

The Conceptual Cohesion of Classes

Andrian Marcus, Denys Poshyvanyk

Department of Computer Science
Wayne State University
Detroit Michigan 48202

313 577 5408
amarcus@wayne.edu, denys@cs.wayne.edu

Abstract

While often defined in informal ways, software
cohesion reflects important properties of modules in a
software system. Cohesion measurement has been used
for quality assessment, fault proneness prediction,
software modularization, etc. Existing approaches to
cohesion measurement in Object-Oriented software are
largely based on the structural information of the
source code, such as attribute references in methods.
These measures reflect particular interpretations of
cohesion and try to capture different aspects of
cohesion and no single cohesion metric or suite is
accepted as standard measurement for cohesion.

The paper proposes a new set of measures for the
cohesion of individual classes within an OO software
system, based on the analysis of the semantic
information embedded in the source code, such as
comments and identifiers. A case study on open source
software is presented, which compares the new
measures with an extensive set of existing metrics. The
differences and similarities among the approaches and
results are discussed and analyzed.

1. Introduction
Software cohesion can be defined as a measure of

the degree to which elements of a module belong
together [5]. Cohesion is also regarded from a
functional point of view; in this view, a cohesive
module is a crisp abstraction of a concept or feature
from the problem domain, usually described in the
requirements or specifications. Such definitions, while
very intuitive, are quite vague and make cohesion
measurement a difficult task, leaving too much room
for interpretation. In Object-Oriented (OO) software
systems, cohesion is usually measured at class level and
lately, many different OO cohesion metrics have been
proposed (see Section 2 for details), which try to
capture different aspects of cohesion, or which reflect a
particular interpretation of cohesion. As of today, there
is no one cohesion metric that is accepted as a standard.

There is little research [7] on assessing the differences
and similarities among these metrics.

Software cohesion metrics can be used for different
purposes including assessment of design quality [4, 9],
prediction of software quality and fault proneness [17,
34], modularization of software [10, 27], identification
of reusable of components [19, 25], etc. Most of the
existing OO metrics suites are based primarily on the
structural aspects of source code (e.g., attribute
references in methods). These measures capture the
degree to which the elements of a class belong together
from a structural point of view, but give no clues
whether the class is cohesive from a functional point of
view. While other metrics were proposed by
researchers (see Section 2 for details) to capture other
aspects of cohesion, only few such metrics address the
functional aspect of cohesion [18].

We propose a new set of measures for class
cohesion based on information retrieval (IR)
techniques, which identifies and captures properties
shared between members of a class that take into
account not only syntactic but also semantic
information. Our measure of cohesion can be classified
as measuring the information strength of a class within
the context of the entire system.

The following section summarizes the related work
on other metrics for OO cohesion. Section 3 describes
our approach and the proposed measures in detail.
Section 4 presents a theoretical evaluation of the
proposed measures and an empirical one through a case
study on measuring the cohesion of classes in existing
open source software. The results are compared with
other metrics computed on the same software;
differences and similarities are analyzed and discussed.
Section 5 concludes the paper summarizing our results
and discusses future work in this area of research.

2. Related work
There are several different approaches to measure

cohesion in OO systems. Based on the underlying
mechanisms used to measure the cohesion of a class
one can distinguish: structural metrics [5, 6, 13, 22, 23,

26, 36], the most popular class of cohesion metrics,
semantic metrics [18], information entropy-based
metrics [1], slice-based metrics [31], metrics based on
data mining [32], and metrics for specific types of
applications like knowledge-based [24] and distributed
systems [14].

The class of structural metrics is the most
investigated category of cohesion metrics and includes:
LCOM1 (lack of cohesion in methods) [13], LCOM2
[13], LCOM3 [23], LCOM4 [23], Co (connectivity)
[23], LCOM5 [22], Coh [7], TCC (tight class cohesion)
[5], LCC (loose class cohesion) [5], ICH (information-
flow-based cohesion) [26].

The dominating philosophy behind this category of
metrics considers class variable referencing and sharing
between methods as contributing to the degree to which
the methods of a class belong together. Most structural
metrics define and measure relationships among the
methods of a class based on this principle. Cohesion is
seen dependent on the number of pair of methods that
share instance or class variables, one way or another.
The differences among the structural metrics are based
on the definition of the relationships among methods,
system representation, and counting mechanism.

Somewhat different in this class of metrics are
LCOM5 and Coh, which consider that cohesion is
directly proportional to the number of instance
variables in a class that are referenced by the methods
in that class. Briand defined a unified framework for
cohesion measurement in OO systems [7], that
classifies and discusses all these metrics.

Recently, other structural cohesion metrics have
been proposed trying to improve existing metrics by
considering the effects of the dependent instance
variables whose values are computed from other
instance variables in the class [12, 36].

While different from each other, all structural
metrics capture the same aspects of cohesion, which
relate to the data flow between the methods of a class.
Other interpretations of cohesion generated different
measures and metrics like the Logical Relatedness of
Methods (LORM) [18], which is being used to measure
the cohesion of a class. Both metrics are based on
natural language processing and associate domain level
concepts with elements of a source. The philosophy
behind this class of metrics, where our proposed
measures fall into, is that a cohesive class is a crisp
implementation of a problem or solution domain
concept. Hence if the methods of a class are
conceptually related to each other, the class is cohesive.
The difficult problem here is how to define and
measure conceptual relationships.

Other cohesion metrics exploit relationships that
underline slicing. A large-scale empirical investigation
of slice-based metrics [31] indicated that the slice-based

cohesion metrics provide complementary views of
cohesion to the structural metrics.

A couple of specialized cohesion metrics were
proposed for different types of applications. Among
those are cohesion metrics for knowledge-based
systems [24] and dynamic cohesion metrics for
distributed applications [14].

From a measuring methodology point of view, two
other cohesion metrics are of interest here since they
are also based on an information retrieval approach.
Patel et al. [33] proposed a composite cohesion metric
that measures the information strength of a module.
This measure is based on a vector representation of the
frequencies of occurrences of data types in a module.
The approach measures the cohesion of individual
subprograms of a system based on the relationships to
each other in this vector space. Maletic and Marcus
[27] defined a file level cohesion metric based on the
same type of information we are using for our proposed
metrics here. Even though these metrics were not
specifically designed for the measurement of cohesion
in OO software, they could be extended to measure
cohesion in OO systems.

3. An information retrieval approach to
class cohesion measurement
OO analysis and design methods try to decompose

the problem addressed by the software system
development into classes, in an attempt to control
complexity. High cohesion for classes and low
coupling among classes are design principles aimed at
reducing the system complexity. The most desirable
type of cohesion for a class is model cohesion [16],
such that the class represents a single, semantically
meaningful concept. This is the type of cohesion we
are trying to measure in our approach.

The designers and the programmers of a software
system rarely think about a class as a set of method–
attribute interactions. Most often they think about the
class as a set of responsibilities that approximate the
concept from the problem domain implemented by the
class. This type of information is recorded in the
source code through identifiers and comments.
Analysis of this type of information, referred to as
semantic information, is useful for a variety of software
development and evolution tasks [2, 3, 11, 27, 29, 30].

Among the existing cohesion metrics for OO
software LORM [18] is the only one that uses this type
of information to measure the conceptual similarity of
the methods in a class, as determined by the
representation of the class methods by a semantic
network. LORM uses natural language processing
techniques for the analysis needed to measure the
conceptual similarity of methods.

We are proposing here a different approach that uses
the same type of information and is based on a similar
interpretation of cohesion. The underlying mechanism
used to extract and analyze the semantic information
from the source code is based on Latent Semantic
Indexing (LSI) [15], an advanced information retrieval
method. Any other IR method could be used in this
approach like a vector space model or a Bayes
classifier, which were used before to support software
maintenance tasks [3]. We chose LSI since we already
have a positive experience in using it to address other
software maintenance tasks such as concept location
[30], identification of abstract data types in legacy
source code [27], clone detection in software [28], and
recovery of traceability links between software and
documentation [29]. See [27, 29, 30] for a detailed
description of the use of LSI in the context of software
based corpus.

The basic usage of LSI in measuring the conceptual
cohesion of classes is similar to some extent to our
previous work. The source code under analysis is
converted into a text corpus, such that from each
method only identifiers and comments are extracted.
Each method is a document in this corpus and LSI is
used to map each document to a vector in a
multidimensional space determined by the terms that
occur in the vocabulary of the software. This
representation is similar to that used in existing search
engines such as Google (www.google.com). Once each
method is represented as a vector, a similarity measure
between any two methods can be defined as the cosine
between their corresponding vectors. This similarity
measure will express how much relevant semantic
information is shared among the two methods, in the
context of the entire system.

By computing the degree of similarity between
methods of a class we can determine whether a class
represents a single semantic abstraction (or concept).
This information is then correlated to a new measure of
cohesion we call Conceptual Cohesion of Classes (C3).

3.1. System representation
With the IR based underlying mechanism, in order

to define and compute the C3 metric, we introduce a
graph based system representation, similar to those
used to compute other cohesion metrics.

We consider an OO system as a set of classes
C = {c1, c2…cn}. The total number of classes in the
system C is n = |C|.

A class has a set of methods. For each class c ∈ C,
M(c) = {m1, …, mk} is the set of methods of class c.

An OO system C is represented as a set of connected
graphs GC = {G1,.., Gn} with Gi representing class ci.
Each class ci ∈ C is also represented by a graph

Gi ∈ GC such that Gi = (Vi, Ei), where Vi = M(ci) is a
set of vertices corresponding to the methods in class ci
and Ei ⊂ VixVi is a set of weighted edges that connect
pairs of methods from the class.

Definition 1. (Conceptual similarity between
methods – CSM)

For every class ci ∈ C, all the edges in Ei are
weighted. For each edge (mk, mj) ∈ Ei, we define the
weight of that edge CSM(mk, mj), as the conceptual
similarity between the methods mk and mj.

The conceptual similarity between methods mk and
mj, CSM(mk, mj) is computed as the cosine between the
vectors corresponding to mk and mj in the semantic
space constructed by the IR method (in this case LSI).

CSM(mk, mj) =
22 |||| jk

j
T
k

vmvm
vmvm
×

,

where vmk and vmj are the vectors corresponding to the
mk, mj ∈ M(ci) methods.

For each class c ∈ C we have a maximum of
N = 2

nC distinct edges between different nodes, where
n = |M(c)|.

3.2. The conceptual cohesion of classes (C3)
With this system representation we define a set of

measures that approximate the cohesion of a class in an
OO software system by measuring the degree to which
the methods in a class are related conceptually.

Defintion 2. (Average conceptual similarity of
methods in a class – ACSM)

The average conceptual similarity of the methods in
a class c ∈ C is:

ACSM(c) = ∑=
×

N

i ji mmCSM
N 1

),(1
,

where (mi, mj) ∈ E, i ≠ j, mi, mj ∈ M(c), and N is the
number of distinct edges in G, defined in def. 1.

In our view, ACSM(c) defines degree to which
methods of a class belong together conceptually and
thus it can be used as basis for computing the
conceptual cohesion of classes.

Definition 3. (Conceptual cohesion of a class – C3)
For a class c ∈ C, the conceptual cohesion of c,

C3(c) is defined as following:

C3(c) =
⎩
⎨
⎧ >

0
0)()(

else
cACSMifcACSM

Based on the above definitions, C3(c) ∈ [0, 1]
∀ c ∈ C. If a class c ∈ C is cohesive then C3(c) should
be closer to one meaning that all methods in the class
are strongly related conceptually with each other (i.e.,
the CSM for each pair of methods is close to one). In
this case, the class most likely implements a single

concept or a very small group of related concepts
(related in the context of the software system).

If the methods inside the class have low conceptual
similarity values between them (CSM close to or less
than zero), then the methods most likely participate in
the implementation of different concepts and C3(c) will
be close to zero.

3.3. An example of measuring C3
To better understand the C3 metric, consider a class

c ∈ C with five methods m1, m2, m3, m4, m5. The
conceptual similarities between the methods in the class
are shown in Table 1. For the computation of ACSM
we consider all pairs of different methods, thus
ACSM(c) = 0.5. Since the value is positive, C3(c) =
ACSM(c) = 0.5. This particular value for C3 does not
indicate high cohesion for class c nor a low one, but the
CSM values from Table 1 show that m1 and m3, m2
and m4, m2 and m5, and m4 and m5 are closely related
respectively (i.e., the CSM between each pair is larger
than C3). As one can see in this example, CSM is not a
transitive measure. Since C3 is an average measure, we
could have situations when some pairs of methods are
highly related and other are not and the average is
around 0.5.

With that in mind, we refine the C3 to measure the
influence of the difference between the highly related
and unrelated pairs of methods on the cohesion of the
class.

Table 1. Conceptual similarities between the
methods in class c. ACSM(c) = 0.5.

 m1 m2 m3 m4 m5
m1 1 0.21 0.72 0.33 0.42
m2 1 0.28 0.91 0.66
m3 1 0.37 0.27
m4 1 0.89
m5 1

3.4. Lack of conceptual similarity between
methods (LCSM)

In order to capture the influence of highly related
methods in a class with a low C3 cohesion we define a
new measure based on the counting mechanism utilized
in LCOM2 [13]. In our case, of course, the metrics
does not take into account intersections of methods
based on common attribute usage, but it counts
intersections of method pairs based on the CSM value
between them.

Definition 4. (Lack of conceptual similarity
between methods – LCSM)

Consider a class c ∈ C represented by graph G = (V,
E) as defined in section 3.1. V = M(c) = {m1, m2, ...,
mn} is the set of nodes in the graph with n = |M(c)|

methods. Only edges between pairs of methods with
CSM higher than the average are considered: (mi, mj) ∈
E ⇔ CSM(mi, mj) > ACSM(c), mi ≠ mj.

Let Mi = {mj | (mi, mj) ∈ E, mi ≠ mj} be the set of
neighbor methods of mi (with which mi has a higher
CSM value than the average).

Let P = {(Mi, Mj) | Mi ∩ Mj = Ø}. If all n sets
M1,…, Mn are Ø, then let P = Ø.

Let Q = {(Mi, Mj) | Mi ∩ Mj ≠ Ø}.
With these measures, we define the lack of

conceptual similarity between methods for a class c as:

LCSM(c) =
⎩
⎨
⎧ >−

0
||||||||

else
QPifQP

Just as LCOM2, LCSM is an inverse measure of
cohesion, which means that a higher value for LCSM
indicates lower cohesion. Note that the LCSM metric
for a class where |P| = |Q| will be zero. This does not
necessarily imply maximal cohesion, since within the
set of classes with LCSM = 0, some may be more
cohesive than others, as indicated by C3. LCSM is
intended to complement C3, therefore for a more
complete assessment of the cohesion of a class, both
should be computed.

3.5. An example of measuring LCSM
Consider the same class c described in section 3.3

with C3(c) = 0.5. For each method of the class c, we
compute Mi based on definition 4: M1 = {m3}, M2 =
{m4, m5}, M3 = {m1}, M4 = {m2, m5}, M5 = {m2,
m4}. Table 1 shows us the intersection among all pairs
of sets Mi ∩ Mj in class c. Based on the intersection P
= {(M1, M2); (M1, M3); (M1, M4); (M1, M5); (M2,
M3); (M3, M4); (M3, M5)} and |P| = 7. Q = {(M2,
M4); (M2, M5); (M4, M5)} and |Q| = 3. Thus,
LCSM(c) = 7-3 = 4.

Table 2. Intersection results for method sets

 M1 M2 M3 M4 M5
M1 Ø Ø Ø Ø
M2 Ø m5 m4
M3 Ø Ø
M4 m4
M5

The two results combined indicate a lower value for

the cohesion of class c from the example. In another
situation, class c’ could have had more highly related
methods than in this case (i.e., four pairs) and less
unrelated method pairs with the same C3(c’) value (i.e.,
0.5). Assume Table 2 would indicate 6 pairs of method
sets with non empty intersection and only 4 with an
empty intersection. The LCSM(c’) in that case would

be 0. The combined measures will indicate that c’ is
more cohesive than c.

3.6. Measuring methodology and tool support
The measuring methodology for the proposed

cohesion metrics is described in Figure 1. The
following steps are necessary to compute the C3 and
LCSM metrics:
• Preprocessing and parsing of the source code to

produce a text corpus. Comments and identifiers
from each method are extracted and processed. A
document in the corpus is created for each method
in every class.

• An IR method is used to index the corpus and
create an equivalent semantic space.

• Based on the IR indexing conceptual similarities
are computed between each pair of methods.

• Based on the conceptual similarity measures, C3
and LCSM are computed for each class.

Figure 1. Measuring methodology and tools

We implemented a tool to compute C3 and LCSM
for C++ software projects in MS Visual Studio .NET,
based on the above methodology. Our source code
parser component is based on the “Visual C++ Object
Extensibility Model”. Using project information
retrieved from Visual Studio .NET, the tool retrieves
parts of source code that are used to produce a corpus.
The extracted comments and identifier are processed in
a similar fashion we used in [30], by elimination of stop
words and splitting identifiers that follow predefined
coding standards. The corpus is indexed by the
indexing engine, which is an implementation of LSI.

We use the cosine between vectors in the LSI space to
compute conceptual relations.

3.7. Limitations of the proposed metrics
Both C3 and LCSM metrics greatly depend upon

reasonable naming conventions for identifiers and
relevant comments contained in the source code. When
these are missing, the only hope for measuring any
aspects of cohesion rests on the structural metrics.
Section 4.1 presents a case study in which we computed
C3 and LCSM for the same software once considering
the comments and once only considering identifiers.
We are currently working on a set heuristics that would
indicate the circumstances when the comments and
identifiers will not help in measuring cohesion.

Another limitation of C3 and LCSM is that they do
not take into account polymorphism and inheritance.
They only consider methods of a class that are
implemented or overloaded in the class. Method
invocation, parameters, attribute references, and types
are of interest only at identifier level. Each occurrence
of an identifier as an invocation, attribute reference, or
type specification within the body of a method
contributes to the vector representation of the method in
the semantic space. The vector will get ‘closer’ to the
ones where the same identifiers are used.

Finally, as most of the other cohesion measures, C3
and LCSM do not make distinction between
constructors, accessors, and other method stereotypes.
Some of these methods can artificially increase or
decrease cohesion.

4. Assessment of C3 and LCSM
For newly proposed metrics, empirical and

theoretical evaluations are needed [7, 8].
The mechanism used to measure C3 and LCSM is

general enough to accommodate measurement of
various components and elements of a software system
regardless of the programming paradigm or language
used to build the system.

We consider the following properties of cohesion
metrics as important [8]: non-negativity (i.e., cohesion
should be non-negative) and normalization (i.e., the
measure is independent of the size of the class), null
and maximal value (i.e., a class can have no cohesion or
can have maximum cohesion), and monotonicity.

Both C3 and LCSM comply with the non-negativity
property. However, only C3 is normalized (i.e., for a
class c, C3(c) ∈ [0, 1]). LCSM is not normalized,
because its value depends on the number of methods in
the class, since the counting mechanism is similar to
that used by LCOM2. Normalization provides the
mechanism for meaningful comparisons between the
cohesion of different classes.

If none of the methods of the class share
conceptually related content (i.e., identifiers and
comments), they are considered to have different
semantic context and C3(c) may be close to zero. If
methods share the same vocabulary, then the
conceptual similarity between methods is high and
C3(c) should be close to one (i.e., if each method is a
clone of the other, C3 will be one). On the other hand,
if there are no empty method sets intersections for
LCSM or the number of non-empty intersections is
greater than number of empty intersections, then
LCSM(c) = 0. The maximum value of LCSM in this
case is 2

nC , where n is the number of methods in class
c. The maximum value is possible in the case when all
methods in the class are conceptually unrelated
indicating complete absence of cohesion.

While we will not prove monotonicity for C3 and
LCSM, intuitively, if the value of the conceptual
relationships between two methods is increased, then
C3 will obviously increase since it is based on the
average of all such values. The similar situation will
result in the increase (or not) in the number of
neighbors of a method in the class. This in turn will
result in a lower (or equal) value of LCSM, which
means higher (or equal) cohesion.

4.1. Case study
In order to evaluate the proposed metrics against

existing structural metrics we performed a case study
on open source software.

4.1.1. Case study design. The goal of the case study is
to determine how the proposed metrics correlate to the
traditional structural ones. We also tried to see whether
the presence or absence of the comments in the source
code significantly affects C3 and LCSM metrics.

We selected the following structural cohesion
metrics to compare with C3 and LCSM: LCOM1,
LCOM2, LCOM3, LCOM4, LCOM5, Coh, C, ICH,
TCC and LCC. The goal was to establish which
structural metrics correlate well with the conceptual
cohesion metrics. The assumption is that if two metrics
correlate well, then they measure the same aspects of
cohesion. Our choice of metrics is not random, since
these structural metrics were extensively studied [4, 7,
9, 20, 35] and compared to each other and to other
metrics.

For the case study we computed the structural and
the conceptual cohesion metrics for the open source
project WinMerge 2.0.2 (sourceforge.net/projects/winmerge/),
which is commonly used for visual differencing and
merging of files and directories. The software consists
of 173 *.cpp and *. h files with 51,457 lines of code
and 11,533 lines of comments.

The structural metrics were computed using the
Columbus tool [21] and the conceptual metrics were
computed with our prototype tool.

Columbus computed metrics for 69 classes
containing 624 methods. We excluded abstract classes
with pure virtual functions from the analysis since they
have no implementation. Thus, we considered the
structural metrics for only 34 classes with 522 methods.
Our tool computed C3 and LCSM metrics for the 34
classes with 522 methods as well. In order to study the
effect of comments in the source code on the C3 and
LCSM metrics, we also computed these metrics for
WinMerge without using the comments in the source
code; these two metrics are referred to as C3’ and
LCSM’ respectively.

Table 3. Statistics for cohesion measures for
WinMerge application. C3’ and LCSM’ are the

values for C3 and LCSM computed for WinMerge
without using the comments in the code.

Metric Max 75% Med 25% Min Mean Std.
Dev

C3 0.98 0.69 0.52 0.39 0.19 0.55 0.22
C3’ 0.84 0.63 0.58 0.31 0.18 0.52 0.21
LCSM 7 1.5 0 0 0 0.97 1.56
LCSM’ 9 2 1 0 0 1.7 2.76
LCOM1 1867 63.5 23 6.5 0 174.51 413.74
LCOM2 1843 61 19 4 0 163.34 398.05
LCOM3 54 10 5 3 0 9.2 11
LCOM4 33 10 5 3 0 7.34 7.53
LCOM5 1.13 0.9 0.73 0 0 0.52 0.44
ICH 102 4 0 0 0 9.71 24.54
TCC 1 0.17 0 0 0 0.17 0.31
LCC 1 0.24 0 0 0 0.2 0.34
Coh 0.67 0.27 0.13 0 0 0.16 0.18

4.1.2. Results. For each metric we also computed a set
of descriptive statistical values, at system level: the
maximum values, interquartile ranges, median,
minimum, mean value, and standard deviation. This
data is used to give an overall picture of the differences
and similarities among all these metrics, at system
level. The statistics for structural and conceptual
cohesion measures are provided in Table 3.

For more precise information, we computed
Pearson’s correlation coefficient between every pair of
metrics, for each class. The correlation coefficient
measures the strength of the linear relationship between
two variables, which in our case are two metrics.

The value of the coefficient is between -1 and +1,
inclusively. A value of -1 would indicate a perfect
negative correlation between the two variables.
Correspondingly, a value of +1 would indicate a perfect
positive correlation between the two variables. If the
correlation coefficient is 0, then there is no linear
relationship between the two variables. In this case
study we consider correlation of 0.1 to be trivial, 0.1 –
0.3 minor, 0.3 – 0.5 moderate, 0.5 – 0.7 large, 0.7 – 0.9

very large, and 0.9 – 1 almost perfect. The correlation
coefficients between the cohesion metrics measured on
WinMerge, with and without comments, are presented
in Table 4.

4.1.3. Discussion. The statistics in Table 3 show us
that the values for C3 and C3’ are very close to each
other. This is a clear indication that in the case of
WinMerge the comments in the source code, which
amount to approximately 20% of the text, do not
influence much the computation of C3. The values for
LCSM and LCSM’ are less conclusive in this respect,
but the differences are still not major. The standard
deviation across all the metrics is quite similar (20-30%
of the maximum value).

The more interesting results though are provided by
the analysis of the correlation data from Table 4.

LCOM1, LCOM2, LCOM3, and LCOM4 are
strongly correlated and thus they are measuring similar
properties of cohesion. This is not surprising since all
these metrics are based on counting instance variable
usage in the methods of a class. It is interesting
however that LCOM5 does not correlate with LCOM1-
LCOM4, although it is just a variation on counting how
methods access the attributes of a class. The Coh
metric, which is an extension of LCOM5, moderately
correlates with LCOM4 and LCOM5, which is also
surprising. We expected a stronger correlation among
these metrics. An interesting correlation is found
among ICH and LCOM1-LCOM3, although it is
somewhat counterintuitive considering their definitions.
ICH is information flow-based cohesion measure based
on the information strength (i.e., method invocations
weighted by the number of parameters invoked) among
the methods of a class. Even though the approaches
between ICH and LCOM1-3 are different, they seem to
capture the same aspects of cohesion. In the end, these

results are in line with and support previous empirical
studies that compared these structural metrics [20].

To reach the goals of the case study, we focused on
the analysis of the correlations with C3 and LCSM.
The analysis reveals significant correlations between
C3 and ICH, and C3 and LCOM5. The first pair is not
very surprising because ICH uses the number of
invocations of other methods weighted by the number
of parameters in its formula. The method invocations
will increase the frequency of shared terms between
methods, thus implicitly the value of C3. The
correlation coefficient between C3 and ICH is negative
since ICH is an inverse measure for cohesion.

LCOM5 is based on counting the number of
methods referencing attributes in the class. The idea is
akin to the way LSI counts term frequencies in
documents, and such attribute references are terms in
the methods.

On the other hand, we did not find significant
correlation between any structural metric and LCSM.
In fact LCSM does not correlate with C3 either,
although they use the same information extracted from
the source code, but the counting mechanism is
different. It seems that LCSM captures aspects on
cohesion that are not addressed by any metrics in the
study. While we expected this to be true with respect
with C3, it is somewhat of a surprise, since we expect
more significant correlation with LCOM2, considering
the common counting mechanism. We will conduct
more case studies in the future to further confirm these
results on other software systems.

Since the quality of the comments in the source is a
cause for concern when measuring C3 and LCSM, we
compared C3 with C3’ and LCSM with LCSM’. We
found significant correlation between C3 and C3’ as
well as LCSM and LCSM’. For C3’ we observed
significant correlation with ICH and LCOM5 as well,
similar with C3.

Table 4. Correlations of cohesion metrics for WinMerge.

 LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 ICH TCC LCC Coh C3 LCSM C3’ LCSM’

LCOM1 1.00 1.00 0.84 0.49 0.21 0.86 -0.11 -0.03 -0.26 -0.35 -0.23 -0.29 -0.21
LCOM2 1.00 0.86 0.51 0.19 0.84 -0.11 -0.05 -0.27 -0.33 -0.23 -0.26 -0.21
LCOM3 1.00 0.83 -0.06 0.61 -0.28 -0.26 -0.42 -0.08 -0.19 -0.01 -0.12
LCOM4 1.00 -0.34 0.20 -0.37 -0.35 -0.51 0.14 -0.14 0.21 -0.05
LCOM5 1.00 0.37 0.22 0.25 0.54 -0.65 -0.15 -0.52 -0.22

ICH 1.00 -0.02 0.10 -0.14 -0.49 -0.24 -0.51 -0.23
TCC 1.00 0.97 0.63 -0.16 -0.14 -0.17 -0.09
LCC 1.00 0.55 -0.24 -0.19 -0.31 -0.13
Coh 1.00 -0.23 0.14 -0.31 -0.09
C3 1.00 0.23 0.79 0.31

LCSM 1.00 0.17 0.70

To gain more insight into how our metrics differ
from some of the structural ones, we analyzed the
classes with high structural and low conceptual
cohesion and vice versa. Henderson-Sellers [22] noted
that: “It is after all possible to have a class with high
internal, syntactic cohesion but little semantic
cohesion”. We selected several classes based on high
LCOM2 values (i.e., indicating low cohesion) and high
C3 values and vice versa. The classes selected for
further analysis based on values for C3 and LCOM2 are
shown in Table 5. Overall, a class is considered to
have low LCOM2 values if it is in the first 15% of
classes with lowest values for the metric. We apply the
same threshold for identifying the classes with high
values for C3.

Table 5. Classes under analysis

Class name C3 LCOM2
IVSSItem 0.64 528

IVSSDatabase 0.635 136
IVSSItemOld 0.632 465
BCMenuData 0.434 0

CDirDoc 0.294 0
RescanSuppress 0.392 1

The analysis of the classes in Table 5 yields very

interesting results. For example, the IVSSItem class is
a wrapper class that does not have data members, only
methods that wrap the implementation for the OLE
automation on the client side. High values for LCOM2
in methods are easily explained in this case. The
intersection of every pair of methods in this class is
null, because the class does not contain any attribute.
For the IVSSItem class that has 33 methods, LCOM2 =
528. The high C3 value is also understandable, because
the implementation of every method contains
invocations of the InvokeHelper method of the derived
class COleDispatchDriver and a similar subset of
identifier names for local variables. Wrappers tend to
group together methods that are conceptually similar.
The IVSSDatabase and IVSSItemOld classes follow the
same pattern since they also implement wrappers for
the COleDispatchDriver interface. In conclusion, in
these situations (i.e., wrappers) it seems that C3 is a
more suitable measure for cohesion than LCOM2.

From the other group of investigated classes,
BCMenuData is a class that implements a “property
container” for menu items that are drawn using an
“Office XP” like style. It is a small class with a set of
accessor functions. LCOM2 is 0, meaning that the
number of intersecting sets is more than the number of
non-intersecting ones. Close examination of the class
supports the fact that the class represents a single
meaningful abstraction however values of C3 do not

capture this fact due to the large number of unique
identifier names used in these accessors. As mentioned
above, accessor methods, just like constructors may
influence significantly the measurement of C3.

The CDirDoc class is an example of a class with
concealed cohesion, which means that the class
includes some attributes and methods that might create
another class. Close analysis revealed that the class
handles the following activities: creating and closing of
a new document, representing “right-left” panel
abstraction in the “view-merge” application, keeping
track of updating time, status and content, as well as
choosing different view modes. It has only several
attributes like pointer to CDirView class and a
container of CMergeDoc classes. Those attributes are
referenced in most methods of the class. Thus LCOM2
for the CDirDoc is 0. On the other hand, the value of
C3 for CDirDoc is 0.294 which shows low conceptual
similarity of methods inside the class. Detailed
analysis shows that the class implements a set of
concepts that could be refactored into separate classes
implementing each concept at a time. The low LCOM2
value would indicate a difficult refactoring since it may
create high coupling. However, when considering the
low number of attributes of the class, this is not a major
issue. While it is hard to generalize, in situation when a
class has few attributes and many methods by
comparison, low LCOM2 value and high low C3 value
may indicate lack of cohesion after all.

The RescanSuppress class implements an
abstraction of a simple lock that prevents objects of
type CMergeDocs from rescanning within its lifetime
unless the clear() method is called. It is a small class
with three attributes and three methods - constructor,
destructor and the clear() method. Although the class
represents a crisp abstraction from a user point of view,
the small value for C3 can be explained due to the
small number of identifiers and their intersections
within method implementations of the class. This is a
situation where C3 showed its limits.

Finally, we also analyzed classes with the maximum
and minimum C3 values. The classes with the highest
C3 values (i.e., 0.9812 and 0.9187 respectively) are
IVSS and BCMenuMemDC. The LCOM2 values for
those two classes are 6 and 5 respectively. The IVSS
class is also a wrapper class as described earlier. The
BCMenuMemDC class turned out to be a crisp
abstraction from both perspectives: structural and
conceptual. While no strong correlation was found
between LCOM2 and C3, the same observation is true
for other classes with high C3 and structural cohesion
(based on LCOM2) that we analyzed:
WaitStatusCursor, CPropSyntax, CColorButton, and
CDiffContext.

The analysis of classes with the lowest C3 values
revealed CMainFrame and CMergeDoc that have C3
values of 0.1863 and 0.1975 respectively. These
classes also have very low LCOM2 values, 1470 and
814 respectively. Analysis of the source code
implementing the classes showed that CMainFrame is
one of the largest classes in the system having 1397
LOC and 804 lines of comments in 76 methods. It is
clear from the source code that this class implements
multiple unrelated abstractions and could be
restructured into several more cohesive classes.
CMergeDoc follows the same pattern as CMainFrame.
It has 1212 LOC and 402 lines of comments in 58
methods implementing several concepts.

Overall, it seems that LCOM2 and C3 values for the
classes significantly correlate among the highest and
lowest values respectively.

4.1.4. Threats to validity. Several issues affected the
results of our case study and limit our interpretation.

We have demonstrated that some of the structural
and conceptual measures investigated have significant
correlation between them. Such statistical relationships
do not necessarily demonstrate a casual relationship,
but rather provide empirical evidence of it. Only
controlled experiments, where the measures would be
varied in a controlled manner and all other factors
would be held constant, could demonstrate causality.

The analysis of the results at this stage in our
research showed how the conceptual cohesion metrics
can complement structural metrics in some cases.
However, only the values of C3 and LCOM2 were used
to draw these conclusions. This may affect the results
if another structural metric is used in conjunction with
C3. Further analysis should be done to find the
combinations of metrics that can capture different
aspects of cohesion and that will best complement each
other in a variety of cases.

The size and the quality of the WinMerge source
also have an impact on the results. While the structural
metrics are not much affected, the construction of the
corpus and the indexing are dependent on these factors.

5. Conclusions and future work
The paper presented a new set of metrics for

measuring the conceptual cohesion of classes. The
metrics are measured using semantic information
embedded in the source code (i.e., comments and
identifiers) via an IR approach. A case study on open
source software provided evidence of unsurprising
correlations between C3 and ICH and LCOM5
respectively, meaning that those metrics may capture
similar aspects of cohesion. On the other hand we did
not find any significant correlation between LCSM and

any structural metric. However, LCSM seem to
complement well C3 in some situations. Further
studies are needed in order to determine more subtle
relationships between LCSM and other cohesion
metrics. We found that C3 and LCOM2 can help
identify special cases like wrappers or classes that have
several concepts implemented that can be refactored
into a set of classes. According to the results of the
case study, C3 and LCSM can also be applied to the
software with sparse or missing comments.

More case studies are planned on software written in
other languages. We need to further investigate the
effect of certain method stereotypes on these cohesion
metrics and of the class interfaces, which were not
captured here. In addition, we plan to extend the suite
of conceptual cohesion metrics with new ones based on
different counting mechanism (i.e., like LCOM3).
Comparison with metrics in other categories (e.g.,
semantic metrics) is also desirable. In the long run we
want to identify groups of metrics, which used in
conjunction best capture the cohesion of classes.

6. Acknowledgements
This research was supported in part by a grant from

the National Science Foundation (CCF-0438970).

7. References
[1] Allen, E. B., Khoshgoftaar, T. M., and Chen, Y.,
"Measuring coupling and cohesion of software modules: an
information-theory approach", in Proc. of 7th International
Software Metrics Symposium, April 4-6 2001, pp. 124-134.
[2] Anquetil, N. and Lethbridge, T., "Assessing the Relevance
of Identifier Names in a Legacy Software System", in
Proceedings of Annual IBM Centers for Advanced Studies
Conference (CASCON'98), December 1998, pp. 213-222.
[3] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E., "Recovering traceability links between code and
documentation", IEEE Transactions on Software
Engineering, vol. 28, no. 10, October 2002, pp. 970-983.
[4] Bansiya, J. and Davis, C. G., "A hierarchical model for
object-oriented design quality assessment", IEEE
Transactions on Software Engineering, vol. 28, no. 1, January
2002, pp. 4-17.
[5] Bieman, J. and Kang, B.-K., "Cohesion and reuse in an
object-oriented system", in Proceedings of ACM Symposium
on Software Reusability (SSR'95), April 1995, pp. 259-262.
[6] Briand, L. C., Daly, J. W., Porter, V., and Wüst, J., "A
Comprehensive Empirical Validation of Design Measures for
Object-Oriented Systems", in Proc. of International Software
Metrics Symposium, Bethesda, MD, Nov. 21 1998, pp. 43-53.
[7] Briand, L. C., Daly, J. W., and Wüst, J., "A Unified
Framework for Cohesion Measurement in Object-Oriented
Systems", Empirical Software Engineering, vol. 3, no. 1,
1998, pp. 65-117.

[8] Briand, L. C., Morasca, S., and Basili, V. R., "Property-
Based Software Engineering Measurements", IEEE
Transactions on Software Engineering, vol. 22, no. 1, January
1996, pp. 68-85.
[9] Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D.,
"Exploring the relationship between design measures and
software quality in object-oriented systems", Journal of
System and Software, vol. 51, no. 3, May 2000, pp. 245-273.
[10] Brito e Abreu, F. and Goulao, M., "Coupling and
cohesion as modularization drivers: are we being over-
persuaded?" in Proceedings of 5th European Conference on
Software Maintenance and Reengineering, 2001, pp. 47-57.
[11] Caprile, B. and Tonella, P., "Restructuring program
identifier names", in Proceedings of International Conference
on Software Maintenance, Oct. 11-14 2000, pp. 97-107.
[12] Chae, H. S., Kwon, Y. R., and Bae, D. H., "Improving
Cohesion Metrics for Classes by Considering Dependent
Instance Variables", IEEE Transactions on Software
Engineering, vol. 30, no. 11, November 2004, pp. 826-832.
[13] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite
for Object Oriented Design", IEEE Transactions on Software
Engineering, vol. 20, no. 6, 1994, pp. 476-493.
[14] Cho, E. S., Kim, C. J., Kim, D. D., and Rhew, S. Y.,
"Static and dynamic metrics for effective object clustering",
in Proceedings of Asia Pacific International Conference on
Software Engineering, 1998, pp. 78 - 85.
[15] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for Information
Science, vol. 41, 1990, pp. 391-407.
[16] Eder, J., Kappel, G., and Schreft, M., "Coupling and
Cohesion in Object-Oriented systems", University of
Klagenfurt, Technical Report 1994.
[17] El-Emam, K., "Object-Oriented Metrics: A Review of
Theory and Practice", in Advances in software engineering,
Springer-Verlag, New York, 2002, pp. 23-50.
[18] Etzkorn, L. and Delugach, H., "Towards a semantic
metrics suite for object-oriented design", in Proceedings of
34th International Conference on Technology of Object-
Oriented Languages and Systems, July 30 2000, pp. 71 - 80.
[19] Etzkorn, L. H. and Davis, C. G., "Automatically
Identifying Reusable OO Legacy Code", IEEE Computer, vol.
30, no. 10, October 1997, pp. 66-72.
[20] Etzkorn, L. H., Gholston, S. E., Fortune, J. L., Stein, C.
E., Utley, D., Farrington, P. A., and Cox, G. W., "A
comparison of cohesion metrics for object-oriented systems",
Information and Software Technology, vol. 46, no. 10, August
2004, pp. 677-687.
[21] Ferenc, R., Siket, I., and Gyimóthy, T., "Extracting facts
from open source software", in Proceedings of 20th
International Conference on Software Maintenance
(ICSM'04), September 11-14 2004, pp. 60-69.
[22] Henderson-Sellers, B., Software Metrics, U. K., Prentice
Hall, 1996.
[23] Hitz, M. and Montazeri, B., "Measuring Coupling and
Cohesion in Object-Oriented Systems", in Proceedings of

International Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.
[24] Kramer, S. and Kaindl, H., "Coupling and cohesion
metrics for knowledge-based systems using frames and rules",
ACM Transactions on Software Engineering and
Methodology, vol. 13, no. 3, July 2004, pp. 332-358.
[25] Lee, J. K., Jung, S. J., Kim, S. D., Jang, W. H., and Ham,
D. H., "Component identification method with coupling and
cohesion", in Proceedings of Eighth Asia-Pacific Software
Engineering Conference, December 2001, pp. 79-86.
[26] Lee, Y. S., Liang, B. S., Wu, S. F., and Wang, F. J.,
"Measuring the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow", in Proceedings of
International Conference on Software Quality, Maribor,
Slovenia, 1995.
[27] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information",
in Proceedings of 23rd International Conference on Software
Engineering, Toronto, Canada, May 12-19 2001, pp. 103-112.
[28] Marcus, A. and Maletic, J. I., "Identification of High-
Level Concept Clones in Source Code", in Proceedings of
Automated Software Engineering (ASE'01), San Diego, CA,
November 26-29 2001, pp. 107-114.
[29] Marcus, A. and Maletic, J. I., "Recovering
Documentation-to-Source-Code Traceability Links using
Latent Semantic Indexing", in Proceedings of 25th
IEEE/ACM International Conference on Software
Engineering, Portland, OR, May 3-10 2003, pp. 125-137.
[30] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J. I.,
"An information retrieval approach to concept location in
source code", in Proceedings of 11th Working Conference on
Reverse Engineering, November 8-12 2004, pp. 8-12.
[31] Meyers, T. M. and Binkley, D., "Slice-based cohesion
metrics and software intervention", in Proceedings of 11th
Working Conference on Reverse Engineering (WCRE'04),
Nov. 8-12 2004, pp. 256-265.
[32] Montes de Oca, C. and Carver, D. L., "Identification of
data cohesive subsystems using data mining techniques", in
Proceedings of International Conference on Software
Maintenance (ICSM'98), November 1998, pp. p. 16-23.
[33] Patel, S., Chu, W., and Baxter, R., "A Measure For
Composite Module Cohesion", in Proceedings of
International Conference on Software Engineering (ICSE'92),
May 11-15 1992, pp. 38-48.
[34] Quah, T.-S. and Thwin, M. M. T., "Application of neural
networks for software quality prediction using object-oriented
metrics", in Proceedings of International Conference on
Software Maintenance, September 22-26 2003, pp. 116-125.
[35] Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., and
Russo, B., "An Empirical Exploration of the Distributions of
the Chidamber and Kemerer Object-Oriented Metrics Suite",
Empirical Software Engineering, vol. 10, no. 1, January 2005,
pp. 81-104.
[36] Zhou, Y., Xu, B., Zhao, J., and Yang, H., "ICBMC: an
improved cohesion measure for classes", in Proceedings of
International Conference on Software Maintenance, October
3-6 2002, pp. 44-53.

