle.org/docs/tlsdocs1.5on/org/bouncycastle/jsse/BCX509ExtendedTrustManager.html
https://www.bouncycastle.org/docs/tlsdocs1.5on/org/bouncycastle/jsse/BCX509ExtendedTrustManager.html
https://github.com/pfirmstone/JGDMS/blob/a44b96809783199b5fd69ffb803e0c4ceb9fad67/JGDMS/jgdms-jeri/src/main/java/net/jini/jeri/ssl/FilterX509TrustManager.java
https://github.com/pfirmstone/JGDMS/blob/a44b96809783199b5fd69ffb803e0c4ceb9fad67/JGDMS/jgdms-jeri/src/main/java/net/jini/jeri/ssl/FilterX509TrustManager.java
https://github.com/pfirmstone/JGDMS/blob/a44b96809783199b5fd69ffb803e0c4ceb9fad67/JGDMS/jgdms-jeri/src/main/java/net/jini/jeri/ssl/FilterX509TrustManager.java
https://github.com/pfirmstone/JGDMS/blob/a44b96809783199b5fd69ffb803e0c4ceb9fad67/JGDMS/jgdms-jeri/src/main/java/net/jini/jeri/ssl/FilterX509TrustManager.java

[14] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth

Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Daw-

son Engler. A Few Billion Lines of Code Later: Using Static Analysis to Find

Bugs in the Real World. Communications of the ACM, 53(2):66–75, February 2010.

[15] Eric Bodden. The secret sauce in efficient and precise static analysis: the beauty of

distributive, summary-based static analyses (and how to master them). In Compan-

ion Proceedings for the ISSTA/ECOOP 2018 Workshops, page 85–93, Amsterdam

Netherlands, Jul 2018. ACM.

[16] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and

Denys Poshyvanyk. Discovering flaws in security-focused static analysis tools for

Android using systematic mutation. In 27th USENIX Security Symposium (USENIX

Security 18), pages 1263–1280, Baltimore, MD, August 2018. USENIX Association.

[17] A. Braga and R. Dahab. Mining Cryptography Misuse in Online Forums. In

2016 IEEE International Conference on Software Quality, Reliability and Security

Companion (QRS-C), pages 143–150, August 2016.

[18] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro,

and Marco Vieira. Practical Evaluation of Static Analysis Tools for Cryptog-

raphy: Benchmarking Method and Case Study. In 2017 IEEE 28th International

Symposium on Software Reliability Engineering (ISSRE), pages 170–181, October

2017.

[19] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro,

and Marco Vieira. Understanding How to Use Static Analysis Tools for Detecting

Cryptography Misuse in Software. IEEE Transactions on Reliability, 68(4):1384–

1403, December 2019.

[20] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro,

and Marco Vieira. Understanding how to use static analysis tools for detecting

63

cryptography misuse in software. IEEE Transactions on Reliability, 68(4):1384–1403,

Dec 2019.

[21] Amit Choudhari, Sylvain Guilley, and Khaled Karray. Cryscanner: Find-

ing cryptographic libraries misuse. 2021 8th NAFOSTED Conference on Information

and Computer Science (NICS), 2021.

[22] Codiga - sast: Owasp and cwe. https://www.codiga.io/static-code-analysis/

sast-owasp10-sans25/. Accessed Mar, 2023.

[23] CogniCrypt - Secure Integration of Cryptographic Software | CogniCrypt. https:

//www.eclipse.org/cognicrypt/. Accessed Mar, 2023.

[24] JulietM. Corbin and Anselm Strauss. Grounded theory research: Procedures,

canons, and evaluative criteria. Qualitative Sociology, 13(1):3–21, 1990.

[25] NSF Award Search: Award#1929701 - SaTC: TTP: Medium: Collabora-

tive: Deployment-quality and Accessible Solutions for Cryptography Code

Development. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1929701&

HistoricalAwards=false, September 2019. Accessed Mar, 2023.

[26] Oracle - Industrial Experience of Finding Cryptographic Vulnerabilities in Large-

scale Codebases. https://labs.oracle.com/pls/apex/f?p=94065:40150:0::::

P40150_PUBLICATION_ID:6629, July 2020. Accessed Mar, 2023.

[27] Deepsource - secure every commit without slowing development. https://

deepsource.io/platform/sast/. Accessed Mar, 2023.

[28] Android Developers. Enable multidex for apps with over 64K methods | android

developers. https://developer.android.com/studio/build/multidex. Accessed

May, 2020.

[29] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea

Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava:

64

https://www.codiga.io/static-code-analysis/sast-owasp10-sans25/
https://www.codiga.io/static-code-analysis/sast-owasp10-sans25/
https://www.eclipse.org/cognicrypt/
https://www.eclipse.org/cognicrypt/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1929701&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1929701&HistoricalAwards=false
https://labs.oracle.com/pls/apex/f?p=94065:40150:0::::P40150_PUBLICATION_ID:6629
https://labs.oracle.com/pls/apex/f?p=94065:40150:0::::P40150_PUBLICATION_ID:6629
https://deepsource.io/platform/sast/
https://deepsource.io/platform/sast/
https://developer.android.com/studio/build/multidex

Large-scale automated vulnerability addition. In Proceedings of the 37th IEEE Sym-

posium on Security and Privacy (S&P), May 2016.

[30] secure-software-engineering/DroidBench: A micro-benchmark suite to assess

the stability of taint-analysis tools for Android. https://github.com/

secure-software-engineering/DroidBench. Accessed Jun, 2020.

[31] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher

Kruegel. An Empirical Study of Cryptographic Misuse in Android Applications. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security - CCS ’13, pages 73–84, Berlin, Germany, 2013. ACM Press.

[32] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static

analysis tools. Electronic Notes in Theoretical Computer Science, 217:5–21, Jul 2008.

[33] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,

Bernd Freisleben, and Matthew Smith. Why Eve and Mallory Love An-

droid: An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS ’12, page 50–61, New

York, NY, USA, 2012. Association for Computing Machinery.

[34] F-Droid - Free and Open Source Android App Repository. https://f-droid.org/.

Accessed Jun, 2020.

[35] Johannes Feichtner. A comparative study of misapplied crypto in android and

ios applications. page 96–108, Jul 2019.

[36] Xinming Ou Fengguo Wei, Sankardas Roy and Robby. Amandroid: A

Precise and General Inter-component Data Flow Analysis Framework for Security

Vetting of Android Apps. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), November 2014.

65

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://f-droid.org/

[37] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky,

Yasemin Acar, Michael Backes, and Sascha Fahl. Stack Overflow Consid-

ered Harmful? The Impact of Copy&Paste on Android Application Security. In 2017

IEEE Symposium on Security and Privacy (SP), pages 121–136, San Jose, CA, USA,

May 2017. IEEE.

[38] Jun Gao, Pingfan Kong, Li Li, Tegawende F. Bissyande, and Jacques

Klein. Negative Results on Mining Crypto-API Usage Rules in Android Apps. In

2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), pages 388–398, Montreal, QC, Canada, May 2019. IEEE.

[39] Apache Ignite. https://github.com/apache/ignite. Accessed Jul, 2021.

[40] Azure/azure-sdk-for-java: This repository is for active development of the Azure

SDK for Java. https://github.com/Azure/azure-sdk-for-java. Accessed Jul,

2021.

[41] GitHub - Where software is built | Advanced search . https://github.com/search/

advanced. Accessed Feb, 2023.

[42] GitHub Security Lab. https://securitylab.github.com/. Accessed Mar, 2023.

[43] GitHub: Where the world builds software · GitHub. https://github.com. Accessed

Jul, 2021.

[44] hive/GenericUDFAesBase.java at master - apache/hive. https://github.com/

apache/hive/blob/526bd87e9103375f0ddb8064dcfd8c31342b4c08/ql/src/java/

org/apache/hadoop/hive/ql/udf/generic/GenericUDFAesBase.java#L108,

August 2015. Accessed Jul, 2021.

[45] ignite/IgniteUtils.java at apache/ignite. https://github.com/apache/ignite/

blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/

66

https://github.com/apache/ignite
https://github.com/Azure/azure-sdk-for-java
https://github.com/search/advanced
https://github.com/search/advanced
https://securitylab.github.com/
https://github.com
https://github.com/apache/hive/blob/526bd87e9103375f0ddb8064dcfd8c31342b4c08/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFAesBase.java#L108
https://github.com/apache/hive/blob/526bd87e9103375f0ddb8064dcfd8c31342b4c08/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFAesBase.java#L108
https://github.com/apache/hive/blob/526bd87e9103375f0ddb8064dcfd8c31342b4c08/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFAesBase.java#L108
https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714
https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714
https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714

java/org/apache/ignite/internal/util/IgniteUtils.java#L11714, January

2015. Accessed Jul, 2021.

[46] ExoPlayer/CachedContentIndex.java at google/ExoPlayer. https://github.

com/google/ExoPlayer/blob/f182c0c1169cba7c22280058368127c24609054f/

library/core/src/main/java/com/google/android/exoplayer2/upstream/

cache/CachedContentIndex.java#L332, November 2016. Accessed Jul, 2021.

[47] UltimateAndroid/TripleDES.java at cymcsg/UltimateAn-

droid. https://github.com/cymcsg/UltimateAndroid/blob/

678afdda49d1e7c91a36830946a85e0fda541971/UltimateAndroid/

ultimateandroid/src/main/java/com/marshalchen/ua/common/commonUtils/

urlUtils/TripleDES.java#L144, May 2016. Accessed Jul, 2021.

[48] jeesuite-libs/DES.java at vakinge/jeesuite-libs. https://github.com/vakinge/

jeesuite-libs/blob/master/jeesuite-common/src/main/java/com/jeesuite/

common/crypt/DES.java#L37, July 2017. Accessed Jul, 2021.

[49] codeql/Encryption.qll at github/codeql. https://github.com/github/codeql/

blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/semmle/code/

java/security/Encryption.qll#L142, August 2018. Accessed Jul, 2021.

[50] encryption-machine/asymencrpmachine.java at mrdrivingduck/encryption-

machine. https://github.com/mrdrivingduck/encryption-machine/blob/

74c5679c86cf11f74409cfc63e1385b906734099/src/iot/zjt/encrypt/machine/

AsymEncrpMachine.java#L95, May 2019. Accessed Jul, 2021.

[51] jmeter/TrustAllSSLSocketFactory.java at apache/jmeter. https://github.com/

apache/jmeter/blob/704adb91f7f967402b9b709e89f5b73f0a466283/src/core/

src/main/java/org/apache/jmeter/util/TrustAllSSLSocketFactory.java,

March 2019. Accessed Jul, 2021.

67

https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714
https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714
https://github.com/apache/ignite/blob/1a3fd112b02133892c7c95d4be607079ffa83211/modules/core/src/main/java/org/apache/ignite/internal/util/IgniteUtils.java#L11714
https://github.com/google/ExoPlayer/blob/f182c0c1169cba7c22280058368127c24609054f/library/core/src/main/java/com/google/android/exoplayer2/upstream/cache/CachedContentIndex.java#L332
https://github.com/google/ExoPlayer/blob/f182c0c1169cba7c22280058368127c24609054f/library/core/src/main/java/com/google/android/exoplayer2/upstream/cache/CachedContentIndex.java#L332
https://github.com/google/ExoPlayer/blob/f182c0c1169cba7c22280058368127c24609054f/library/core/src/main/java/com/google/android/exoplayer2/upstream/cache/CachedContentIndex.java#L332
https://github.com/google/ExoPlayer/blob/f182c0c1169cba7c22280058368127c24609054f/library/core/src/main/java/com/google/android/exoplayer2/upstream/cache/CachedContentIndex.java#L332
https://github.com/cymcsg/UltimateAndroid/blob/678afdda49d1e7c91a36830946a85e0fda541971/UltimateAndroid/ultimateandroid/src/main/java/com/marshalchen/ua/common/commonUtils/urlUtils/TripleDES.java#L144
https://github.com/cymcsg/UltimateAndroid/blob/678afdda49d1e7c91a36830946a85e0fda541971/UltimateAndroid/ultimateandroid/src/main/java/com/marshalchen/ua/common/commonUtils/urlUtils/TripleDES.java#L144
https://github.com/cymcsg/UltimateAndroid/blob/678afdda49d1e7c91a36830946a85e0fda541971/UltimateAndroid/ultimateandroid/src/main/java/com/marshalchen/ua/common/commonUtils/urlUtils/TripleDES.java#L144
https://github.com/cymcsg/UltimateAndroid/blob/678afdda49d1e7c91a36830946a85e0fda541971/UltimateAndroid/ultimateandroid/src/main/java/com/marshalchen/ua/common/commonUtils/urlUtils/TripleDES.java#L144
https://github.com/vakinge/jeesuite-libs/blob/master/jeesuite-common/src/main/java/com/jeesuite/common/crypt/DES.java#L37
https://github.com/vakinge/jeesuite-libs/blob/master/jeesuite-common/src/main/java/com/jeesuite/common/crypt/DES.java#L37
https://github.com/vakinge/jeesuite-libs/blob/master/jeesuite-common/src/main/java/com/jeesuite/common/crypt/DES.java#L37
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/semmle/code/java/security/Encryption.qll#L142
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/semmle/code/java/security/Encryption.qll#L142
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/semmle/code/java/security/Encryption.qll#L142
https://github.com/mrdrivingduck/encryption-machine/blob/74c5679c86cf11f74409cfc63e1385b906734099/src/iot/zjt/encrypt/machine/AsymEncrpMachine.java#L95
https://github.com/mrdrivingduck/encryption-machine/blob/74c5679c86cf11f74409cfc63e1385b906734099/src/iot/zjt/encrypt/machine/AsymEncrpMachine.java#L95
https://github.com/mrdrivingduck/encryption-machine/blob/74c5679c86cf11f74409cfc63e1385b906734099/src/iot/zjt/encrypt/machine/AsymEncrpMachine.java#L95
https://github.com/apache/jmeter/blob/704adb91f7f967402b9b709e89f5b73f0a466283/src/core/src/main/java/org/apache/jmeter/util/TrustAllSSLSocketFactory.java
https://github.com/apache/jmeter/blob/704adb91f7f967402b9b709e89f5b73f0a466283/src/core/src/main/java/org/apache/jmeter/util/TrustAllSSLSocketFactory.java
https://github.com/apache/jmeter/blob/704adb91f7f967402b9b709e89f5b73f0a466283/src/core/src/main/java/org/apache/jmeter/util/TrustAllSSLSocketFactory.java

[52] pdf-service/md5util.java at elainrd/pdf-servic. https://github.com/elainrd/

pdf-service/blob/243588e446ed875e13a99ea08e2baa3e0806c346/src/main/

java/com/hhd/pdf/util/Md5Util.java#L76, April 2019. Accessed Jul, 2021.

[53] Announcing third-party code scanning tools: static analysis & devel-

oper security training - The GitHub Blog. https://github.blog/

2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/,

October 2020. Accessed Mar, 2023.

[54] codeql/UnsafeCertTrust.ql at github/codeql. https://github.com/github/

codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/

experimental/Security/CWE/CWE-273/UnsafeCertTrust.ql, May 2020. Accessed

Jul, 2021.

[55] Java: CWE-273 Unsafe certificate trust by luchua-bc · Pull Request #3550 - github/-

codeql. https://github.com/github/codeql/pull/3550, June 2020. Accessed Jul,

2021.

[56] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nier-

strasz. Java cryptography uses in the wild. (arXiv:2009.01101), Sep 2020.

arXiv:2009.01101 [cs].

[57] fgwei/ICC-Bench: Benchmark apps for static analyzing inter-component data leak-

age problem of Android apps. https://github.com/fgwei/ICC-Bench. Accessed

Jun, 2020.

[58] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. Why Don’t Software Developers Use Static Analysis Tools to Find

Bugs? In 2013 35th International Conference on Software Engineering (ICSE),

pages 672–681, San Francisco, CA, USA, May 2013. IEEE.

68

https://github.com/elainrd/pdf-service/blob/243588e446ed875e13a99ea08e2baa3e0806c346/src/main/java/com/hhd/pdf/util/Md5Util.java#L76
https://github.com/elainrd/pdf-service/blob/243588e446ed875e13a99ea08e2baa3e0806c346/src/main/java/com/hhd/pdf/util/Md5Util.java#L76
https://github.com/elainrd/pdf-service/blob/243588e446ed875e13a99ea08e2baa3e0806c346/src/main/java/com/hhd/pdf/util/Md5Util.java#L76
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://github.blog/2020-10-05-announcing-third-party-code-scanning-tools-static-analysis-and-developer-security-training/
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/experimental/Security/CWE/CWE-273/UnsafeCertTrust.ql
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/experimental/Security/CWE/CWE-273/UnsafeCertTrust.ql
https://github.com/github/codeql/blob/768e5190a1c9d40a4acc7143c461c3b114e7fd59/java/ql/src/experimental/Security/CWE/CWE-273/UnsafeCertTrust.ql
https://github.com/github/codeql/pull/3550
https://github.com/fgwei/ICC-Bench

[59] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for

detecting web application vulnerabilities. In 2006 IEEE Symposium on Security and

Privacy (S&P’06), page 6 pp. – 263, May 2006.

[60] Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, and

Denys Poshyvanyk. A Study of Data Store-based Home Automation. In Pro-

ceedings of the 9th ACM Conference on Data and Application Security and Privacy

(CODASPY), March 2019.

[61] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark

Turner, John Bailey, and Stephen Linkman. Systematic literature reviews

in software engineering – A systematic literature review. Information and Software

Technology, 51(1):7–15, 2009.

[62] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric

Bodden, Florian Göpfert, Felix Günther, Christian Weinert, Daniel

Demmler, and Ram Kamath. CogniCrypt: Supporting Developers in Using Cryp-

tography. In Proceedings of the 32Nd IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE 2017, pages 931–936, Piscataway, NJ, USA, 2017.

IEEE Press.

[63] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira

Mezini. CrySL: An Extensible Approach to Validating the Correct Usage of Cryp-

tographic APIs. In 32nd European Conference on Object-Oriented Programming

(ECOOP 2018), Todd Millstein, editor, volume 109 of Leibniz International Proceed-

ings in Informatics (LIPIcs), pages 10:1–10:27. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2018.

[64] Stefan Krüger, Karim Ali, and Eric Bodden. Cognicrypt gen: generating

code for the secure usage of crypto apis. In Proceedings of the 18th ACM/IEEE

69

International Symposium on Code Generation and Optimization, page 185–198, San

Diego CA USA, Feb 2020. ACM.

[65] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges

for static analysis of java reflection - literature review and empirical study. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE), page

507–518, May 2017.

[66] LGTM - Continuous security analysis. https://lgtm.com/. Accessed Mar, 2023.

[67] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,

Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static

analysis of android apps: A systematic literature review. Information and Software

Technology, 88:67–95, Aug 2017.

[68] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin

Moran, Massimiliano Di Penta, Christopher Vendome, Carlos Bernal-

Cárdenas, and Denys Poshyvanyk. Enabling Mutation Testing for Android

Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-

gineering, ESEC/FSE 2017, pages 233–244, New York, NY, USA, 2017. Association

for Computing Machinery.

[69] Introducing QARK: An Open Source Tool to Improve Android Application Secu-

rity | LinkedIn Engineering. https://engineering.linkedin.com/blog/2015/08/

introducing-qark, August 2015. Accessed Mar, 2023.

[70] Benjamin Livshits, Dimitrios Vardoulakis, Manu Sridharan, Yannis

Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang,

Samuel Z. Guyer, Uday P. Khedker, and Anders Mø ller. In defense of

soundiness: A manifesto. Communications of the ACM, 58(2):44–46, January 2015.

70

https://lgtm.com/
https://engineering.linkedin.com/blog/2015/08/introducing-qark
https://engineering.linkedin.com/blog/2015/08/introducing-qark

[71] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in

java applications with static analysis.

[72] Anirban Majumdar, Antoine Monsifrot, and Clark Thomborson. On

evaluating obfuscatory strength of alias-based transforms using static analysis. In

2006 International Conference on Advanced Computing and Communications, page

605–610, Dec 2006.

[73] Matthew B. Miles, A. M. Huberman, and Johnny Saldaña. Qualitative

Data Analysis: A Methods Sourcebook. SAGE Publications, Inc, Thousand Oaks,

Califorinia, 3rd edition edition, 2014.

[74] Common Weakness Enumeration. https://cwe.mitre.org/, February 2023. Ac-

cessed Feb, 2022.

[75] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario

Linares-Vásquez, Gabriele Bavota, Christopher Vendome, Massimil-

iano Di Penta, and Denys Poshyvanyk. MDroid+: A Mutation Testing Frame-

work for Android. Proceedings of the 40th International Conference on Software

Engineering Companion Proceeedings - ICSE ’18, pages 33–36, 2018.

[76] National Institute of Technology (NIT) Puducherry, Karaikal, India,

Keerthi Vasan K., and Arun Raj Kumar P. Taxonomy of SSL/TLS Attacks.

International Journal of Computer Network and Information Security, 8(2):15–24,

February 2016.

[77] Kristen Newbury, Karim Ali, and Andrew Craik. Hotfixing misuses of

crypto apis in java programs. 2021.

[78] OASIS. The Static Analysis Results Interchange Format (SARIF). https://

sarifweb.azurewebsites.net/. Accessed Jul, 2021.

71

https://cwe.mitre.org/
https://sarifweb.azurewebsites.net/
https://sarifweb.azurewebsites.net/

[79] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar,

Michael Backes, and Sascha Fahl. Why Eve and Mallory Still Love Android:

Revisiting TLS (In)Security in Android Applications. In 30th USENIX Security

Symposium (USENIX Security 21). USENIX Association, August 2021.

[80] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar,

Michael Backes, and Sascha Fahl. Why eve and mallory still love android:

Revisiting tls (in)security in android applications. USENIX Association, 2021.

[81] Java Secure Socket Extension (JSSE) Reference Guide - Oracle Help

Center. https://docs.oracle.com/en/java/javase/11/security/

java-secure-socket-extension-jsse-reference-guide.html. Accessed Nov,

2020.

[82] OWASP Foundation | Open Source Foundation for Application Security. https:

//www.owasp.org/. Accessed May, 2020.

[83] Jihyeok Park, Hongki Lee, and Sukyoung Ryu. A survey of parametric static

analysis. ACM Computing Surveys, 54(7):1–37, Sep 2022.

[84] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do Android taint analysis

tools keep their promises? In Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2018, pages 331–341, Lake Buena Vista, FL, USA,

October 2018. Association for Computing Machinery.

[85] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for

conducting systematic mapping studies in software engineering: An update. Infor-

mation and Software Technology, 64:1–18, August 2015.

[86] Andrea Possemato and Yanick Fratantonio. Towards https everywhere on

android: We are not there yet.

72

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html
https://www.owasp.org/
https://www.owasp.org/

[87] qark/ecb_cipher_usage.py at master · linkedin/qark. https://github.com/

linkedin/qark/blob/master/qark/plugins/crypto/ecb_cipher_usage.py#L31,

January 2018. Accessed Jul, 2021.

[88] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers: Flow-

Droid/IccTA, AmanDroid, and DroidSafe. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and Analysis - ISSTA 2018,

pages 176–186, Amsterdam, Netherlands, 2018. ACM Press.

[89] Broker-J - Apache Qpid. https://qpid.apache.org/components/broker-j/. Ac-

cessed May, 2020.

[90] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian,

Miles Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. Cryp-

toGuard: High Precision Detection of Cryptographic Vulnerabilities in Massive-sized

Java Projects. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security - CCS ’19, pages 2455–2472, London, United King-

dom, November 2019. ACM Press.

[91] Gustavo Eloi de P. Rodrigues, Alexandre M. Braga, and Ricardo Da-

hab. Using graph embeddings and machine learning to detect cryptography misuse

in source code. In 2020 19th IEEE International Conference on Machine Learning

and Applications (ICMLA), page 1059–1066, Dec 2020.

[92] Sarif Viewer - Visual Studio Marketplace. https://marketplace.visualstudio.

com/items?itemName=MS-SarifVSCode.sarif-viewer. Accessed Jul, 2021.

[93] Michael Schlichtig, Anna-Katharina Wickert, Stefan Krüger, Eric

Bodden, and Mira Mezini. Cambench – cryptographic api misuse detection tool

benchmark suite. (arXiv:2204.06447), Apr 2022. arXiv:2204.06447 [cs].

73

https://github.com/linkedin/qark/blob/master/qark/plugins/crypto/ecb_cipher_usage.py#L31
https://github.com/linkedin/qark/blob/master/qark/plugins/crypto/ecb_cipher_usage.py#L31
https://qpid.apache.org/components/broker-j/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer

[94] Hossain Shahriar and Mohammad Zulkernine. Classification of static

analysis-based buffer overflow detectors. In 2010 Fourth International Conference on

Secure Software Integration and Reliability Improvement Companion, page 94–101,

Jun 2010.

[95] ShiftLeft Scan. https://shiftleft.io/scan. Accessed Mar, 2023.

[96] Larry Singleton, Rui Zhao, Myoungkyu Song, and Harvey Siy. Crypto-

tutor: Teaching secure coding practices through misuse pattern detection. In Pro-

ceedings of the 21st Annual Conference on Information Technology Education, page

403–408, Virtual Event USA, Oct 2020. ACM.

[97] Snyk - developer loved, security trusted. https://snyk.io/. Accessed Mar, 2023.

[98] Soundiness Home Page. http://soundiness.org/. Accessed May, 2020.

[99] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin,

and Latifur Khan. SMV-HUNTER: Large Scale, Automated Detection of SS-

L/TLS Man-in-the-Middle Vulnerabilities in Android Apps. In Proceedings 2014

Network and Distributed System Security Symposium, San Diego, CA, February 2014.

Internet Society.

[100] Find Security Bugs. https://find-sec-bugs.github.io/. Accessed Mar, 2023.

[101] Cryptography Stack Exchange. https://crypto.stackexchange.com. Accessed

Jun, 2020.

[102] Stack Overflow - Where Developers Learn, Share, & Build Careers. https://

stackoverflow.com. Accessed Jun, 2020.

[103] android - Google Play Warning: How to fix incorrect implementation of HostnameV-

erifier? - Stack Overflow. https://stackoverflow.com/a/41330005, December

2016. Accessed Jul, 2021.

74

https://shiftleft.io/scan
https://snyk.io/
http://soundiness.org/
https://find-sec-bugs.github.io/
https://crypto.stackexchange.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com/a/41330005

[104] android - unsafe implementation of the HostnameVerifier interface -

Stack Overflow. https://stackoverflow.com/questions/47069277/

unsafe-implementation-of-the-hostnameverifier-interface, March 2018.

Accessed Jul, 2021.

[105] Code Quality and Security | SonarQube. https://www.sonarqube.org/. Accessed

September, 2022.

[106] Coverity SAST Software | Synopsys. https://www.synopsys.com/

software-integrity/security-testing/static-analysis-sast.html. Ac-

cessed Mar, 2023.

[107] Junwei Tang, Jingjing Li, Ruixuan Li, Hongmu Han, Xiwu Gu, and Zhiy-

ong Xu. SSLDetecter: Detecting SSL Security Vulnerabilities of Android Applica-

tions Based on a Novel Automatic Traversal Method. Security and Communication

Networks, 2019:1–20, October 2019.

[108] Ming Wen, Yepang Liu, Rongxin Wu, Xuan Xie, Shing-Chi Cheung, and

Zhendong Su. Exposing Library API Misuses Via Mutation Analysis. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages

866–877, May 2019.

[109] Anna-Katharina Wickert, Lars Baumgärtner, Florian Breitfelder,

and Mira Mezini. Python crypto misuses in the wild. In Proceedings of the

15th ACM / IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM), page 1–6, Oct 2021. arXiv:2109.01109 [cs].

[110] Anna-Katharina Wickert, Michael Reif, Michael Eichberg, Anam

Dodhy, and Mira Mezini. A dataset of parametric cryptographic misuses. In

2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), page 96–100, May 2019.

75

https://stackoverflow.com/questions/47069277/unsafe-implementation-of-the-hostnameverifier-interface
https://stackoverflow.com/questions/47069277/unsafe-implementation-of-the-hostnameverifier-interface
https://www.sonarqube.org/
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

[111] Weitian Xing, Yuanhui Cheng, and Werner Dietl. Ensuring correct cryp-

tographic algorithm and provider usage at compile time. In Proceedings of the 23rd

ACM International Workshop on Formal Techniques for Java-like Programs, page

43–50, Virtual Denmark, Jul 2021. ACM.

[112] Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-

sensitive alias analysis for java.

[113] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng, and

Kehuan Zhang. CryptoREX: Large-scale analysis of cryptographic misuse in IoT

devices. In 22nd International Symposium on Research in Attacks, Intrusions and

Defenses (RAID 2019), pages 151–164, Chaoyang District, Beijing, September 2019.

USENIX Association.

[114] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao, and

Na Meng. Automatic detection of java cryptographic api misuses: Are we there

yet? IEEE Transactions on Software Engineering, 49(1):288–303, Jan 2023.

[115] Chaoshun Zuo, Jianliang Wu, and Shanqing Guo. Automatically Detecting

SSL Error-Handling Vulnerabilities in Hybrid Mobile Web Apps. In Proceedings of

the 10th ACM Symposium on Information, Computer and Communications Security,

ASIA CCS ’15, pages 591–596, New York, NY, USA, 2015. ACM.

76

	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation and Background
	Threat Model

	Related Works
	Bibliographical Notes

	The MASC Framework
	Overview
	Extended Taxonomy
	Extended Operators
	Threat Based Mutation Scopes

	Implementation
	New Features
	Sensitivity Evaluator
	Automated Evaluation
	MASC Web

	Evaluation and Methodology
	Results and Findings
	Analyzing Flaws
	Comparing Original Results to New
	Exhaustive Results

	Conclusion
	Limitations
	Discussion
	Lessons Learned
	Conclusion

	Appendix A
	Code Snippets
	Total Mutations

	fbee3b20-eca8-476f-85db-ace767b39860.pdf
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation and Background
	Threat Model

	Related Works
	Bibliographical Notes

	The MASC Framework
	Overview
	Extended Taxonomy
	Extended Operators
	Threat Based Mutation Scopes

	Implementation
	New Features
	Sensitivity Evaluator
	Automated Evaluation
	MASC Web

	Evaluation and Methodology
	Results and Findings
	Analyzing Flaws
	Comparing Original Results to New
	Exhaustive Results

	Conclusion
	Limitations
	Discussion
	Lessons Learned
	Conclusion

	Appendix A
	Code Snippets
	Total Mutations

