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Abstract 

While often defined in informal ways, software 
cohesion reflects important properties of modules in a 
software system.  Cohesion measurement has been used 
for quality assessment, fault proneness prediction, 
software modularization, etc.  Existing approaches to 
cohesion measurement in Object-Oriented software are 
largely based on the structural information of the 
source code, such as attribute references in methods.  
These measures reflect particular interpretations of 
cohesion and try to capture different aspects of 
cohesion and no single cohesion metric or suite is 
accepted as standard measurement for cohesion. 

The paper proposes a new set of measures for the 
cohesion of individual classes within an OO software 
system, based on the analysis of the semantic 
information embedded in the source code, such as 
comments and identifiers.  A case study on open source 
software is presented, which compares the new 
measures with an extensive set of existing metrics.  The 
differences and similarities among the approaches and 
results are discussed and analyzed. 

1. Introduction 
Software cohesion can be defined as a measure of 

the degree to which elements of a module belong 
together [5].  Cohesion is also regarded from a 
functional point of view; in this view, a cohesive 
module is a crisp abstraction of a concept or feature 
from the problem domain, usually described in the 
requirements or specifications.  Such definitions, while 
very intuitive, are quite vague and make cohesion 
measurement a difficult task, leaving too much room 
for interpretation.  In Object-Oriented (OO) software 
systems, cohesion is usually measured at class level and 
lately, many different OO cohesion metrics have been 
proposed (see Section 2 for details), which try to 
capture different aspects of cohesion, or which reflect a 
particular interpretation of cohesion.  As of today, there 
is no one cohesion metric that is accepted as a standard.  

There is little research [7] on assessing the differences 
and similarities among these metrics. 

Software cohesion metrics can be used for different 
purposes including assessment of design quality [4, 9], 
prediction of software quality and fault proneness [17, 
34], modularization of software [10, 27], identification 
of reusable of components [19, 25], etc.  Most of the 
existing OO metrics suites are based primarily on the 
structural aspects of source code (e.g., attribute 
references in methods).  These measures capture the 
degree to which the elements of a class belong together 
from a structural point of view, but give no clues 
whether the class is cohesive from a functional point of 
view.  While other metrics were proposed by 
researchers (see Section 2 for details) to capture other 
aspects of cohesion, only few such metrics address the 
functional aspect of cohesion [18]. 

We propose a new set of measures for class 
cohesion based on information retrieval (IR) 
techniques, which identifies and captures properties 
shared between members of a class that take into 
account not only syntactic but also semantic 
information.  Our measure of cohesion can be classified 
as measuring the information strength of a class within 
the context of the entire system. 

The following section summarizes the related work 
on other metrics for OO cohesion. Section 3 describes 
our approach and the proposed measures in detail.  
Section 4 presents a theoretical evaluation of the 
proposed measures and an empirical one through a case 
study on measuring the cohesion of classes in existing 
open source software.  The results are compared with 
other metrics computed on the same software; 
differences and similarities are analyzed and discussed.  
Section 5 concludes the paper summarizing our results 
and discusses future work in this area of research. 

2. Related work 
There are several different approaches to measure 

cohesion in OO systems.  Based on the underlying 
mechanisms used to measure the cohesion of a class 
one can distinguish: structural metrics [5, 6, 13, 22, 23, 



 

 

26, 36], the most popular class of cohesion metrics, 
semantic metrics [18], information entropy-based 
metrics [1], slice-based metrics [31], metrics based on 
data mining [32], and metrics for specific types of 
applications like knowledge-based [24] and distributed 
systems [14]. 

The class of structural metrics is the most 
investigated category of cohesion metrics and includes: 
LCOM1 (lack of cohesion in methods) [13], LCOM2 
[13], LCOM3 [23], LCOM4 [23], Co (connectivity) 
[23], LCOM5 [22], Coh [7], TCC (tight class cohesion) 
[5], LCC (loose class cohesion) [5],  ICH (information-
flow-based cohesion) [26]. 

The dominating philosophy behind this category of 
metrics considers class variable referencing and sharing 
between methods as contributing to the degree to which 
the methods of a class belong together.  Most structural 
metrics define and measure relationships among the 
methods of a class based on this principle.  Cohesion is 
seen dependent on the number of pair of methods that 
share instance or class variables, one way or another.  
The differences among the structural metrics are based 
on the definition of the relationships among methods, 
system representation, and counting mechanism. 

Somewhat different in this class of metrics are 
LCOM5 and Coh, which consider that cohesion is 
directly proportional to the number of instance 
variables in a class that are referenced by the methods 
in that class.  Briand defined a unified framework for 
cohesion measurement in OO systems [7], that 
classifies and discusses all these metrics. 

Recently, other structural cohesion metrics have 
been proposed trying to improve existing metrics by 
considering the effects of the dependent instance 
variables whose values are computed from other 
instance variables in the class [12, 36].  

While different from each other, all structural 
metrics capture the same aspects of cohesion, which 
relate to the data flow between the methods of a class.  
Other interpretations of cohesion generated different 
measures and metrics like the Logical Relatedness of 
Methods (LORM) [18], which is being used to measure 
the cohesion of a class.  Both metrics are based on 
natural language processing and associate domain level 
concepts with elements of a source.  The philosophy 
behind this class of metrics, where our proposed 
measures fall into, is that a cohesive class is a crisp 
implementation of a problem or solution domain 
concept.  Hence if the methods of a class are 
conceptually related to each other, the class is cohesive.  
The difficult problem here is how to define and 
measure conceptual relationships. 

Other cohesion metrics exploit relationships that 
underline slicing.  A large-scale empirical investigation 
of slice-based metrics [31] indicated that the slice-based 

cohesion metrics provide complementary views of 
cohesion to the structural metrics. 

A couple of specialized cohesion metrics were 
proposed for different types of applications.  Among 
those are cohesion metrics for knowledge-based 
systems [24] and dynamic cohesion metrics for 
distributed applications [14]. 

From a measuring methodology point of view, two 
other cohesion metrics are of interest here since they 
are also based on an information retrieval approach.  
Patel et al. [33] proposed a composite cohesion metric 
that measures the information strength of a module.  
This measure is based on a vector representation of the 
frequencies of occurrences of data types in a module.  
The approach measures the cohesion of individual 
subprograms of a system based on the relationships to 
each other in this vector space.  Maletic and Marcus 
[27] defined a file level cohesion metric based on the 
same type of information we are using for our proposed 
metrics here.  Even though these metrics were not 
specifically designed for the measurement of cohesion 
in OO software, they could be extended to measure 
cohesion in OO systems. 

3. An information retrieval approach to 
class cohesion measurement 
OO analysis and design methods try to decompose 

the problem addressed by the software system 
development into classes, in an attempt to control 
complexity.  High cohesion for classes and low 
coupling among classes are design principles aimed at 
reducing the system complexity.  The most desirable 
type of cohesion for a class is model cohesion [16], 
such that the class represents a single, semantically 
meaningful concept.  This is the type of cohesion we 
are trying to measure in our approach. 

The designers and the programmers of a software 
system rarely think about a class as a set of method–
attribute interactions.  Most often they think about the 
class as a set of responsibilities that approximate the 
concept from the problem domain implemented by the 
class.  This type of information is recorded in the 
source code through identifiers and comments.  
Analysis of this type of information, referred to as 
semantic information, is useful for a variety of software 
development and evolution tasks [2, 3, 11, 27, 29, 30]. 

Among the existing cohesion metrics for OO 
software LORM [18] is the only one that uses this type 
of information to measure the conceptual similarity of 
the methods in a class, as determined by the 
representation of the class methods by a semantic 
network.  LORM uses natural language processing 
techniques for the analysis needed to measure the 
conceptual similarity of methods. 



 

 

We are proposing here a different approach that uses 
the same type of information and is based on a similar 
interpretation of cohesion.  The underlying mechanism 
used to extract and analyze the semantic information 
from the source code is based on Latent Semantic 
Indexing (LSI) [15], an advanced information retrieval 
method.  Any other IR method could be used in this 
approach like a vector space model or a Bayes 
classifier, which were used before to support software 
maintenance tasks [3].  We chose LSI since we already 
have a positive experience in using it to address other 
software maintenance tasks such as concept location 
[30], identification of abstract data types in legacy 
source code [27], clone detection in software [28], and 
recovery of traceability links between software and 
documentation [29].  See [27, 29, 30] for a detailed 
description of the use of LSI in the context of software 
based corpus. 

The basic usage of LSI in measuring the conceptual 
cohesion of classes is similar to some extent to our 
previous work.  The source code under analysis is 
converted into a text corpus, such that from each 
method only identifiers and comments are extracted.  
Each method is a document in this corpus and LSI is 
used to map each document to a vector in a 
multidimensional space determined by the terms that 
occur in the vocabulary of the software.  This 
representation is similar to that used in existing search 
engines such as Google (www.google.com).  Once each 
method is represented as a vector, a similarity measure 
between any two methods can be defined as the cosine 
between their corresponding vectors.  This similarity 
measure will express how much relevant semantic 
information is shared among the two methods, in the 
context of the entire system. 

By computing the degree of similarity between 
methods of a class we can determine whether a class 
represents a single semantic abstraction (or concept).  
This information is then correlated to a new measure of 
cohesion we call Conceptual Cohesion of Classes (C3). 

3.1. System representation 
With the IR based underlying mechanism, in order 

to define and compute the C3 metric, we introduce a 
graph based system representation, similar to those 
used to compute other cohesion metrics. 

We consider an OO system as a set of classes  
C = {c1, c2…cn}.  The total number of classes in the 
system C is n = |C|. 

A class has a set of methods.  For each class c ∈ C, 
M(c) = {m1, …, mk} is the set of methods of class c. 

An OO system C is represented as a set of connected 
graphs GC = {G1,.., Gn} with Gi representing class ci.  
Each class ci ∈ C is also represented by a graph  

Gi ∈ GC such that Gi = (Vi, Ei), where Vi = M(ci) is a 
set of vertices corresponding to the methods in class ci 
and Ei ⊂ VixVi is a set of weighted edges that connect 
pairs of methods from the class. 

Definition 1.  (Conceptual similarity between 
methods – CSM) 

For every class ci ∈ C, all the edges in Ei are 
weighted.  For each edge (mk, mj) ∈ Ei, we define the 
weight of that edge CSM(mk, mj), as the conceptual 
similarity between the methods mk and mj. 

The conceptual similarity between methods mk and 
mj, CSM(mk, mj) is computed as the cosine between the 
vectors corresponding to mk and mj in the semantic 
space constructed by the IR method (in this case LSI). 

CSM(mk, mj) = 
22 |||| jk

j
T
k

vmvm
vmvm
×

, 

where vmk  and vmj are the vectors corresponding to the 
mk, mj ∈ M(ci) methods. 

For each class c ∈ C we have a maximum of  
N = 2

nC  distinct edges between different nodes, where 
n = |M(c)|. 

3.2. The conceptual cohesion of classes (C3) 
With this system representation we define a set of 

measures that approximate the cohesion of a class in an 
OO software system by measuring the degree to which 
the methods in a class are related conceptually. 

Defintion 2.  (Average conceptual similarity of 
methods in a class – ACSM) 

The average conceptual similarity of the methods in 
a class c ∈ C is:  

ACSM(c) = ∑=
×

N

i ji mmCSM
N 1

),(1
, 

where (mi, mj) ∈ E, i ≠ j, mi, mj ∈ M(c), and N is the 
number of distinct edges in G, defined in def. 1. 

In our view, ACSM(c) defines degree to which 
methods of a class belong together conceptually and 
thus it can be used as basis for computing the 
conceptual cohesion of classes. 

Definition 3.  (Conceptual cohesion of a class – C3) 
For a class c ∈ C, the conceptual cohesion of c, 

C3(c) is defined as following: 

C3(c) = 
⎩
⎨
⎧ >

0
0)()(

else
cACSMifcACSM

 

Based on the above definitions, C3(c) ∈ [0, 1]  
∀ c ∈ C.  If a class c ∈ C is cohesive then C3(c) should 
be closer to one meaning that all methods in the class 
are strongly related conceptually with each other (i.e., 
the CSM for each pair of methods is close to one).  In 
this case, the class most likely implements a single 



 

 

concept or a very small group of related concepts 
(related in the context of the software system). 

If the methods inside the class have low conceptual 
similarity values between them (CSM close to or less 
than zero), then the methods most likely participate in 
the implementation of different concepts and C3(c) will 
be close to zero. 

3.3. An example of measuring C3 
To better understand the C3 metric, consider a class 

c ∈ C with five methods m1, m2, m3, m4, m5.  The 
conceptual similarities between the methods in the class 
are shown in Table 1.  For the computation of ACSM 
we consider all pairs of different methods, thus 
ACSM(c) = 0.5.  Since the value is positive, C3(c) = 
ACSM(c) = 0.5.  This particular value for C3 does not 
indicate high cohesion for class c nor a low one, but the 
CSM values from Table 1 show that m1 and m3, m2 
and m4, m2 and m5, and m4 and m5 are closely related 
respectively (i.e., the CSM between each pair is larger 
than C3).  As one can see in this example, CSM is not a 
transitive measure.  Since C3 is an average measure, we 
could have situations when some pairs of methods are 
highly related and other are not and the average is 
around 0.5. 

With that in mind, we refine the C3 to measure the 
influence of the difference between the highly related 
and unrelated pairs of methods on the cohesion of the 
class. 

Table 1.  Conceptual similarities between the 
methods in class c.  ACSM(c) = 0.5. 

  m1 m2 m3 m4 m5 
m1 1 0.21 0.72 0.33 0.42 
m2  1 0.28 0.91 0.66 
m3   1 0.37 0.27 
m4    1 0.89 
m5     1 

3.4. Lack of conceptual similarity between 
methods (LCSM) 

In order to capture the influence of highly related 
methods in a class with a low C3 cohesion we define a 
new measure based on the counting mechanism utilized 
in LCOM2 [13].  In our case, of course, the metrics 
does not take into account intersections of methods 
based on common attribute usage, but it counts 
intersections of method pairs based on the CSM value 
between them. 

Definition 4.  (Lack of conceptual similarity 
between methods – LCSM) 

Consider a class c ∈ C represented by graph G = (V, 
E) as defined in section 3.1.  V = M(c) = {m1, m2, ..., 
mn} is the set of nodes in the graph with n = |M(c)| 

methods.  Only edges between pairs of methods with 
CSM higher than the average are considered: (mi, mj) ∈ 
E ⇔ CSM(mi, mj) > ACSM(c), mi ≠ mj. 

Let Mi = {mj | (mi, mj) ∈ E, mi ≠ mj} be the set of 
neighbor methods of mi (with which mi has a higher 
CSM value than the average). 

Let P = {(Mi, Mj) | Mi ∩ Mj = Ø}.  If all n sets 
M1,…, Mn are Ø, then let P = Ø. 

Let Q = {(Mi, Mj) | Mi ∩ Mj ≠ Ø}. 
With these measures, we define the lack of 

conceptual similarity between methods for a class c as: 

LCSM(c) = 
⎩
⎨
⎧ >−

0
||||||||

else
QPifQP

 

Just as LCOM2, LCSM is an inverse measure of 
cohesion, which means that a higher value for LCSM 
indicates lower cohesion.  Note that the LCSM metric 
for a class where |P| = |Q| will be zero.  This does not 
necessarily imply maximal cohesion, since within the 
set of classes with LCSM = 0, some may be more 
cohesive than others, as indicated by C3.  LCSM is 
intended to complement C3, therefore for a more 
complete assessment of the cohesion of a class, both 
should be computed. 

3.5. An example of measuring LCSM 
Consider the same class c described in section 3.3 

with C3(c) = 0.5.  For each method of the class c, we 
compute Mi based on definition 4: M1 = {m3}, M2 = 
{m4, m5}, M3 = {m1}, M4 = {m2, m5}, M5 = {m2, 
m4}.  Table 1 shows us the intersection among all pairs 
of sets Mi ∩ Mj in class c.  Based on the intersection P 
= {(M1, M2); (M1, M3); (M1, M4); (M1, M5); (M2, 
M3); (M3, M4); (M3, M5)} and |P| = 7.  Q = {(M2, 
M4); (M2, M5); (M4, M5)} and |Q| = 3.  Thus, 
LCSM(c) = 7-3 = 4. 

Table 2.  Intersection results for method sets 

 M1 M2 M3 M4 M5 
M1  Ø Ø Ø Ø 
M2   Ø m5 m4 
M3    Ø Ø 
M4     m4 
M5      

 
The two results combined indicate a lower value for 

the cohesion of class c from the example.  In another 
situation, class c’ could have had more highly related 
methods than in this case (i.e., four pairs) and less 
unrelated method pairs with the same C3(c’) value (i.e., 
0.5).  Assume Table 2 would indicate 6 pairs of method 
sets with non empty intersection and only 4 with an 
empty intersection.  The LCSM(c’) in that case would 



 

 

be 0.  The combined measures will indicate that c’ is 
more cohesive than c. 

3.6. Measuring methodology and tool support 
The measuring methodology for the proposed 

cohesion metrics is described in Figure 1.  The 
following steps are necessary to compute the C3 and 
LCSM metrics: 
• Preprocessing and parsing of the source code to 

produce a text corpus.  Comments and identifiers 
from each method are extracted and processed.  A 
document in the corpus is created for each method 
in every class. 

• An IR method is used to index the corpus and 
create an equivalent semantic space. 

• Based on the IR indexing conceptual similarities 
are computed between each pair of methods. 

• Based on the conceptual similarity measures, C3 
and LCSM are computed for each class. 

 
Figure 1.  Measuring methodology and tools 

We implemented a tool to compute C3 and LCSM 
for C++ software projects in MS Visual Studio .NET, 
based on the above methodology.  Our source code 
parser component is based on the “Visual C++ Object 
Extensibility Model”.  Using project information 
retrieved from Visual Studio .NET, the tool retrieves 
parts of source code that are used to produce a corpus.  
The extracted comments and identifier are processed in 
a similar fashion we used in [30], by elimination of stop 
words and splitting identifiers that follow predefined 
coding standards.  The corpus is indexed by the 
indexing engine, which is an implementation of LSI.  

We use the cosine between vectors in the LSI space to 
compute conceptual relations. 

3.7. Limitations of the proposed metrics 
Both C3 and LCSM metrics greatly depend upon 

reasonable naming conventions for identifiers and 
relevant comments contained in the source code.  When 
these are missing, the only hope for measuring any 
aspects of cohesion rests on the structural metrics.  
Section 4.1 presents a case study in which we computed 
C3 and LCSM for the same software once considering 
the comments and once only considering identifiers.  
We are currently working on a set heuristics that would 
indicate the circumstances when the comments and 
identifiers will not help in measuring cohesion. 

Another limitation of C3 and LCSM is that they do 
not take into account polymorphism and inheritance.  
They only consider methods of a class that are 
implemented or overloaded in the class.  Method 
invocation, parameters, attribute references, and types 
are of interest only at identifier level.  Each occurrence 
of an identifier as an invocation, attribute reference, or 
type specification within the body of a method 
contributes to the vector representation of the method in 
the semantic space.  The vector will get ‘closer’ to the 
ones where the same identifiers are used. 

Finally, as most of the other cohesion measures, C3 
and LCSM do not make distinction between 
constructors, accessors, and other method stereotypes.  
Some of these methods can artificially increase or 
decrease cohesion. 

4. Assessment of C3 and LCSM 
For newly proposed metrics, empirical and 

theoretical evaluations are needed [7, 8]. 
The mechanism used to measure C3 and LCSM is 

general enough to accommodate measurement of 
various components and elements of a software system 
regardless of the programming paradigm or language 
used to build the system. 

We consider the following properties of cohesion 
metrics as important [8]: non-negativity (i.e., cohesion 
should be non-negative) and normalization (i.e., the 
measure is independent of the size of the class), null 
and maximal value (i.e., a class can have no cohesion or 
can have maximum cohesion), and monotonicity. 

Both C3 and LCSM comply with the non-negativity 
property.  However, only C3 is normalized (i.e., for a 
class c, C3(c) ∈ [0, 1]).  LCSM is not normalized, 
because its value depends on the number of methods in 
the class, since the counting mechanism is similar to 
that used by LCOM2.  Normalization provides the 
mechanism for meaningful comparisons between the 
cohesion of different classes. 



 

 

If none of the methods of the class share 
conceptually related content (i.e., identifiers and 
comments), they are considered to have different 
semantic context and C3(c) may be close to zero.  If 
methods share the same vocabulary, then the 
conceptual similarity between methods is high and 
C3(c) should be close to one (i.e., if each method is a 
clone of the other, C3 will be one).  On the other hand, 
if there are no empty method sets intersections for 
LCSM or the number of non-empty intersections is 
greater than number of empty intersections, then 
LCSM(c) = 0.  The maximum value of LCSM in this 
case is 2

nC , where n is the number of methods in class 
c.  The maximum value is possible in the case when all 
methods in the class are conceptually unrelated 
indicating complete absence of cohesion. 

While we will not prove monotonicity for C3 and 
LCSM, intuitively, if the value of the conceptual 
relationships between two methods is increased, then 
C3 will obviously increase since it is based on the 
average of all such values.  The similar situation will 
result in the increase (or not) in the number of 
neighbors of a method in the class.  This in turn will 
result in a lower (or equal) value of LCSM, which 
means higher (or equal) cohesion. 

4.1. Case study 
In order to evaluate the proposed metrics against 

existing structural metrics we performed a case study 
on open source software. 

4.1.1. Case study design.  The goal of the case study is 
to determine how the proposed metrics correlate to the 
traditional structural ones.  We also tried to see whether 
the presence or absence of the comments in the source 
code significantly affects C3 and LCSM metrics. 

We selected the following structural cohesion 
metrics to compare with C3 and LCSM: LCOM1, 
LCOM2, LCOM3, LCOM4, LCOM5, Coh, C, ICH, 
TCC and LCC.  The goal was to establish which 
structural metrics correlate well with the conceptual 
cohesion metrics.  The assumption is that if two metrics 
correlate well, then they measure the same aspects of 
cohesion.  Our choice of metrics is not random, since 
these structural metrics were extensively studied [4, 7, 
9, 20, 35] and compared to each other and to other 
metrics. 

For the case study we computed the structural and 
the conceptual cohesion metrics for the open source 
project WinMerge 2.0.2 (sourceforge.net/projects/winmerge/), 
which is commonly used for visual differencing and 
merging of files and directories.  The software consists 
of 173 *.cpp and *. h files with 51,457 lines of code 
and 11,533 lines of comments.   

The structural metrics were computed using the 
Columbus tool [21] and the conceptual metrics were 
computed with our prototype tool. 

Columbus computed metrics for 69 classes 
containing 624 methods.  We excluded abstract classes 
with pure virtual functions from the analysis since they 
have no implementation.  Thus, we considered the 
structural metrics for only 34 classes with 522 methods.  
Our tool computed C3 and LCSM metrics for the 34 
classes with 522 methods as well.  In order to study the 
effect of comments in the source code on the C3 and 
LCSM metrics, we also computed these metrics for 
WinMerge without using the comments in the source 
code; these two metrics are referred to as C3’ and 
LCSM’ respectively.  

Table 3.  Statistics for cohesion measures for 
WinMerge application.  C3’ and LCSM’ are the 

values for C3 and LCSM computed for WinMerge 
without using the comments in the code. 

Metric Max 75% Med 25% Min Mean Std.  
Dev 

C3 0.98 0.69 0.52 0.39 0.19 0.55 0.22 
C3’ 0.84 0.63 0.58 0.31 0.18 0.52 0.21 
LCSM 7 1.5 0 0 0 0.97 1.56 
LCSM’ 9 2 1 0 0 1.7 2.76 
LCOM1 1867 63.5 23 6.5 0 174.51 413.74 
LCOM2 1843 61 19 4 0 163.34 398.05 
LCOM3 54 10 5 3 0 9.2 11 
LCOM4 33 10 5 3 0 7.34 7.53 
LCOM5 1.13 0.9 0.73 0 0 0.52 0.44 
ICH 102 4 0 0 0 9.71 24.54 
TCC 1 0.17 0 0 0 0.17 0.31 
LCC 1 0.24 0 0 0 0.2 0.34 
Coh 0.67 0.27 0.13 0 0 0.16 0.18 

4.1.2. Results.  For each metric we also computed a set 
of descriptive statistical values, at system level: the 
maximum values, interquartile ranges, median, 
minimum, mean value, and standard deviation.  This 
data is used to give an overall picture of the differences 
and similarities among all these metrics, at system 
level.  The statistics for structural and conceptual 
cohesion measures are provided in Table 3. 

For more precise information, we computed 
Pearson’s correlation coefficient between every pair of 
metrics, for each class.  The correlation coefficient 
measures the strength of the linear relationship between 
two variables, which in our case are two metrics. 

The value of the coefficient is between -1 and +1, 
inclusively.  A value of -1 would indicate a perfect 
negative correlation between the two variables.  
Correspondingly, a value of +1 would indicate a perfect 
positive correlation between the two variables.  If the 
correlation coefficient is 0, then there is no linear 
relationship between the two variables.  In this case 
study we consider correlation of 0.1 to be trivial, 0.1 – 
0.3 minor, 0.3 – 0.5 moderate, 0.5 – 0.7 large, 0.7 – 0.9 



 

 

very large, and 0.9 – 1 almost perfect.  The correlation 
coefficients between the cohesion metrics measured on 
WinMerge, with and without comments, are presented 
in Table 4. 

4.1.3. Discussion.  The statistics in Table 3 show us 
that the values for C3 and C3’ are very close to each 
other.  This is a clear indication that in the case of 
WinMerge the comments in the source code, which 
amount to approximately 20% of the text, do not 
influence much the computation of C3.  The values for 
LCSM and LCSM’ are less conclusive in this respect, 
but the differences are still not major.  The standard 
deviation across all the metrics is quite similar (20-30% 
of the maximum value). 

The more interesting results though are provided by 
the analysis of the correlation data from Table 4. 

LCOM1, LCOM2, LCOM3, and LCOM4 are 
strongly correlated and thus they are measuring similar 
properties of cohesion.  This is not surprising since all 
these metrics are based on counting instance variable 
usage in the methods of a class.  It is interesting 
however that LCOM5 does not correlate with LCOM1-
LCOM4, although it is just a variation on counting how 
methods access the attributes of a class.  The Coh 
metric, which is an extension of LCOM5, moderately 
correlates with LCOM4 and LCOM5, which is also 
surprising.  We expected a stronger correlation among 
these metrics.  An interesting correlation is found 
among ICH and LCOM1-LCOM3, although it is 
somewhat counterintuitive considering their definitions.  
ICH is information flow-based cohesion measure based 
on the information strength (i.e., method invocations 
weighted by the number of parameters invoked) among 
the methods of a class.  Even though the approaches 
between ICH and LCOM1-3 are different, they seem to 
capture the same aspects of cohesion.  In the end, these 

results are in line with and support previous empirical 
studies that compared these structural metrics [20]. 

To reach the goals of the case study, we focused on 
the analysis of the correlations with C3 and LCSM.  
The analysis reveals significant correlations between 
C3 and ICH, and C3 and LCOM5.  The first pair is not 
very surprising because ICH uses the number of 
invocations of other methods weighted by the number 
of parameters in its formula.  The method invocations 
will increase the frequency of shared terms between 
methods, thus implicitly the value of C3.  The 
correlation coefficient between C3 and ICH is negative 
since ICH is an inverse measure for cohesion. 

LCOM5 is based on counting the number of 
methods referencing attributes in the class.  The idea is 
akin to the way LSI counts term frequencies in 
documents, and such attribute references are terms in 
the methods. 

On the other hand, we did not find significant 
correlation between any structural metric and LCSM.  
In fact LCSM does not correlate with C3 either, 
although they use the same information extracted from 
the source code, but the counting mechanism is 
different.  It seems that LCSM captures aspects on 
cohesion that are not addressed by any metrics in the 
study.  While we expected this to be true with respect 
with C3, it is somewhat of a surprise, since we expect 
more significant correlation with LCOM2, considering 
the common counting mechanism.  We will conduct 
more case studies in the future to further confirm these 
results on other software systems. 

Since the quality of the comments in the source is a 
cause for concern when measuring C3 and LCSM, we 
compared C3 with C3’ and LCSM with LCSM’.  We 
found significant correlation between C3 and C3’ as 
well as LCSM and LCSM’.  For C3’ we observed 
significant correlation with ICH and LCOM5 as well, 
similar with C3. 

Table 4.  Correlations of cohesion metrics for WinMerge.

 LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 ICH TCC LCC Coh C3 LCSM C3’ LCSM’ 

LCOM1 1.00 1.00 0.84 0.49 0.21 0.86 -0.11 -0.03 -0.26 -0.35 -0.23 -0.29 -0.21 
LCOM2  1.00 0.86 0.51 0.19 0.84 -0.11 -0.05 -0.27 -0.33 -0.23 -0.26 -0.21 
LCOM3   1.00 0.83 -0.06 0.61 -0.28 -0.26 -0.42 -0.08 -0.19 -0.01 -0.12 
LCOM4    1.00 -0.34 0.20 -0.37 -0.35 -0.51 0.14 -0.14 0.21 -0.05 
LCOM5     1.00 0.37 0.22 0.25 0.54 -0.65 -0.15 -0.52 -0.22 

ICH      1.00 -0.02 0.10 -0.14 -0.49 -0.24 -0.51 -0.23 
TCC       1.00 0.97 0.63 -0.16 -0.14 -0.17 -0.09 
LCC        1.00 0.55 -0.24 -0.19 -0.31 -0.13 
Coh         1.00 -0.23 0.14 -0.31 -0.09 
C3          1.00 0.23 0.79 0.31 

LCSM           1.00 0.17 0.70 



 

 

To gain more insight into how our metrics differ 
from some of the structural ones, we analyzed the 
classes with high structural and low conceptual 
cohesion and vice versa.  Henderson-Sellers [22] noted 
that: “It is after all possible to have a class with high 
internal, syntactic cohesion but little semantic 
cohesion”.  We selected several classes based on high 
LCOM2 values (i.e., indicating low cohesion) and high 
C3 values and vice versa.  The classes selected for 
further analysis based on values for C3 and LCOM2 are 
shown in Table 5.  Overall, a class is considered to 
have low LCOM2 values if it is in the first 15% of 
classes with lowest values for the metric.  We apply the 
same threshold for identifying the classes with high 
values for C3. 

Table 5.  Classes under analysis 

Class name C3 LCOM2 
IVSSItem 0.64 528 

IVSSDatabase 0.635 136 
IVSSItemOld 0.632 465 
BCMenuData 0.434 0 

CDirDoc 0.294 0 
RescanSuppress 0.392 1 

 
The analysis of the classes in Table 5 yields very 

interesting results.  For example, the IVSSItem class is 
a wrapper class that does not have data members, only 
methods that wrap the implementation for the OLE 
automation on the client side.  High values for LCOM2 
in methods are easily explained in this case.  The 
intersection of every pair of methods in this class is 
null, because the class does not contain any attribute.  
For the IVSSItem class that has 33 methods, LCOM2 = 
528.  The high C3 value is also understandable, because 
the implementation of every method contains 
invocations of the InvokeHelper method of the derived 
class COleDispatchDriver and a similar subset of 
identifier names for local variables.  Wrappers tend to 
group together methods that are conceptually similar.  
The IVSSDatabase and IVSSItemOld classes follow the 
same pattern since they also implement wrappers for 
the COleDispatchDriver interface.  In conclusion, in 
these situations (i.e., wrappers) it seems that C3 is a 
more suitable measure for cohesion than LCOM2. 

From the other group of investigated classes, 
BCMenuData is a class that implements a “property 
container” for menu items that are drawn using an 
“Office XP” like style.  It is a small class with a set of 
accessor functions.  LCOM2 is 0, meaning that the 
number of intersecting sets is more than the number of 
non-intersecting ones.  Close examination of the class 
supports the fact that the class represents a single 
meaningful abstraction however values of C3 do not 

capture this fact due to the large number of unique 
identifier names used in these accessors.  As mentioned 
above, accessor methods, just like constructors may 
influence significantly the measurement of C3. 

The CDirDoc class is an example of a class with 
concealed cohesion, which means that the class 
includes some attributes and methods that might create 
another class.  Close analysis revealed that the class 
handles the following activities: creating and closing of 
a new document, representing “right-left” panel 
abstraction in the “view-merge” application, keeping 
track of updating time, status and content, as well as 
choosing different view modes.  It has only several 
attributes like pointer to CDirView class and a 
container of CMergeDoc classes.  Those attributes are 
referenced in most methods of the class.  Thus LCOM2 
for the CDirDoc is 0.  On the other hand, the value of 
C3 for CDirDoc is 0.294 which shows low conceptual 
similarity of methods inside the class.  Detailed 
analysis shows that the class implements a set of 
concepts that could be refactored into separate classes 
implementing each concept at a time.  The low LCOM2 
value would indicate a difficult refactoring since it may 
create high coupling.  However, when considering the 
low number of attributes of the class, this is not a major 
issue.  While it is hard to generalize, in situation when a 
class has few attributes and many methods by 
comparison, low LCOM2 value and high low C3 value 
may indicate lack of cohesion after all. 

The RescanSuppress class implements an 
abstraction of a simple lock that prevents objects of 
type CMergeDocs from rescanning within its lifetime 
unless the clear() method is called.  It is a small class 
with three attributes and three methods - constructor, 
destructor and the clear() method.  Although the class 
represents a crisp abstraction from a user point of view, 
the small value for C3 can be explained due to the 
small number of identifiers and their intersections 
within method implementations of the class.  This is a 
situation where C3 showed its limits. 

Finally, we also analyzed classes with the maximum 
and minimum C3 values.  The classes with the highest 
C3 values (i.e., 0.9812 and 0.9187 respectively) are 
IVSS and BCMenuMemDC.  The LCOM2 values for 
those two classes are 6 and 5 respectively.  The IVSS 
class is also a wrapper class as described earlier.  The 
BCMenuMemDC class turned out to be a crisp 
abstraction from both perspectives: structural and 
conceptual.  While no strong correlation was found 
between LCOM2 and C3, the same observation is true 
for other classes with high C3 and structural cohesion 
(based on LCOM2) that we analyzed: 
WaitStatusCursor, CPropSyntax, CColorButton, and 
CDiffContext. 



 

 

The analysis of classes with the lowest C3 values 
revealed CMainFrame and CMergeDoc that have C3 
values of 0.1863 and 0.1975 respectively.  These 
classes also have very low LCOM2 values, 1470 and 
814 respectively.  Analysis of the source code 
implementing the classes showed that CMainFrame is 
one of the largest classes in the system having 1397 
LOC and 804 lines of comments in 76 methods.  It is 
clear from the source code that this class implements 
multiple unrelated abstractions and could be 
restructured into several more cohesive classes.  
CMergeDoc follows the same pattern as CMainFrame.  
It has 1212 LOC and 402 lines of comments in 58 
methods implementing several concepts. 

Overall, it seems that LCOM2 and C3 values for the 
classes significantly correlate among the highest and 
lowest values respectively.  

4.1.4. Threats to validity.  Several issues affected the 
results of our case study and limit our interpretation. 

We have demonstrated that some of the structural 
and conceptual measures investigated have significant 
correlation between them.  Such statistical relationships 
do not necessarily demonstrate a casual relationship, 
but rather provide empirical evidence of it.  Only 
controlled experiments, where the measures would be 
varied in a controlled manner and all other factors 
would be held constant, could demonstrate causality. 

The analysis of the results at this stage in our 
research showed how the conceptual cohesion metrics 
can complement structural metrics in some cases.  
However, only the values of C3 and LCOM2 were used 
to draw these conclusions.  This may affect the results 
if another structural metric is used in conjunction with 
C3.  Further analysis should be done to find the 
combinations of metrics that can capture different 
aspects of cohesion and that will best complement each 
other in a variety of cases. 

The size and the quality of the WinMerge source 
also have an impact on the results.  While the structural 
metrics are not much affected, the construction of the 
corpus and the indexing are dependent on these factors. 

5. Conclusions and future work  
The paper presented a new set of metrics for 

measuring the conceptual cohesion of classes.  The 
metrics are measured using semantic information 
embedded in the source code (i.e., comments and 
identifiers) via an IR approach.  A case study on open 
source software provided evidence of unsurprising 
correlations between C3 and ICH and LCOM5 
respectively, meaning that those metrics may capture 
similar aspects of cohesion.  On the other hand we did 
not find any significant correlation between LCSM and 

any structural metric.  However, LCSM seem to 
complement well C3 in some situations.  Further 
studies are needed in order to determine more subtle 
relationships between LCSM and other cohesion 
metrics.  We found that C3 and LCOM2 can help 
identify special cases like wrappers or classes that have 
several concepts implemented that can be refactored 
into a set of classes.  According to the results of the 
case study, C3 and LCSM can also be applied to the 
software with sparse or missing comments. 

More case studies are planned on software written in 
other languages.  We need to further investigate the 
effect of certain method stereotypes on these cohesion 
metrics and of the class interfaces, which were not 
captured here.  In addition, we plan to extend the suite 
of conceptual cohesion metrics with new ones based on 
different counting mechanism (i.e., like LCOM3).  
Comparison with metrics in other categories (e.g., 
semantic metrics) is also desirable.  In the long run we 
want to identify groups of metrics, which used in 
conjunction best capture the cohesion of classes. 
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