
 

 
The Conceptual Coupling Metrics for Object-Oriented Systems 

 
Denys Poshyvanyk, Andrian Marcus 

 
Department of Computer Science 

Wayne State University 
Detroit Michigan 48202 

313 577 5408 
denys@wayne.edu, amarcus@wayne.edu  

 
 

Abstract 

Coupling in software has been linked with 
maintainability and existing metrics are used as 
predictors of external software quality attributes such 
as fault-proneness, impact analysis, ripple effects of 
changes, changeability, etc.  Many coupling measures 
for object-oriented (OO) software have been proposed, 
each of them capturing specific dimensions of coupling. 

This paper presents a new set of coupling measures 
for OO systems – named conceptual coupling, based on 
the semantic information obtained from the source 
code, encoded in identifiers and comments.  A case 
study on open source software systems is performed to 
compare the new measures with existing structural 
coupling measures.  The case study shows that the 
conceptual coupling captures new dimensions of 
coupling, which are not captured by existing coupling 
measures; hence it can be used to complement the 
existing metrics. 

1. Introduction 
Many maintenance tasks require the developer to 

measure directly or indirectly several attributes and 
assess properties of the software system under 
evolution.  A variety of measures are proposed by 
researchers to assist developers in getting more 
complete views of the software. 

Coupling is one of the properties with most 
influence on maintenance as it has a direct effect on 
maintainability.  Proposed coupling measures are used 
in tasks such as impact analysis [5, 34], assessing the 
fault-proneness of classes [35], fault prediction [14, 
17], re-modularization [1], identifying of software 
components [22], design patterns [3], assessing 
software quality [10], etc. 

In general, one of the goals of the software designers 
is to keep the coupling in an OO system as low as 
possible.  Classes of the system that are strongly 
coupled are most likely to be affected by changes and 

bugs from other classes; these classes tend to have an 
increased architectural importance and thus need to be 
identified.  Coupling measures help in such endeavors, 
and most of them are based on some form of 
dependency analysis, based on the available source 
code or design information.  The number of dimensions 
captured by the measures is lower than the number of 
proposed coupling measures [10], which reflects the 
fact that many of these measures are based on 
comparable hypothesis and use similar information for 
computation. 

We proposed a new set of coupling measures, which 
formulates and captures new dimensions of coupling, 
i.e., conceptual coupling, based on the semantic 
information shared between elements of the source 
code.  Our measures can be classified as measuring the 
strength of conceptual similarities among methods of 
different classes.  The measures are based on using 
information retrieval (IR) techniques to model and 
analyze the semantic information embedded in software 
(i.e., through comments and identifiers). 

The conceptual coupling can be used to augment 
existing measures, especially in tasks such as impact 
analysis and change propagation, as existing models [5] 
do not capture all the ripple effects of changes in 
existing software.  They also have direct application in 
reverse engineering tasks like re-modularization.  

The following section outlines the related work for 
object-oriented coupling metrics.  Section 3 describes 
our approach and the proposed measures.  This section 
also describes implementation details of the tool that 
we developed to compute our metrics as well as 
mathematical properties of the measures.  In section 4 
we provide empirical study to assess the newly 
proposed metrics.  Section 5 concludes the paper and 
discusses the future work.  

2. Related work 
Coupling measurement is a very rich and interesting 

body of research work, resulting in many different 
approaches using structural coupling metrics [8, 11, 12, 



 

  

23], dynamic coupling measures [4], evolutionary and 
logical coupling [16, 38], coupling measures based on 
information entropy approach [2], coupling metrics for 
specific types of software applications like knowledge-
based systems [20], and more recently systems 
developed using aspect-oriented approach [37]. 

The structural coupling metrics have received 
significant attention in the literature.  These metrics are 
comprehensively described and classified within the 
unified framework for coupling measurement [6].  The 
best known among these metrics are CBO (coupling 
between objects) and CBO1 [11, 12], RFC (response for 
class) [11] and RFC∞ [12], MPC (message passing 
coupling) [24], DAC (data abstraction coupling) and 
DAC1 [24], ICP (information-flow-based coupling) 
[23], the suite of coupling measures by Briand et al. 
(IFCAIC, ACAIC, OCAIC, FCAEC, etc) [8].  Other 
structural metrics like Ce (efferent coupling), Ca 
(afferent coupling), COF (coupling factor), etc. are also 
overviewed in [6]. 

Many of the coupling measures listed above are 
based on method invocations and attribute references.  
For example, the RFC, MPC, and ICP measures are 
based on method invocations only.  CBO and COF 
measures count method invocations and references to 
both methods and attributes.  The suite of measures 
defined by Briand et al. [8] captures several types of 
interactions between classes like class-attribute, class-
method, as well as method-method interactions.  The 
measures from the suite also differentiate between 
import and export coupling as well as other types of 
relationships like friends, ancestors, descendants etc. 

Dynamic coupling measures [4] were introduced as 
the refinement to existing coupling measures due to 
gaps in addressing polymorphism, dynamic binding, 
and the presence of unused code by static structural 
coupling measures. 

Another important family of coupling measures 
derives from the evolution of software system in 
contrast to structural coupling which is determined by 
program analysis or dynamic coupling which is 
obtained by executing the program.  These are called 
evolutionary couplings among parts of the systems 
which are determined by the common changes or co-
changes [38]. 

Recently, several specialized coupling metrics were 
proposed for different types of software systems.  They 
are coupling metrics for knowledge-based systems [20] 
as well as coupling metrics for aspect-oriented 
programs [37]. 

Existing work on software clustering [21, 25] uses 
the concept of semantic similarity between elements of 
the source code [29], which stands at the foundation of 
the conceptual coupling, as defined in this paper. 

3. Using information retrieval methods for 
coupling measurement 
Our approach to coupling measurement is based on 

the philosophy that elements (classes) of (OO) software 
systems are related in more than one way.  The obvious 
and most explored set of relationships is based on data 
and control dependencies.  In addition to such 
relationships classes are also related conceptually, as 
they may contribute together to the implementation of a 
domain concept.  We propose here a mechanism to 
capture and measure this form of coupling, named 
conceptual coupling. 

In our previous work [25, 26] we investigated ways 
to extract, encode, and analyze the semantic 
information embedded in the comments and identifiers 
of the software.  Developers use comments and 
identifiers to represent elements of the problem or 
solution domain of the software.  We use this 
information to define and identify conceptual coupling 
between classes. 

The underlying mechanism used to extract and 
analyze the semantic information from the source code 
is based on Latent Semantic Indexing (LSI) [13], an 
advanced IR method.  We used this mechanism to 
address other software maintenance tasks such as 
concept location [30], feature identification [31], 
identification of abstract data types in legacy source 
code [25], clone detection [27], and recovery of 
traceability links between software and documentation 
[28].  Among other noticeable applications of LSI is 
software clustering using semantic information [21] 
which is similarly to our approach based on the 
assumption that parts of the software system that use 
similar terms are related. 

The definition of the conceptual coupling of classes 
builds on our previous work on measuring the 
conceptual cohesion of a class [29].  The source code of 
the software system is converted into a text corpus 
where each document contains elements of the 
implementations of a method.  LSI uses this corpus to 
create a term-by-document matrix, which captures the 
distribution of terms in methods.  Singular Value 
Decomposition (SVD) is used then to construct a 
subspace, called the LSI subspace (or semantic space).  
Each document from the corpus (i.e., method from the 
source code) is represented as a vector in the LSI 
subspace.  The cosine between two vectors is used as a 
measure of semantic similarity between two documents 
(methods).  This measure, called conceptual similarity, 
is used to determine how much relevant semantic 
information is shared among methods of different 
classes in the context of the entire system. 

Computing conceptual similarities between the 
methods of two classes indicates whether the classes 



 

  

are conceptually related.  Considering the conceptual 
similarities of the methods of a class with all the 
methods of the other classes in the software system, one 
can measure the degree to which this class relates to the 
rest of the classes within the context of the software 
system.  These relationships define a new form of 
coupling, the Conceptual Coupling of Classes (CoCC).   

The following subsections define the model and 
measures we use to asses the CoCC. 

3.1. System representation and definitions 
Definition 1 (System, Classes) 
We consider an OO system as a set of classes C = 

{c1, c2…cn}.  The number of classes in the system C is 
n = |C|. 

Definition 2 (Methods of a Class) 
A class has a set of methods.  For each class c ∈ C, 

M(c) = {m1, …, mz} represent its set of methods, where 
z = |M(c)| is the number of methods in a class c.  The 
set of all methods in the system is defined as M(C). 

Definition 3 (Conceptual Similarity between 
Methods - CSM) 

The conceptual similarity between methods mk ∈ 
M(C) and mj ∈ M(C), CSM(mk, mj), is computed as the 
cosine between the vectors vmk  and vmj, corresponding 
to mk and mj in the semantic space constructed by LSI. 

CSM(mk, mj) = 
22 |||| jk

j
T
k

vmvm
vmvm
×

 

As defined, the value of CSM(mk, mj) ∈ [-1, 1], as 
CSM is simply a cosine in the LSI space.  In order to 
comply with non-negativity property of coupling 
metrics [6], we refine CSM as: 

CSM1(mk, mj) = 
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Definition 4 (Conceptual Similarity between a 

Method and a Class - CSMC).   
Let ck ∈ C and cj ∈ C be two distinct (ck ≠ cj) classes 

in the system.  Each class has a set of methods M(ck) = 
{mk1, …, mkr}, where r = |M(ck)| and M(cj) = {mj1, …, 
mjt}, where t = |M(cj)|.  Between every pair of methods 
(mk, mj) there is a similarity measure CSM(mk, mj).  
We define the conceptual similarity between a method 
mk and a class cj as follows: 

CSMC(mk, cj) = 
t

mmCSM
t

q
jqk∑

=1

1 ),(
, which is the 

average of the conceptual similarities between method 
mk and all the methods from class cj. 

Definition 5 (Conceptual Similarity between two 
Classes - CSBC) 

We define the conceptual similarity between two 
classes ck ∈ C and cj ∈ C as: 

CSBC(ck, cj) = 
r

cmCSMC
r

l
jkl∑

=1
),(

, which is the 

average of the similarity measures between all 
unordered pairs of methods from class ck and class cj.  
The definition ensures that the conceptual similarity 
between two classes is symmetrical, as CSBC(ck, cj) = 
CSBC(cj, ck). 

3.2. The conceptual coupling of a class 
With this system representation we define now a 

family of measures that approximate the coupling of a 
class in an OO software system by measuring the 
degree to which the methods of a class are conceptually 
related to the methods of other classes. 

Definition 6 (Conceptual Coupling of a Class - 
CoCC) 

For a class c ∈ C, conceptual coupling is defined as:  

CoCC(c) = 
1

),(
1

−

∑
=

n

dcCSBC
n

i
i

, where n = |C|, di ∈ C, and 

c≠di. 
Based on the above definitions, CoCC(c) ∈ [0, 1]  

∀ c ∈ C.  If a class c ∈ C is strongly coupled to the rest 
of the classes in the system, then CoCC(c) should be 
closer to one meaning that the methods in the class are 
strongly related conceptually with the methods of the 
other classes.  In this case, the class most likely 
implements concepts that overlap with concepts 
implemented in other classes (which are related in the 
context of the software system). 

If the methods of the class have low conceptual 
similarity values with methods of other classes, then the 
class implements one or more concepts with limited 
interaction with the rest of the system.  The value of 
CoCC(c) in this case will be close to zero. 

In this form, CoCC does not make distinction 
between method types.  If needed, CoCC can be altered 
to account for overloaded, friend, and other method 
stereotypes, as discussed in [8].  

3.2.1. An example of measuring the conceptual 
coupling of a class.  In order to illustrate how the 
CoCC metric is computed, let us consider three classes: 
c1 ={m1, m2}, c2 ={m3, m4, m5} and c3 ={m6, m7, 
m8} with the conceptual similarities between the 
methods outlined in Table 1. 

In order to compute CoCC for class c1, we need to 
compute conceptual similarities between classes (c1, 
c2) and (c1, c3), since CoCC (c1) = (CSBC(c1, c2) + 
CSBC(c1, c3) )/2. 



 

  

In order to compute the conceptual similarities 
between c1 and c2, we use the following formula: 
CSBC(c1, c2) = (CSMC (m1, c2) + CSMC (m2, c2))/2.  
In this case, CSMC(m1, c2) is an average of conceptual 
similarities between a method m1 and all other methods 
in class c2.  Thus, CSMC(m1, c2) = (CSM1(m1, m3) + 
CSM1(m1, m4) + CSM1(m1, m5))/3 = (0.7 + 0.27 + 
0.13) / 3 = 0.366.  Similarly, CSMC (m2, c2) = (0.68 + 
0.34 + 0.25)/3 = 0.423.  Therefore, CSBC(c1, c2) = 
(0.366 + 0.423)/2 = 0.3945. 

Analogously, we compute conceptual similarities 
between classes c1 and c3, CSBC(c1, c3) = 0.4515. 

Now we are able to compute CoCC(c1), since 
CoCC(c1) = (CSBC(c1, c2) + CSBC(c1, c3))/2 = 
(0.3945 + 0.4515)/2 = 0.423.  Similarly, CoCC(c2) = 
0.357 and CoCC(c3) = 0.385. 

Since CoCC is an average measure, we could 
possibly encounter situations when some pairs of 
classes are highly related and other are not and the 
average would not capture those cases. 

With that in mind, we refine the CoCC to measure 
the influence of the highly related pairs of methods in 
different classes. 

Table 1.  Conceptual similarities between the 
methods of the classes c1 (light green), c2 (yellow), 

and c3 (cyan).  Conceptual similarities between 
methods of the same class (white). 

 m1 m2 m3 m4 m5 m6 m7 m8 
m1 1 0.6 0.7 0.27 0.13 0.3 0.41 0.65
m2 0.6 1 0.68 0.34 0.25 0.41 0.39 0.55
m3 0.7 0.68 1 0.45 0.39 0.56 0.66 0.21
m4 0.27 0.34 0.45 1 0.34 0.47 0.23 0.18
m5 0.13 0.25 0.39 0.34 1 0.05 0.03 0.5 
m6 0.3 0.41 0.56 0.47 0.05 1 0.23 0.43
m7 0.41 0.39 0.66 0.23 0.03 0.23 1 0.54
m8 0.65 0.55 0.21 0.18 0.5 0.43 0.54 1 

3.2.2. Refining CoCC. In order to capture the 
influence of highly related methods from different 
classes, we refine CoCC measure to capture only the 
strongest method similarities.  The goal here is to make 
sure that our measuring mechanism does not miss 
classes that are highly coupled even to part of the 
system, as developers need to be aware of such classes.  
Thus, we define: 
CSMCm(mk, cj) = max{CSM1(mk, mjt), ∀ t = 1..|M(cj)|} 

The conceptual similarity between method mk and 
class cj is denoted by the highest similarity among all 
possible pairs of methods between method mk and all 
the methods in class cj. 

The conceptual similarity between two classes based 
on CSMCm is defined as the following: 

CSBCm(ck, cj) = 
r

cmCSMC
r

l
jklm∑

=1
),(

 

The conceptual coupling metrics CoCC for a class c, 
CoCC, defined using CSBCm is as the following: 

 

CoCCm(c) = 
1

),(
1

−

∑
=

n

dcCSBC
n

i
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, where n=|C|, c≠di. 

Referring back to the example in the previous 
subsection, with these new definitions, CoCCm(c1) = 
(CSBCm(c1, c2) + CSBCm(c1, c3) )/2 = 0.645.  
Similarly, CoCCm(c2) = 0.486 and CoCCm(c3) = 
0.515. 

Class c1 in our example is the one which has highest 
values of CoCC and CoCCm metrics, whereas class c2 
has the lowest conceptual coupling.  Both metrics 
support the same results in this case.  The purpose of 
this example was to show how the metrics are 
computed.  Section 4 gives more examples from 
software systems with some interpretations.  Section 4 
also shows that CoCCm complements CoCC, hence 
both metrics should be used for a more complete 
assessment of the coupling of a class.  

3.3. IRC2M – a measurement tool for CoCC 
We have developed a tool for the conceptual 

coupling measurement, named IRC2M (Information 
Retrieval based Conceptual Coupling Measurement), 
to automate the computation of the conceptual coupling 
measures for C++ programs.  IRC2M’s indexing 
component is based on IRiSS [32], an IR-based tool 
used for source code browsing and exploration. 

 
 

 

Figure 1.  Architecture of the IRC2M tool 

 
IRC2M employs the following steps to compute 

CoCC (see Figure 1): 



 

  

• The source code is parsed and the system corpus is 
constructed by including methods from the source 
code as documents.  For each method in the 
software system, there will be one document in the 
corpus.  Mappings between methods, classes, and 
their indexes respectively in the system corpus are 
generated in this step.  Preprocessing of the system 
corpus  is performed to eliminate common 
keywords, stop words, and to split identifiers [30]; 

• LSI constructs a term-by-document matrix from 
the generated system corpus.  Then it applies SVD 
[13] to this matrix to construct the LSI subspace.  
New document vectors are obtained by 
orthogonally projecting the corresponding vectors 
from the original vector space onto the new LSI 
semantic space. 

• Once the methods from the software system are 
represented in the LSI space, the conceptual 
similarities between methods are computed (see 
Def. 3).  The CoCC and CoCCm measures use 
different measuring mechanisms to determine how 
the classes are related conceptually in the context 
of the software system.  CSBC and CSBCm are 
also computed in this last step. 

4. Assessment of the metrics  
As CoCC and CoCCm are new measures, we must 

evaluate them both theoretically and empirically. 

4.1. Theoretical evaluation 
We analyze our metrics under the five mathematical 

properties proposed by Briand et al. [9]: non-negativity, 
null value, monotonicity, merging of classes, and 
merging of unconnected classes. 

Our measures comply with non-negativity property, 
based on the redefinition of CSM1(mk, mj) in Def. 3.  
The null value property is also met since, if similarities 
of the methods for some class c ∈ C with the methods 
of other classes are 0, e.g. CSM1(mk, mj) = 0, then the 
measures have null value, as averages of null values. 

While we are not formally proving the later three 
properties, we are providing the intuition that shows 
why these properties hold.  In short, these properties 
hold, given that both the mathematical average and the 
maximum function have these properties.  For the 
monotonicity property, if one adds a new method that 
has strong conceptual similarities with methods of other 
classes, then the conceptual coupling measures will also 
increase.  The similar situation will occur if we just 
change the method implementation which leads to 
higher conceptual similarities with other methods (e.g. 
methods share the similar vocabulary).  When merging 
classes and merging unconnected classes, the 
conceptual similarities remain the same, meaning that 

relocation of the methods inside other classes will not 
change actual conceptual similarities of these methods 
with methods of other classes. 

4.2. Case study design 
In order to evaluate the proposed coupling measures 

against existing structural measures, we performed a 
case study on several open source systems.  The goal of 
the case study is to determine whether the conceptual 
coupling measures capture new dimensions in coupling 
measurement. 

4.2.1. Coupling metrics  
In order to determine whether the newly proposed 

metrics capture new dimensions in coupling 
measurement, we selected nine exiting structural 
metrics for comparison: CBO, RFC, MPC, DAC, ICP, 
ACAIC, OCAIC, ACMIC, and OCMIC (see Section 2).  
Originally, we performed a case study with 22 coupling 
metrics, but we noticed a large amount of redundancy 
present among the metrics as reported in [10].  The 
guiding criteria that we used to choose metrics for our 
case study is the availability of results reported for 
these metrics in the literature to provide easy 
comparison and evaluation with our results.  For the 
definitions and explanations of these measures please 
refer to Section 2.  

4.2.2. Subject software systems  
For our case study we have chosen ten various sized 

open-source software systems from different domains.  
The summary of the selected software systems’ sizes 
are outlined in Table 2.  The table also includes 
specifics on the LSI corpora, generated for the systems 
under analysis with terms standing for the unique 
number of terms and docs for the total number of 
methods in the software system.  The source code for 
these systems is available at http://sourceforge.net. 

ANote (/projects/a-note) is the system that lets the user 
organize sticky notes on the desktop.  TortoiseCVS 
(/projects/tortoisecvs) is an extension for Microsoft 
Windows Explorer that makes using CVS convenient 
and easy.  WinMerge (/projects/winmerge) is a tool for 
visual differencing and merging for both files and 
directories.  Doxygen (/projects/doxygen) is a javaDoc-like 
documentation system for C++, C, Java, and IDL.  
Kalpa (/projects/kalpa) is a multi-user client-server 
accounting, management, CRM, EPR, and MRP 
system.  K-Meleon (/projects/kmeleon) is a fast and 
customizable Win32 web browser, which uses the same 
rendering engine as Firefox Mozilla.  VoodooUML 
(/projects/voodoo) is a UML class diagram editor.  EMule 
(/projects/emule) is a file-sharing client; one of the most 
popular downloads on sourceforge.net.  KeePass 
(/projects/keepass) is a light-weight Win32 password 



 

  

manager, which allows storing the passwords in a 
highly-encrypted database.  Umbrello (/projects/uml) is a 
system for creating UML diagrams. 

4.2.3. Measurement results 
All the structural metrics are collected using the 

Columbus tool [15] and the conceptual coupling 
metrics are computed with our IRC2M tool. 

We compiled a set of descriptive statistical values 
(see Table 3): the maximum (max), inter-quartile 
ranges (25% and 75%), median (med), minimum (min), 
mean (σ) and standard deviation (µ).  The data is used 
to provide the overall picture of the differences and 
similarities among all these metrics across the classes 
from the systems used in the case study. 

Table 3.  Descriptive statistics for the coupling 
measures of 979 classes in the 10 software systems 

Measures Min Max 25% Med 75% σ µ 

CoCC 0.0 0.4 0.1 0.1 0.1 0.1 0.1 

CoCCm 0.0 0.7 0.2 0.3 0.4 0.3 0.1 

CBO 0.0 45.0 0.0 1.0 4.0 2.9 5.0 

RFC 0.0 545.0 5.0 11.0 23.0 24.3 45.1 

MPC 0.0 2238 0.0 3.0 13.0 27.2 117 

DAC 0.0 59.0 0.0 0.0 2.0 1.4 3.9 

ICP 0.0 2779 0.0 2.0 16.0 36.4 162 

ACAIC 0.0 1.0 0.0 0.0 0.0 0.1 0.3 

OCAIC 0.0 59.0 0.0 0.0 1.0 1.3 3.9 

ACMIC 0.0 6.0 0.0 0.0 0.0 0.2 0.5 

OCMIC 0.0 88.0 0.0 0.0 2.0 1.8 5.6 

4.3. Principal component analysis 
In order to understand the underlying, orthogonal 

dimensions captured by the coupling measures we 
perform Principal Component Analysis (PCA) on the 
metrics measured for the software systems in Table 2.  
We also compare the results of our analysis with those 
reported in the literature. 

4.3.1. Analysis procedure 
Briand et al. [10] proposed a methodology to 

analyze software engineering data in order to make an 
experiment repeatable and the results comparable.  The 
methodology consists of the following three steps: 
collecting the data, identifying outliers, and performing 
PCA. 

Section 4.2.3 presented the data we collected.  As 
the results of our analysis can be impacted by the 
outliers, they were removed.  To identify outliers in the 
data, we utilized the T2max procedure based on the 
Mahalanobis distance [18].  

After outliers were eliminated, we performed PCA, 
which was used in our case to identify groups of 
variables (i.e., metrics), which are likely to measure the 
same underlying dimension (i.e., mechanism that 
defines coupling) of the object to be measured (i.e., 
coupling of a classes).  In order to identify these 
variables and interpret the principal components, we 
consider the rotated components, which is a technique 
where principal components are subjected to an 
orthogonal rotation.  Thus, the resulting rotated 
components show clearer patterns of loading for the 
variables.  In order to perform this rotation we used the 
rotation technique known as “varimax” [19]. 

4.3.2. PCA results 
We performed PCA on the set of 979 classes from 

10 different open source software systems (see Table 
2).  All eleven measures were subjected to an 
orthogonal rotation.  We identified eight orthogonal 
dimensions spanned by 11 coupling measures.  The 
eight principal components (PCs) capture 97.6% of the 
variance in the data set, which is significant enough to 
support our findings. 

The loadings on each measure in each rotated 
component in presented in Table 4.  Values higher than 
0.5 are highlighted as the corresponding measures are 
the ones we look into while interpreting the PCs.  For 
every PC, we provide the variance of the data set 

Table 2.  Characteristics of the software systems used in the empirical study.  LOC includes lines of code 
only; the number of lines with comments is provided separately in Comments. 

Num System Ver LOC Comments Mixed Files  Classes Methods Terms Docs 
1 ANote 4.2.1 16,387 4,731 851 97 61 877 2530 753 
2 TortoiseCVS 1.8.21 64,863 15,517 1,541 255 142 930 1915 637 
3 WinMerge 2.0.2 51,475 11,534 1,209 169 71 624 1738 522 
4 Doxygen 1.3.7 179,920 40,991 8,005 260 682 6837 4424 3608 
5 Kalpa 0.0.4.2 16,581 7,330 431 185 135 353 451 254 
6 K-Meleon 0.9 34,253 6,940 690 120 57 213 653 192 
7 VoodooUML 1.99.12 12,787 2,426 228 97 168 1001 947 841 
8 EMule 0.47 162,101 30,542 4,935 556 532 6764 9628 3888 
9 KeyPass 1.04 39,798 9,789 1,243 123 104 1476 3676 1325 
10 Umbrello 1.5.1 75,665 28,888 1,215 479 210 524 631 405 

 



 

  

explained by the PC and the cumulative variance in 
Table 4. 

Based on our analysis of the coefficients associated 
with every coupling measure within each of the rotated 
components, we interpret PCs as the following. 

PC1 (19.3%): both DAC and OCAIC measure 
import coupling from library classes through 
aggregation.  PC2 (9.4%): CoCC measures conceptual 
coupling of classes within the context of the complete 
software system.  PC3 (9.41%): ACAIC measures 
import coupling from non-library classes through 
aggregation.  PC4 (12.1%): CBO, OCMIC count import 
coupling from non-library classes through method 
invocations.  PC5 (19.5%): MPC, ICP have the similar 
interpretation as the previous component.  PC6 
(9.45%): CoCCm measures conceptual coupling of 
classes based on strongest conceptual similarities 
among methods of classes in the system.  PC7 (9.05%): 
ACMIC defines a dimension on its own capturing 
class-method interactions with class types as a 
parameter.  PC8 (9.14%): RFC captures coupling, 
based on method invocations. 

The results of the PCA show that the CoCC and 
CoCCm measures define two new dimensions on their 
own since CoCC is the only significant factor in PC2 
and CoCCm is the only significant factor in PC6.  These 
results clearly indicate that our coupling measures 
capture different types of coupling between classes, 
than those captured by the structural metrics.  This 
unique result derives from the fact that CoCC and 
CoCCm are coupling measures that are based on 
completely different ideas and measurements than the 
existing coupling measures; CoCC and CoCCm are 
based on the semantic information obtained from the 
source code encoded in identifiers and comments, 

whereas the existing metrics use the structure of the 
software as the basis for measurement. 

In addition, the results of the PCA can be compared 
with those reported in the literature [7, 10].  Although 
the PCs and loadings obtained in our case and those 
reported in the literature do not completely overlap, 
they are very close.  This can be explained by the fact 
that we used a slightly different set of coupling metrics 
in our analysis as well as two new metrics, i.e., CoCC 
and CoCCm. 

4.4. Interpretation of the results 
To obtain more insight into how the conceptual 

coupling metrics differ from the structural ones, we 
chose several classes from different systems for 
detailed analysis.  As the cases where the two sets of 
metrics agree are of little interest, we were interested in 
those cases with different values of conceptual and 
structural metrics, e.g., high conceptual metric values 
and low structural metrics values, and vice versa.  We 
considered both the CoCC and CoCCm measures that 
capture the coupling of the classes to the rest of the 
system, and the CSBC and CSBCm measures, which 
capture conceptual coupling between pair of classes. 

4.4.1. Conceptual coupling in the context of the 
complete software system 

In this subsection we look into some of the noted 
differences between the conceptual coupling measures 
(CoCC and CoCCm) and the CBO and RFC structural 
coupling measures. 

Table 4.  Rotated components.

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Proportion 19.3% 9.4% 9.41% 12.1% 19.5% 9.45% 9.05% 9.14% 
Cumulative 19.3% 28.8% 38.2% 50.4% 69.9% 79.4% 88.4% 97.6% 

CoCC -0.046 0.941 0.042 0.000 -0.031 0.279 0.129 -0.033 
CoCCm 0.064 0.343 -0.101 0.024 0.115 0.904 0.041 0.074 

CBO 0.260 -0.147 0.185 0.558 0.309 0.341 0.017 0.473 
RFC 0.264 -0.019 0.046 0.266 0.422 0.067 0.075 0.803 
MPC 0.233 -0.017 -0.029 0.154 0.929 0.081 0.024 0.202 
DAC 0.931 -0.027 0.074 0.161 0.268 0.043 0.084 0.136 
ICP 0.346 -0.014 -0.024 0.139 0.903 0.074 0.028 0.162 

ACAIC 0.052 0.035 0.950 0.022 -0.040 -0.081 0.272 0.046 
OCAIC 0.935 -0.026 0.006 0.162 0.274 0.046 0.067 0.127 
ACMIC 0.113 0.129 0.281 0.050 0.040 0.041 0.939 0.049 
OCMIC 0.222 0.029 -0.007 0.928 0.181 -0.018 0.052 0.157 



 

  

Table 5.  Classes with highest conceptual coupling 
in WinMerge (W) and TortoiseCVS (T) according to 

CoCC and CoCCm 

S Class CoCC CoCCm CBO RFC 
W IVSSItems 0.215 0.326 0 5 
W IVSSUsers 0.215 0.326 0 5 
W IVSSCheckouts 0.215 0.326 0 5 
T ConfListDialog 0.106 0.176 1 5 
T ConflictParser 0.07 0.135 0 1 
 
The chosen classes for detailed analysis are from the 

WinMerge and TortoiseCVS systems (Table 5).  We 
selected these classes based on high values of CoCC 
and CoCCm and low values of CBO and RFC metrics. 

The IVSSItems, IVSSUsers, and IVSSCheckouts 
classes from WinMerge show high conceptual and low 
structural coupling to the rest of the system.  Closer 
inspection of these classes revealed that these classes 
are part of a larger cluster of related classes, which 
contribute to the implementation of a feature related to 
accessing functions of other ActiveX objects; they all 
implement the COleDispatchDriver interface.  All the 
classes in the cluster have several common 
characteristics – they are all wrappers; the majority of 
the methods in these classes call the InvokeHelper() 
function to execute specific functionality in the 
ActiveX object; the majority of pairs of classes from 
the cluster have high conceptual similarities.  The 
“IVSS” cluster consists of eleven classes wrapping 
similar functionalities.  This explains the high values 
for CoCC and CoCCm since these classes are 
conceptually related to the other classes from the 
cluster, as well as other classes in the system.  Their 
construction as wrappers and their main usage explains 
the low structural cohesion. 

The classes ConflictParser and ConflictListDialog 
from the TortoiseCVS system implement important 
domain concepts - identifying conflicts in the working 
version of the file and current file revision as well as 
dialog to list the conflicts in the file.  These concepts 
are important in the system, which extends the file 
system’s interface to support collaborative software 
development with CVS.  The high values of CoCC and 
CoCCm metrics for these classes from TortoiseCVS can 
be explained by the fact that these classes use domain 
concept terms like “parse” and “conflict”, which are 
spread across many methods of this system.  These 
terms have high global frequencies, meaning that they 
frequently occur as parts of identifiers or comments 
across different methods in the system compared to 
other 1,915 unique terms indexed in this system.  The 
terms “conflict” and “parse” occur more than a 
thousand times in 679 methods of TortoiseCVS system. 

The classes analyzed in this section implement 
domain concepts, which relate to the rest of the system, 

yet they are loosely coupled to the rest of the system.  It 
is important to identify these classes from maintenance 
point of view.  The loose structural coupling may 
indicate a low architectural importance, but the high 
conceptual coupling indicates that these classes are 
most likely contributing to the implementation of the 
main domain concepts.  The classes which relate 
conceptually to the majority of classes in the system 
may exhibit a form of dependency, called hidden 
dependency [36], which is not always expressed by 
structural coupling measures.  Modifications in these 
classes may trigger special types of ripple effects, 
which are currently not captured by existing coupling 
measures [5]. 

4.4.2. Conceptual coupling between a pair of classes 
To better understand the conceptual coupling, we 

also analyze the CSBC and CSBCm measures, which 
reflect how a class is conceptually related to another 
given class in the system. 

In order to identify pairs of classes with high 
conceptual similarity, we computed CSBC and CSBCm 
metrics for every possible pair of classes in WinMerge 
and TortoiseCVS systems.  We selected these two 
systems, since we are mostly familiar with these two 
systems, among the ten ones used in the case study. 

For analysis, we chose several pairs of classes with 
highest CSBC values (see Table 6). 

It came to no surprise that pairs of classes, 
mentioned before as part of the “IVSS” cluster, were 
among those with highest CSBC values.  These classes 
implement different, but related tasks, which are all 
based on implementation of client side of OLE 
automation.  Detailed inspection of the source code for 
these classes has shown that they are not directly 
connected structurally, meaning that they do not use 
each other services etc.  On the other hand after 
inspecting the history of co-changes for these files 
(using CVS data for WinMerge project) we noticed that 
these classes are not only strongly conceptually coupled 
together, but they also have history of common changes 
(i.e., they were changed and submitted to the repository 
at the same time). 

Table 6.  Pairs of classes from WinMerge (W) and 
TortoiseCVS (T) with highest CSBC values 

S Class Class CSBC CSBCm 
W IVSSVersion IVSSCheckout 0.776 0.964 
W IVSSItems IVSSUsers 0.77 0.974 
W IVSSDatabase IVSSCheckout 0.585 0.954 
T MergeDlg UpdateDlg 0.375 0.891 

 
Another pair of classes MergeDlg and UpdateDlg 

from TortoiseCVS system has high conceptual coupling 
values for CSBC and CSBCm metrics.  This is once 
again not surprising, since both classes implement 



 

  

similar concepts – front end dialogs for merging and 
updating file revisions.  Both classes share similar 
terms which come from names of classes used to create 
elements of user interface: “button”, “static text”, 
“check box”, etc., as well as terms more specific to the 
concepts which are implemented in these classes: 
“fetch”, “revision”, “tag”, “branch”, etc.  Again these 
classes do not have direct structural dependencies 
between them.  This is a case of unconnected classes, 
which implement similar functionality [27]. 

4.5. Threats to validity 
We identify several issues that affected the results of 

our case study and limit our interpretations.  We have 
demonstrated that our metrics capture new dimensions 
in coupling measurement; however, we obtained these 
results by analyzing classes from only ten C++ open-
source systems.  In order to allow for generalization of 
results, large-scale evaluation, similar to the one in [33] 
in terms of case study design, is necessary, which will 
take into account systems from different domains, 
developed using different programming languages. 

In the case study we consider only structural metrics 
that are based on the static information obtained from 
the source code.  The results may be somewhat 
different if we considered dynamic coupling [4]. 

We did not investigate the relationship of the 
measures to an external quality attributes, e.g. change 
proneness; such a relationship would be useful to show 
additional values of the proposed metrics. 

5. Conclusions and future work  
The paper defines a new set of operational measures 

for the conceptual coupling of classes, which are 
theoretically valid and empirically studied.  An 
extensive case study shows that these metrics capture 
new dimensions in coupling measurement, compared to 
existing structural metrics. 

The paper lays the foundation for a wealth of work 
that makes use of the conceptual coupling metrics.  The 
proposed metrics could be further extended and refined, 
for example by taking into account inheritance in 
measurement.  The IRC2M tool will be adapted to 
compute conceptual coupling measures for Java 
systems.  We are also planning on comparing the 
conceptual coupling metrics with the evolutionary 
based coupling [38]. 

More importantly, we are investigating the 
applications of the conceptual coupling in impact 
analysis, detecting hidden dependencies, and change 
proneness.  In addition, we will use these metrics to 
extend prior work on software clustering [21], concept 
location [30], and clone detection [27]. 

6. Acknowledgements 
This research was supported in part by grants from 

the National Science Foundation (CCF-0438970) and 
the National Institute for Health (NHGRI 
1R01HG003491).  We thank Prof. Václav Rajlich for 
his valuable comments and discussions on this research. 

7. References 
[1] Abreu, F. B., Pereira, G., and Sousa, P., "A Coupling-
Guided Cluster Analysis Approach to Reengineer the 
Modularity of Object-Oriented Systems", in Proc. of Conf. on 
Software Maintenance and Reengineering (CSMR'00), 
Zurich, Switzerland, Feb. 29 - Mar. 3 2000, pp. 13-22. 
[2] Allen, E. B., Khoshgoftaar, T. M., and Chen, Y., 
"Measuring coupling and cohesion of software modules: an 
information-theory approach", in Proceedings of 7th 
International Software Metrics Symposium (METRICS'01), 
April 4-6 2001, pp. 124-134. 
[3] Antoniol, G., Fiutem, R., and Cristoforetti, L., "Using 
Metrics to Identify Design Patterns in Object-Oriented 
Software", in Proceedings of 5th IEEE International 
Symposium on Software Metrics (METRICS'98), Bethesda, 
MD, November 20-21 1998, pp. 23 - 34. 
[4] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic 
coupling measurement for object-oriented software", IEEE 
Transactions on Software Engineering, vol. 30, no. 8, August 
2004, pp. 491-506. 
[5] Briand, L., Wust, J., and Louinis, H., "Using Coupling 
Measurement for Impact Analysis in Object-Oriented 
Systems", in Proc. of IEEE International Conf. on Software 
Maintenance, Aug. 30 - Sept. 03 1999, pp. 475-482. 
[6] Briand, L. C., Daly, J., and Wüst, J., "A Unified 
Framework for Coupling Measurement in Object Oriented 
Systems", IEEE Transactions on Software Engineering, vol. 
25, no. 1, January 1999, pp. 91-121. 
[7] Briand, L. C., Daly, J. W., Porter, V., and Wüst, J., "A 
Comprehensive Empirical Validation of Design Measures for 
Object-Oriented Systems", in Proc. of 5th International 
Software Metrics Symposium (METRICS'98), Bethesda, MD, 
Nov. 20-21 1998, pp. 43-53. 
[8] Briand, L. C., Devanbu, P., and Melo, W. L., "An 
investigation into coupling measures for C++", in Proc. of 
International Conference on Software engineering (ICSE'97), 
Boston, MA, May 17-23 1997, pp. 412 - 421. 
[9] Briand, L. C., Morasca, S., and Basili, V. R., "Property-
Based Software Engineering Measurements", IEEE 
Transactions on Software Engineering, vol. 22, no. 1, January 
1996, pp. 68-85. 
[10] Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D., 
"Exploring the relationship between design measures and 
software quality in object-oriented systems", Journal of 
Systems and Software, vol. 51, no. 3, May 2000, pp. 245-273. 
[11] Chidamber, S. R. and Kemerer, C. F., "Towards a 
Metrics Suite for Object Oriented Design", in Proceedings of 
OOPSLA'91, 1991, pp. 197-211. 



 

  

[12] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite 
for Object Oriented Design", IEEE Transactions on Software 
Engineering, vol. 20, no. 6, 1994, pp. 476-493. 
[13] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, 
T. K., and Harshman, R., "Indexing by Latent Semantic 
Analysis", Journal of the American Society for Information 
Science, vol. 41, 1990, pp. 391-407. 
[14] El-Emam, K. and Melo, K., "The Prediction of Faulty 
Classes Using Object-Oriented Design Metrics", NRC/ERB-
1064, vol. NRC 43609, November 1999. 
[15] Ferenc, R., Siket, I., and Gyimóthy, T., "Extracting facts 
from open source software", in Proc. of 20th International 
Conf. on Software Maintenance, Sept. 11 2004, pp. 60-69. 
[16] Gall, H., Jazayeri, M., Krajewski, J., "CVS Release 
History Data for Detecting Logical Couplings", 6th 
International Workshop on Principles of Software Evolution 
(IWPSE'03) Sept. 1 - 2, 2003, pp. 13 - 23. 
[17] Gyimóthy, T., Ferenc, R., and Siket, I., "Empirical 
validation of object-oriented metrics on open source software 
for fault prediction", IEEE Trans. on Software Engineering, 
vol. 31, no. 10, October 2005, pp. 897-910. 
[18] Jobson, J. D., Applied Multivariable Data Analysis, 
Springer-Varlag, 1992. 
[19] Jolliffe, I. T., Principal Component Analysis, Springer 
Verlag, 1986. 
[20] Kramer, S. and Kaindl, H., "Coupling and cohesion 
metrics for knowledge-based systems using frames and rules", 
ACM Trans. on Soft. Engineering and Methodology 
(TOSEM), vol. 13, no. 3, July 2004, pp. 332-358. 
[21] Kuhn, A., Ducasse, S., and Girba, T., "Enriching Reverse 
Engineering with Semantic Clustering", in Proc. of 12th 
Working Conference on Reverse Engineering, Nov. 7-11 
2005, pp. 133-142. 
[22] Lee, J. K., Jung, S. J., Kim, S. D., Jang, W. H., and Ham, 
D. H., "Component identification method with coupling and 
cohesion", in Proc. of 8th Asia-Pacific Software Engineering 
Conference (APSEC'01), Dec. 2001, pp. 79-86. 
[23] Lee, Y. S., Liang, B. S., Wu, S. F., and Wang, F. J., 
"Measuring the Coupling and Cohesion of an Object-Oriented 
Program Based on Information Flow", in Proceedings of 
International Conference on Software Quality, Maribor, 
Slovenia, 1995. 
[24] Li, W. and Henry, S., "Object-oriented metrics that 
predict maintainability", Journal of Systems and Software, 
vol. 23, no. 2, 1993, pp. 111-122. 
[25] Maletic, J. I. and Marcus, A., "Supporting Program 
Comprehension Using Semantic and Structural Information", 
in Proceedings of 23rd International Conference on Software 
Engineering, Toronto, Canada, May 12-19 2001, pp. 103-112. 
[26] Marcus, A., "Semantic Driven Program Analysis", in 
Proceedings of 20th IEEE International Conference on 

Software Maintenance (ICSM'04), Chicago, IL, September 
11-17 2004, pp. 496-473. 
[27] Marcus, A. and Maletic, J. I., "Identification of High-
Level Concept Clones in Source Code", in Proceedings of 
Automated Software Engineering (ASE'01), San Diego, CA, 
November 26-29 2001, pp. 107-114. 
[28] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery 
of Traceability Links Between Software Documentation and 
Source Code", Int. Journal of Software Engineering and 
Knowledge Eng., vol. 15, no. 4, Oct. 2005, pp. 811-836. 
[29] Marcus, A. and Poshyvanyk, D., "The Conceptual 
Cohesion of Classes", in Proceedings of 21st IEEE 
International Conference on Software Maintenance 
(ICSM'05), Budapest, Hungary, Sept. 2005, pp. 133-142. 
[30] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., 
"An Information Retrieval Approach to Concept Location in 
Source Code", in Proceedings of 11th IEEE Working 
Conference on Reverse Engineering (WCRE'04), Delft, The 
Netherlands, November 9-12 2004, pp. 214-223. 
[31] Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol, 
G., and Rajlich, V., "Combining Probabilistic Ranking and 
Latent Semantic Indexing for Feature Identification", in 
Proceedings of 14th IEEE International Conference on 
Program Comprehension (ICPC'06), Athens, Greece, 2006, 
pp. 137-148.  
[32] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev, 
A., "IRiSS - A Source Code Exploration Tool", in Industrial 
and Tool Proceedings of 21st IEEE International Conference 
on Software Maintenance (ICSM'05), Budapest, Hungary, 
September 25-30 2005, pp. 69-72. 
[33] Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., and 
Russo, B., "An Empirical Exploration of the Distributions of 
the Chidamber and Kemerer Object-Oriented Metrics Suite", 
Empirical Software Eng., 10 (1), Jan. 2005, pp. 81-104. 
[34] Wilkie, F. G. and Kitchenham, B. A., "Coupling 
measures and change ripples in C++ application software", 
The Journal of Syst. and Software, vol. 52, 2000, pp. 157-164. 
[35] Yu, P., Systa, T., and Muller, H., "Predicting fault-
proneness using OO metrics. An industrial case study", in 
Proc. of 6th European Conf. on Software Maintenance and 
Reengineering (CSMR'02), March 2002, pp. 99-107. 
[36] Yu, Z. and Rajlich, V., "Hidden Dependencies in 
Program Comprehension and Change Propagation", in Proc. 
of 9th Int. Workshop on Program Comprehension, Toronto, 
Canada, May 12 -13, 2001, pp. 293-299. 
[37] Zhao, J., "Measuring Coupling in Aspect-Oriented 
Systems", in Proc. of 10th IEEE International Soft. Metrics 
Symposium (METRICS'04), Chicago, USA, 2004. 
[38] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, 
S., "Mining Version Histories to Guide Software Changes", 
IEEE Transactions on Software Engineering, vol. 31, no. 6, 
June 2005, pp. 429-445. 

 


