

The Conceptual Coupling Metrics for Object-Oriented Systems

Denys Poshyvanyk, Andrian Marcus

Department of Computer Science

Wayne State University
Detroit Michigan 48202

313 577 5408
denys@wayne.edu, amarcus@wayne.edu

Abstract

Coupling in software has been linked with
maintainability and existing metrics are used as
predictors of external software quality attributes such
as fault-proneness, impact analysis, ripple effects of
changes, changeability, etc. Many coupling measures
for object-oriented (OO) software have been proposed,
each of them capturing specific dimensions of coupling.

This paper presents a new set of coupling measures
for OO systems – named conceptual coupling, based on
the semantic information obtained from the source
code, encoded in identifiers and comments. A case
study on open source software systems is performed to
compare the new measures with existing structural
coupling measures. The case study shows that the
conceptual coupling captures new dimensions of
coupling, which are not captured by existing coupling
measures; hence it can be used to complement the
existing metrics.

1. Introduction
Many maintenance tasks require the developer to

measure directly or indirectly several attributes and
assess properties of the software system under
evolution. A variety of measures are proposed by
researchers to assist developers in getting more
complete views of the software.

Coupling is one of the properties with most
influence on maintenance as it has a direct effect on
maintainability. Proposed coupling measures are used
in tasks such as impact analysis [5, 34], assessing the
fault-proneness of classes [35], fault prediction [14,
17], re-modularization [1], identifying of software
components [22], design patterns [3], assessing
software quality [10], etc.

In general, one of the goals of the software designers
is to keep the coupling in an OO system as low as
possible. Classes of the system that are strongly
coupled are most likely to be affected by changes and

bugs from other classes; these classes tend to have an
increased architectural importance and thus need to be
identified. Coupling measures help in such endeavors,
and most of them are based on some form of
dependency analysis, based on the available source
code or design information. The number of dimensions
captured by the measures is lower than the number of
proposed coupling measures [10], which reflects the
fact that many of these measures are based on
comparable hypothesis and use similar information for
computation.

We proposed a new set of coupling measures, which
formulates and captures new dimensions of coupling,
i.e., conceptual coupling, based on the semantic
information shared between elements of the source
code. Our measures can be classified as measuring the
strength of conceptual similarities among methods of
different classes. The measures are based on using
information retrieval (IR) techniques to model and
analyze the semantic information embedded in software
(i.e., through comments and identifiers).

The conceptual coupling can be used to augment
existing measures, especially in tasks such as impact
analysis and change propagation, as existing models [5]
do not capture all the ripple effects of changes in
existing software. They also have direct application in
reverse engineering tasks like re-modularization.

The following section outlines the related work for
object-oriented coupling metrics. Section 3 describes
our approach and the proposed measures. This section
also describes implementation details of the tool that
we developed to compute our metrics as well as
mathematical properties of the measures. In section 4
we provide empirical study to assess the newly
proposed metrics. Section 5 concludes the paper and
discusses the future work.

2. Related work
Coupling measurement is a very rich and interesting

body of research work, resulting in many different
approaches using structural coupling metrics [8, 11, 12,

23], dynamic coupling measures [4], evolutionary and
logical coupling [16, 38], coupling measures based on
information entropy approach [2], coupling metrics for
specific types of software applications like knowledge-
based systems [20], and more recently systems
developed using aspect-oriented approach [37].

The structural coupling metrics have received
significant attention in the literature. These metrics are
comprehensively described and classified within the
unified framework for coupling measurement [6]. The
best known among these metrics are CBO (coupling
between objects) and CBO1 [11, 12], RFC (response for
class) [11] and RFC∞ [12], MPC (message passing
coupling) [24], DAC (data abstraction coupling) and
DAC1 [24], ICP (information-flow-based coupling)
[23], the suite of coupling measures by Briand et al.
(IFCAIC, ACAIC, OCAIC, FCAEC, etc) [8]. Other
structural metrics like Ce (efferent coupling), Ca
(afferent coupling), COF (coupling factor), etc. are also
overviewed in [6].

Many of the coupling measures listed above are
based on method invocations and attribute references.
For example, the RFC, MPC, and ICP measures are
based on method invocations only. CBO and COF
measures count method invocations and references to
both methods and attributes. The suite of measures
defined by Briand et al. [8] captures several types of
interactions between classes like class-attribute, class-
method, as well as method-method interactions. The
measures from the suite also differentiate between
import and export coupling as well as other types of
relationships like friends, ancestors, descendants etc.

Dynamic coupling measures [4] were introduced as
the refinement to existing coupling measures due to
gaps in addressing polymorphism, dynamic binding,
and the presence of unused code by static structural
coupling measures.

Another important family of coupling measures
derives from the evolution of software system in
contrast to structural coupling which is determined by
program analysis or dynamic coupling which is
obtained by executing the program. These are called
evolutionary couplings among parts of the systems
which are determined by the common changes or co-
changes [38].

Recently, several specialized coupling metrics were
proposed for different types of software systems. They
are coupling metrics for knowledge-based systems [20]
as well as coupling metrics for aspect-oriented
programs [37].

Existing work on software clustering [21, 25] uses
the concept of semantic similarity between elements of
the source code [29], which stands at the foundation of
the conceptual coupling, as defined in this paper.

3. Using information retrieval methods for
coupling measurement
Our approach to coupling measurement is based on

the philosophy that elements (classes) of (OO) software
systems are related in more than one way. The obvious
and most explored set of relationships is based on data
and control dependencies. In addition to such
relationships classes are also related conceptually, as
they may contribute together to the implementation of a
domain concept. We propose here a mechanism to
capture and measure this form of coupling, named
conceptual coupling.

In our previous work [25, 26] we investigated ways
to extract, encode, and analyze the semantic
information embedded in the comments and identifiers
of the software. Developers use comments and
identifiers to represent elements of the problem or
solution domain of the software. We use this
information to define and identify conceptual coupling
between classes.

The underlying mechanism used to extract and
analyze the semantic information from the source code
is based on Latent Semantic Indexing (LSI) [13], an
advanced IR method. We used this mechanism to
address other software maintenance tasks such as
concept location [30], feature identification [31],
identification of abstract data types in legacy source
code [25], clone detection [27], and recovery of
traceability links between software and documentation
[28]. Among other noticeable applications of LSI is
software clustering using semantic information [21]
which is similarly to our approach based on the
assumption that parts of the software system that use
similar terms are related.

The definition of the conceptual coupling of classes
builds on our previous work on measuring the
conceptual cohesion of a class [29]. The source code of
the software system is converted into a text corpus
where each document contains elements of the
implementations of a method. LSI uses this corpus to
create a term-by-document matrix, which captures the
distribution of terms in methods. Singular Value
Decomposition (SVD) is used then to construct a
subspace, called the LSI subspace (or semantic space).
Each document from the corpus (i.e., method from the
source code) is represented as a vector in the LSI
subspace. The cosine between two vectors is used as a
measure of semantic similarity between two documents
(methods). This measure, called conceptual similarity,
is used to determine how much relevant semantic
information is shared among methods of different
classes in the context of the entire system.

Computing conceptual similarities between the
methods of two classes indicates whether the classes

are conceptually related. Considering the conceptual
similarities of the methods of a class with all the
methods of the other classes in the software system, one
can measure the degree to which this class relates to the
rest of the classes within the context of the software
system. These relationships define a new form of
coupling, the Conceptual Coupling of Classes (CoCC).

The following subsections define the model and
measures we use to asses the CoCC.

3.1. System representation and definitions
Definition 1 (System, Classes)
We consider an OO system as a set of classes C =

{c1, c2…cn}. The number of classes in the system C is
n = |C|.

Definition 2 (Methods of a Class)
A class has a set of methods. For each class c ∈ C,

M(c) = {m1, …, mz} represent its set of methods, where
z = |M(c)| is the number of methods in a class c. The
set of all methods in the system is defined as M(C).

Definition 3 (Conceptual Similarity between
Methods - CSM)

The conceptual similarity between methods mk ∈
M(C) and mj ∈ M(C), CSM(mk, mj), is computed as the
cosine between the vectors vmk and vmj, corresponding
to mk and mj in the semantic space constructed by LSI.

CSM(mk, mj) =
22 |||| jk

j
T
k

vmvm
vmvm
×

As defined, the value of CSM(mk, mj) ∈ [-1, 1], as
CSM is simply a cosine in the LSI space. In order to
comply with non-negativity property of coupling
metrics [6], we refine CSM as:

CSM1(mk, mj) =
⎪⎩

⎪
⎨
⎧ ≥

0

0),(),(

else

mmCSMifmmCSM jkjk

Definition 4 (Conceptual Similarity between a

Method and a Class - CSMC).
Let ck ∈ C and cj ∈ C be two distinct (ck ≠ cj) classes

in the system. Each class has a set of methods M(ck) =
{mk1, …, mkr}, where r = |M(ck)| and M(cj) = {mj1, …,
mjt}, where t = |M(cj)|. Between every pair of methods
(mk, mj) there is a similarity measure CSM(mk, mj).
We define the conceptual similarity between a method
mk and a class cj as follows:

CSMC(mk, cj) =
t

mmCSM
t

q
jqk∑

=1

1),(
, which is the

average of the conceptual similarities between method
mk and all the methods from class cj.

Definition 5 (Conceptual Similarity between two
Classes - CSBC)

We define the conceptual similarity between two
classes ck ∈ C and cj ∈ C as:

CSBC(ck, cj) =
r

cmCSMC
r

l
jkl∑

=1
),(

, which is the

average of the similarity measures between all
unordered pairs of methods from class ck and class cj.
The definition ensures that the conceptual similarity
between two classes is symmetrical, as CSBC(ck, cj) =
CSBC(cj, ck).

3.2. The conceptual coupling of a class
With this system representation we define now a

family of measures that approximate the coupling of a
class in an OO software system by measuring the
degree to which the methods of a class are conceptually
related to the methods of other classes.

Definition 6 (Conceptual Coupling of a Class -
CoCC)

For a class c ∈ C, conceptual coupling is defined as:

CoCC(c) =
1

),(
1

−

∑
=

n

dcCSBC
n

i
i

, where n = |C|, di ∈ C, and

c≠di.
Based on the above definitions, CoCC(c) ∈ [0, 1]

∀ c ∈ C. If a class c ∈ C is strongly coupled to the rest
of the classes in the system, then CoCC(c) should be
closer to one meaning that the methods in the class are
strongly related conceptually with the methods of the
other classes. In this case, the class most likely
implements concepts that overlap with concepts
implemented in other classes (which are related in the
context of the software system).

If the methods of the class have low conceptual
similarity values with methods of other classes, then the
class implements one or more concepts with limited
interaction with the rest of the system. The value of
CoCC(c) in this case will be close to zero.

In this form, CoCC does not make distinction
between method types. If needed, CoCC can be altered
to account for overloaded, friend, and other method
stereotypes, as discussed in [8].

3.2.1. An example of measuring the conceptual
coupling of a class. In order to illustrate how the
CoCC metric is computed, let us consider three classes:
c1 ={m1, m2}, c2 ={m3, m4, m5} and c3 ={m6, m7,
m8} with the conceptual similarities between the
methods outlined in Table 1.

In order to compute CoCC for class c1, we need to
compute conceptual similarities between classes (c1,
c2) and (c1, c3), since CoCC (c1) = (CSBC(c1, c2) +
CSBC(c1, c3))/2.

In order to compute the conceptual similarities
between c1 and c2, we use the following formula:
CSBC(c1, c2) = (CSMC (m1, c2) + CSMC (m2, c2))/2.
In this case, CSMC(m1, c2) is an average of conceptual
similarities between a method m1 and all other methods
in class c2. Thus, CSMC(m1, c2) = (CSM1(m1, m3) +
CSM1(m1, m4) + CSM1(m1, m5))/3 = (0.7 + 0.27 +
0.13) / 3 = 0.366. Similarly, CSMC (m2, c2) = (0.68 +
0.34 + 0.25)/3 = 0.423. Therefore, CSBC(c1, c2) =
(0.366 + 0.423)/2 = 0.3945.

Analogously, we compute conceptual similarities
between classes c1 and c3, CSBC(c1, c3) = 0.4515.

Now we are able to compute CoCC(c1), since
CoCC(c1) = (CSBC(c1, c2) + CSBC(c1, c3))/2 =
(0.3945 + 0.4515)/2 = 0.423. Similarly, CoCC(c2) =
0.357 and CoCC(c3) = 0.385.

Since CoCC is an average measure, we could
possibly encounter situations when some pairs of
classes are highly related and other are not and the
average would not capture those cases.

With that in mind, we refine the CoCC to measure
the influence of the highly related pairs of methods in
different classes.

Table 1. Conceptual similarities between the
methods of the classes c1 (light green), c2 (yellow),

and c3 (cyan). Conceptual similarities between
methods of the same class (white).

 m1 m2 m3 m4 m5 m6 m7 m8
m1 1 0.6 0.7 0.27 0.13 0.3 0.41 0.65
m2 0.6 1 0.68 0.34 0.25 0.41 0.39 0.55
m3 0.7 0.68 1 0.45 0.39 0.56 0.66 0.21
m4 0.27 0.34 0.45 1 0.34 0.47 0.23 0.18
m5 0.13 0.25 0.39 0.34 1 0.05 0.03 0.5
m6 0.3 0.41 0.56 0.47 0.05 1 0.23 0.43
m7 0.41 0.39 0.66 0.23 0.03 0.23 1 0.54
m8 0.65 0.55 0.21 0.18 0.5 0.43 0.54 1

3.2.2. Refining CoCC. In order to capture the
influence of highly related methods from different
classes, we refine CoCC measure to capture only the
strongest method similarities. The goal here is to make
sure that our measuring mechanism does not miss
classes that are highly coupled even to part of the
system, as developers need to be aware of such classes.
Thus, we define:
CSMCm(mk, cj) = max{CSM1(mk, mjt), ∀ t = 1..|M(cj)|}

The conceptual similarity between method mk and
class cj is denoted by the highest similarity among all
possible pairs of methods between method mk and all
the methods in class cj.

The conceptual similarity between two classes based
on CSMCm is defined as the following:

CSBCm(ck, cj) =
r

cmCSMC
r

l
jklm∑

=1
),(

The conceptual coupling metrics CoCC for a class c,
CoCC, defined using CSBCm is as the following:

CoCCm(c) =
1

),(
1

−

∑
=

n

dcCSBC
n

i
im

, where n=|C|, c≠di.

Referring back to the example in the previous
subsection, with these new definitions, CoCCm(c1) =
(CSBCm(c1, c2) + CSBCm(c1, c3))/2 = 0.645.
Similarly, CoCCm(c2) = 0.486 and CoCCm(c3) =
0.515.

Class c1 in our example is the one which has highest
values of CoCC and CoCCm metrics, whereas class c2
has the lowest conceptual coupling. Both metrics
support the same results in this case. The purpose of
this example was to show how the metrics are
computed. Section 4 gives more examples from
software systems with some interpretations. Section 4
also shows that CoCCm complements CoCC, hence
both metrics should be used for a more complete
assessment of the coupling of a class.

3.3. IRC2M – a measurement tool for CoCC
We have developed a tool for the conceptual

coupling measurement, named IRC2M (Information
Retrieval based Conceptual Coupling Measurement),
to automate the computation of the conceptual coupling
measures for C++ programs. IRC2M’s indexing
component is based on IRiSS [32], an IR-based tool
used for source code browsing and exploration.

Figure 1. Architecture of the IRC2M tool

IRC2M employs the following steps to compute

CoCC (see Figure 1):

• The source code is parsed and the system corpus is
constructed by including methods from the source
code as documents. For each method in the
software system, there will be one document in the
corpus. Mappings between methods, classes, and
their indexes respectively in the system corpus are
generated in this step. Preprocessing of the system
corpus is performed to eliminate common
keywords, stop words, and to split identifiers [30];

• LSI constructs a term-by-document matrix from
the generated system corpus. Then it applies SVD
[13] to this matrix to construct the LSI subspace.
New document vectors are obtained by
orthogonally projecting the corresponding vectors
from the original vector space onto the new LSI
semantic space.

• Once the methods from the software system are
represented in the LSI space, the conceptual
similarities between methods are computed (see
Def. 3). The CoCC and CoCCm measures use
different measuring mechanisms to determine how
the classes are related conceptually in the context
of the software system. CSBC and CSBCm are
also computed in this last step.

4. Assessment of the metrics
As CoCC and CoCCm are new measures, we must

evaluate them both theoretically and empirically.

4.1. Theoretical evaluation
We analyze our metrics under the five mathematical

properties proposed by Briand et al. [9]: non-negativity,
null value, monotonicity, merging of classes, and
merging of unconnected classes.

Our measures comply with non-negativity property,
based on the redefinition of CSM1(mk, mj) in Def. 3.
The null value property is also met since, if similarities
of the methods for some class c ∈ C with the methods
of other classes are 0, e.g. CSM1(mk, mj) = 0, then the
measures have null value, as averages of null values.

While we are not formally proving the later three
properties, we are providing the intuition that shows
why these properties hold. In short, these properties
hold, given that both the mathematical average and the
maximum function have these properties. For the
monotonicity property, if one adds a new method that
has strong conceptual similarities with methods of other
classes, then the conceptual coupling measures will also
increase. The similar situation will occur if we just
change the method implementation which leads to
higher conceptual similarities with other methods (e.g.
methods share the similar vocabulary). When merging
classes and merging unconnected classes, the
conceptual similarities remain the same, meaning that

relocation of the methods inside other classes will not
change actual conceptual similarities of these methods
with methods of other classes.

4.2. Case study design
In order to evaluate the proposed coupling measures

against existing structural measures, we performed a
case study on several open source systems. The goal of
the case study is to determine whether the conceptual
coupling measures capture new dimensions in coupling
measurement.

4.2.1. Coupling metrics
In order to determine whether the newly proposed

metrics capture new dimensions in coupling
measurement, we selected nine exiting structural
metrics for comparison: CBO, RFC, MPC, DAC, ICP,
ACAIC, OCAIC, ACMIC, and OCMIC (see Section 2).
Originally, we performed a case study with 22 coupling
metrics, but we noticed a large amount of redundancy
present among the metrics as reported in [10]. The
guiding criteria that we used to choose metrics for our
case study is the availability of results reported for
these metrics in the literature to provide easy
comparison and evaluation with our results. For the
definitions and explanations of these measures please
refer to Section 2.

4.2.2. Subject software systems
For our case study we have chosen ten various sized

open-source software systems from different domains.
The summary of the selected software systems’ sizes
are outlined in Table 2. The table also includes
specifics on the LSI corpora, generated for the systems
under analysis with terms standing for the unique
number of terms and docs for the total number of
methods in the software system. The source code for
these systems is available at http://sourceforge.net.

ANote (/projects/a-note) is the system that lets the user
organize sticky notes on the desktop. TortoiseCVS
(/projects/tortoisecvs) is an extension for Microsoft
Windows Explorer that makes using CVS convenient
and easy. WinMerge (/projects/winmerge) is a tool for
visual differencing and merging for both files and
directories. Doxygen (/projects/doxygen) is a javaDoc-like
documentation system for C++, C, Java, and IDL.
Kalpa (/projects/kalpa) is a multi-user client-server
accounting, management, CRM, EPR, and MRP
system. K-Meleon (/projects/kmeleon) is a fast and
customizable Win32 web browser, which uses the same
rendering engine as Firefox Mozilla. VoodooUML
(/projects/voodoo) is a UML class diagram editor. EMule
(/projects/emule) is a file-sharing client; one of the most
popular downloads on sourceforge.net. KeePass
(/projects/keepass) is a light-weight Win32 password

manager, which allows storing the passwords in a
highly-encrypted database. Umbrello (/projects/uml) is a
system for creating UML diagrams.

4.2.3. Measurement results
All the structural metrics are collected using the

Columbus tool [15] and the conceptual coupling
metrics are computed with our IRC2M tool.

We compiled a set of descriptive statistical values
(see Table 3): the maximum (max), inter-quartile
ranges (25% and 75%), median (med), minimum (min),
mean (σ) and standard deviation (µ). The data is used
to provide the overall picture of the differences and
similarities among all these metrics across the classes
from the systems used in the case study.

Table 3. Descriptive statistics for the coupling
measures of 979 classes in the 10 software systems

Measures Min Max 25% Med 75% σ µ

CoCC 0.0 0.4 0.1 0.1 0.1 0.1 0.1

CoCCm 0.0 0.7 0.2 0.3 0.4 0.3 0.1

CBO 0.0 45.0 0.0 1.0 4.0 2.9 5.0

RFC 0.0 545.0 5.0 11.0 23.0 24.3 45.1

MPC 0.0 2238 0.0 3.0 13.0 27.2 117

DAC 0.0 59.0 0.0 0.0 2.0 1.4 3.9

ICP 0.0 2779 0.0 2.0 16.0 36.4 162

ACAIC 0.0 1.0 0.0 0.0 0.0 0.1 0.3

OCAIC 0.0 59.0 0.0 0.0 1.0 1.3 3.9

ACMIC 0.0 6.0 0.0 0.0 0.0 0.2 0.5

OCMIC 0.0 88.0 0.0 0.0 2.0 1.8 5.6

4.3. Principal component analysis
In order to understand the underlying, orthogonal

dimensions captured by the coupling measures we
perform Principal Component Analysis (PCA) on the
metrics measured for the software systems in Table 2.
We also compare the results of our analysis with those
reported in the literature.

4.3.1. Analysis procedure
Briand et al. [10] proposed a methodology to

analyze software engineering data in order to make an
experiment repeatable and the results comparable. The
methodology consists of the following three steps:
collecting the data, identifying outliers, and performing
PCA.

Section 4.2.3 presented the data we collected. As
the results of our analysis can be impacted by the
outliers, they were removed. To identify outliers in the
data, we utilized the T2max procedure based on the
Mahalanobis distance [18].

After outliers were eliminated, we performed PCA,
which was used in our case to identify groups of
variables (i.e., metrics), which are likely to measure the
same underlying dimension (i.e., mechanism that
defines coupling) of the object to be measured (i.e.,
coupling of a classes). In order to identify these
variables and interpret the principal components, we
consider the rotated components, which is a technique
where principal components are subjected to an
orthogonal rotation. Thus, the resulting rotated
components show clearer patterns of loading for the
variables. In order to perform this rotation we used the
rotation technique known as “varimax” [19].

4.3.2. PCA results
We performed PCA on the set of 979 classes from

10 different open source software systems (see Table
2). All eleven measures were subjected to an
orthogonal rotation. We identified eight orthogonal
dimensions spanned by 11 coupling measures. The
eight principal components (PCs) capture 97.6% of the
variance in the data set, which is significant enough to
support our findings.

The loadings on each measure in each rotated
component in presented in Table 4. Values higher than
0.5 are highlighted as the corresponding measures are
the ones we look into while interpreting the PCs. For
every PC, we provide the variance of the data set

Table 2. Characteristics of the software systems used in the empirical study. LOC includes lines of code
only; the number of lines with comments is provided separately in Comments.

Num System Ver LOC Comments Mixed Files Classes Methods Terms Docs
1 ANote 4.2.1 16,387 4,731 851 97 61 877 2530 753
2 TortoiseCVS 1.8.21 64,863 15,517 1,541 255 142 930 1915 637
3 WinMerge 2.0.2 51,475 11,534 1,209 169 71 624 1738 522
4 Doxygen 1.3.7 179,920 40,991 8,005 260 682 6837 4424 3608
5 Kalpa 0.0.4.2 16,581 7,330 431 185 135 353 451 254
6 K-Meleon 0.9 34,253 6,940 690 120 57 213 653 192
7 VoodooUML 1.99.12 12,787 2,426 228 97 168 1001 947 841
8 EMule 0.47 162,101 30,542 4,935 556 532 6764 9628 3888
9 KeyPass 1.04 39,798 9,789 1,243 123 104 1476 3676 1325
10 Umbrello 1.5.1 75,665 28,888 1,215 479 210 524 631 405

explained by the PC and the cumulative variance in
Table 4.

Based on our analysis of the coefficients associated
with every coupling measure within each of the rotated
components, we interpret PCs as the following.

PC1 (19.3%): both DAC and OCAIC measure
import coupling from library classes through
aggregation. PC2 (9.4%): CoCC measures conceptual
coupling of classes within the context of the complete
software system. PC3 (9.41%): ACAIC measures
import coupling from non-library classes through
aggregation. PC4 (12.1%): CBO, OCMIC count import
coupling from non-library classes through method
invocations. PC5 (19.5%): MPC, ICP have the similar
interpretation as the previous component. PC6
(9.45%): CoCCm measures conceptual coupling of
classes based on strongest conceptual similarities
among methods of classes in the system. PC7 (9.05%):
ACMIC defines a dimension on its own capturing
class-method interactions with class types as a
parameter. PC8 (9.14%): RFC captures coupling,
based on method invocations.

The results of the PCA show that the CoCC and
CoCCm measures define two new dimensions on their
own since CoCC is the only significant factor in PC2
and CoCCm is the only significant factor in PC6. These
results clearly indicate that our coupling measures
capture different types of coupling between classes,
than those captured by the structural metrics. This
unique result derives from the fact that CoCC and
CoCCm are coupling measures that are based on
completely different ideas and measurements than the
existing coupling measures; CoCC and CoCCm are
based on the semantic information obtained from the
source code encoded in identifiers and comments,

whereas the existing metrics use the structure of the
software as the basis for measurement.

In addition, the results of the PCA can be compared
with those reported in the literature [7, 10]. Although
the PCs and loadings obtained in our case and those
reported in the literature do not completely overlap,
they are very close. This can be explained by the fact
that we used a slightly different set of coupling metrics
in our analysis as well as two new metrics, i.e., CoCC
and CoCCm.

4.4. Interpretation of the results
To obtain more insight into how the conceptual

coupling metrics differ from the structural ones, we
chose several classes from different systems for
detailed analysis. As the cases where the two sets of
metrics agree are of little interest, we were interested in
those cases with different values of conceptual and
structural metrics, e.g., high conceptual metric values
and low structural metrics values, and vice versa. We
considered both the CoCC and CoCCm measures that
capture the coupling of the classes to the rest of the
system, and the CSBC and CSBCm measures, which
capture conceptual coupling between pair of classes.

4.4.1. Conceptual coupling in the context of the
complete software system

In this subsection we look into some of the noted
differences between the conceptual coupling measures
(CoCC and CoCCm) and the CBO and RFC structural
coupling measures.

Table 4. Rotated components.

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Proportion 19.3% 9.4% 9.41% 12.1% 19.5% 9.45% 9.05% 9.14%
Cumulative 19.3% 28.8% 38.2% 50.4% 69.9% 79.4% 88.4% 97.6%

CoCC -0.046 0.941 0.042 0.000 -0.031 0.279 0.129 -0.033
CoCCm 0.064 0.343 -0.101 0.024 0.115 0.904 0.041 0.074

CBO 0.260 -0.147 0.185 0.558 0.309 0.341 0.017 0.473
RFC 0.264 -0.019 0.046 0.266 0.422 0.067 0.075 0.803
MPC 0.233 -0.017 -0.029 0.154 0.929 0.081 0.024 0.202
DAC 0.931 -0.027 0.074 0.161 0.268 0.043 0.084 0.136
ICP 0.346 -0.014 -0.024 0.139 0.903 0.074 0.028 0.162

ACAIC 0.052 0.035 0.950 0.022 -0.040 -0.081 0.272 0.046
OCAIC 0.935 -0.026 0.006 0.162 0.274 0.046 0.067 0.127
ACMIC 0.113 0.129 0.281 0.050 0.040 0.041 0.939 0.049
OCMIC 0.222 0.029 -0.007 0.928 0.181 -0.018 0.052 0.157

Table 5. Classes with highest conceptual coupling
in WinMerge (W) and TortoiseCVS (T) according to

CoCC and CoCCm

S Class CoCC CoCCm CBO RFC
W IVSSItems 0.215 0.326 0 5
W IVSSUsers 0.215 0.326 0 5
W IVSSCheckouts 0.215 0.326 0 5
T ConfListDialog 0.106 0.176 1 5
T ConflictParser 0.07 0.135 0 1

The chosen classes for detailed analysis are from the

WinMerge and TortoiseCVS systems (Table 5). We
selected these classes based on high values of CoCC
and CoCCm and low values of CBO and RFC metrics.

The IVSSItems, IVSSUsers, and IVSSCheckouts
classes from WinMerge show high conceptual and low
structural coupling to the rest of the system. Closer
inspection of these classes revealed that these classes
are part of a larger cluster of related classes, which
contribute to the implementation of a feature related to
accessing functions of other ActiveX objects; they all
implement the COleDispatchDriver interface. All the
classes in the cluster have several common
characteristics – they are all wrappers; the majority of
the methods in these classes call the InvokeHelper()
function to execute specific functionality in the
ActiveX object; the majority of pairs of classes from
the cluster have high conceptual similarities. The
“IVSS” cluster consists of eleven classes wrapping
similar functionalities. This explains the high values
for CoCC and CoCCm since these classes are
conceptually related to the other classes from the
cluster, as well as other classes in the system. Their
construction as wrappers and their main usage explains
the low structural cohesion.

The classes ConflictParser and ConflictListDialog
from the TortoiseCVS system implement important
domain concepts - identifying conflicts in the working
version of the file and current file revision as well as
dialog to list the conflicts in the file. These concepts
are important in the system, which extends the file
system’s interface to support collaborative software
development with CVS. The high values of CoCC and
CoCCm metrics for these classes from TortoiseCVS can
be explained by the fact that these classes use domain
concept terms like “parse” and “conflict”, which are
spread across many methods of this system. These
terms have high global frequencies, meaning that they
frequently occur as parts of identifiers or comments
across different methods in the system compared to
other 1,915 unique terms indexed in this system. The
terms “conflict” and “parse” occur more than a
thousand times in 679 methods of TortoiseCVS system.

The classes analyzed in this section implement
domain concepts, which relate to the rest of the system,

yet they are loosely coupled to the rest of the system. It
is important to identify these classes from maintenance
point of view. The loose structural coupling may
indicate a low architectural importance, but the high
conceptual coupling indicates that these classes are
most likely contributing to the implementation of the
main domain concepts. The classes which relate
conceptually to the majority of classes in the system
may exhibit a form of dependency, called hidden
dependency [36], which is not always expressed by
structural coupling measures. Modifications in these
classes may trigger special types of ripple effects,
which are currently not captured by existing coupling
measures [5].

4.4.2. Conceptual coupling between a pair of classes
To better understand the conceptual coupling, we

also analyze the CSBC and CSBCm measures, which
reflect how a class is conceptually related to another
given class in the system.

In order to identify pairs of classes with high
conceptual similarity, we computed CSBC and CSBCm
metrics for every possible pair of classes in WinMerge
and TortoiseCVS systems. We selected these two
systems, since we are mostly familiar with these two
systems, among the ten ones used in the case study.

For analysis, we chose several pairs of classes with
highest CSBC values (see Table 6).

It came to no surprise that pairs of classes,
mentioned before as part of the “IVSS” cluster, were
among those with highest CSBC values. These classes
implement different, but related tasks, which are all
based on implementation of client side of OLE
automation. Detailed inspection of the source code for
these classes has shown that they are not directly
connected structurally, meaning that they do not use
each other services etc. On the other hand after
inspecting the history of co-changes for these files
(using CVS data for WinMerge project) we noticed that
these classes are not only strongly conceptually coupled
together, but they also have history of common changes
(i.e., they were changed and submitted to the repository
at the same time).

Table 6. Pairs of classes from WinMerge (W) and
TortoiseCVS (T) with highest CSBC values

S Class Class CSBC CSBCm
W IVSSVersion IVSSCheckout 0.776 0.964
W IVSSItems IVSSUsers 0.77 0.974
W IVSSDatabase IVSSCheckout 0.585 0.954
T MergeDlg UpdateDlg 0.375 0.891

Another pair of classes MergeDlg and UpdateDlg

from TortoiseCVS system has high conceptual coupling
values for CSBC and CSBCm metrics. This is once
again not surprising, since both classes implement

similar concepts – front end dialogs for merging and
updating file revisions. Both classes share similar
terms which come from names of classes used to create
elements of user interface: “button”, “static text”,
“check box”, etc., as well as terms more specific to the
concepts which are implemented in these classes:
“fetch”, “revision”, “tag”, “branch”, etc. Again these
classes do not have direct structural dependencies
between them. This is a case of unconnected classes,
which implement similar functionality [27].

4.5. Threats to validity
We identify several issues that affected the results of

our case study and limit our interpretations. We have
demonstrated that our metrics capture new dimensions
in coupling measurement; however, we obtained these
results by analyzing classes from only ten C++ open-
source systems. In order to allow for generalization of
results, large-scale evaluation, similar to the one in [33]
in terms of case study design, is necessary, which will
take into account systems from different domains,
developed using different programming languages.

In the case study we consider only structural metrics
that are based on the static information obtained from
the source code. The results may be somewhat
different if we considered dynamic coupling [4].

We did not investigate the relationship of the
measures to an external quality attributes, e.g. change
proneness; such a relationship would be useful to show
additional values of the proposed metrics.

5. Conclusions and future work
The paper defines a new set of operational measures

for the conceptual coupling of classes, which are
theoretically valid and empirically studied. An
extensive case study shows that these metrics capture
new dimensions in coupling measurement, compared to
existing structural metrics.

The paper lays the foundation for a wealth of work
that makes use of the conceptual coupling metrics. The
proposed metrics could be further extended and refined,
for example by taking into account inheritance in
measurement. The IRC2M tool will be adapted to
compute conceptual coupling measures for Java
systems. We are also planning on comparing the
conceptual coupling metrics with the evolutionary
based coupling [38].

More importantly, we are investigating the
applications of the conceptual coupling in impact
analysis, detecting hidden dependencies, and change
proneness. In addition, we will use these metrics to
extend prior work on software clustering [21], concept
location [30], and clone detection [27].

6. Acknowledgements
This research was supported in part by grants from

the National Science Foundation (CCF-0438970) and
the National Institute for Health (NHGRI
1R01HG003491). We thank Prof. Václav Rajlich for
his valuable comments and discussions on this research.

7. References
[1] Abreu, F. B., Pereira, G., and Sousa, P., "A Coupling-
Guided Cluster Analysis Approach to Reengineer the
Modularity of Object-Oriented Systems", in Proc. of Conf. on
Software Maintenance and Reengineering (CSMR'00),
Zurich, Switzerland, Feb. 29 - Mar. 3 2000, pp. 13-22.
[2] Allen, E. B., Khoshgoftaar, T. M., and Chen, Y.,
"Measuring coupling and cohesion of software modules: an
information-theory approach", in Proceedings of 7th
International Software Metrics Symposium (METRICS'01),
April 4-6 2001, pp. 124-134.
[3] Antoniol, G., Fiutem, R., and Cristoforetti, L., "Using
Metrics to Identify Design Patterns in Object-Oriented
Software", in Proceedings of 5th IEEE International
Symposium on Software Metrics (METRICS'98), Bethesda,
MD, November 20-21 1998, pp. 23 - 34.
[4] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic
coupling measurement for object-oriented software", IEEE
Transactions on Software Engineering, vol. 30, no. 8, August
2004, pp. 491-506.
[5] Briand, L., Wust, J., and Louinis, H., "Using Coupling
Measurement for Impact Analysis in Object-Oriented
Systems", in Proc. of IEEE International Conf. on Software
Maintenance, Aug. 30 - Sept. 03 1999, pp. 475-482.
[6] Briand, L. C., Daly, J., and Wüst, J., "A Unified
Framework for Coupling Measurement in Object Oriented
Systems", IEEE Transactions on Software Engineering, vol.
25, no. 1, January 1999, pp. 91-121.
[7] Briand, L. C., Daly, J. W., Porter, V., and Wüst, J., "A
Comprehensive Empirical Validation of Design Measures for
Object-Oriented Systems", in Proc. of 5th International
Software Metrics Symposium (METRICS'98), Bethesda, MD,
Nov. 20-21 1998, pp. 43-53.
[8] Briand, L. C., Devanbu, P., and Melo, W. L., "An
investigation into coupling measures for C++", in Proc. of
International Conference on Software engineering (ICSE'97),
Boston, MA, May 17-23 1997, pp. 412 - 421.
[9] Briand, L. C., Morasca, S., and Basili, V. R., "Property-
Based Software Engineering Measurements", IEEE
Transactions on Software Engineering, vol. 22, no. 1, January
1996, pp. 68-85.
[10] Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D.,
"Exploring the relationship between design measures and
software quality in object-oriented systems", Journal of
Systems and Software, vol. 51, no. 3, May 2000, pp. 245-273.
[11] Chidamber, S. R. and Kemerer, C. F., "Towards a
Metrics Suite for Object Oriented Design", in Proceedings of
OOPSLA'91, 1991, pp. 197-211.

[12] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite
for Object Oriented Design", IEEE Transactions on Software
Engineering, vol. 20, no. 6, 1994, pp. 476-493.
[13] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for Information
Science, vol. 41, 1990, pp. 391-407.
[14] El-Emam, K. and Melo, K., "The Prediction of Faulty
Classes Using Object-Oriented Design Metrics", NRC/ERB-
1064, vol. NRC 43609, November 1999.
[15] Ferenc, R., Siket, I., and Gyimóthy, T., "Extracting facts
from open source software", in Proc. of 20th International
Conf. on Software Maintenance, Sept. 11 2004, pp. 60-69.
[16] Gall, H., Jazayeri, M., Krajewski, J., "CVS Release
History Data for Detecting Logical Couplings", 6th
International Workshop on Principles of Software Evolution
(IWPSE'03) Sept. 1 - 2, 2003, pp. 13 - 23.
[17] Gyimóthy, T., Ferenc, R., and Siket, I., "Empirical
validation of object-oriented metrics on open source software
for fault prediction", IEEE Trans. on Software Engineering,
vol. 31, no. 10, October 2005, pp. 897-910.
[18] Jobson, J. D., Applied Multivariable Data Analysis,
Springer-Varlag, 1992.
[19] Jolliffe, I. T., Principal Component Analysis, Springer
Verlag, 1986.
[20] Kramer, S. and Kaindl, H., "Coupling and cohesion
metrics for knowledge-based systems using frames and rules",
ACM Trans. on Soft. Engineering and Methodology
(TOSEM), vol. 13, no. 3, July 2004, pp. 332-358.
[21] Kuhn, A., Ducasse, S., and Girba, T., "Enriching Reverse
Engineering with Semantic Clustering", in Proc. of 12th
Working Conference on Reverse Engineering, Nov. 7-11
2005, pp. 133-142.
[22] Lee, J. K., Jung, S. J., Kim, S. D., Jang, W. H., and Ham,
D. H., "Component identification method with coupling and
cohesion", in Proc. of 8th Asia-Pacific Software Engineering
Conference (APSEC'01), Dec. 2001, pp. 79-86.
[23] Lee, Y. S., Liang, B. S., Wu, S. F., and Wang, F. J.,
"Measuring the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow", in Proceedings of
International Conference on Software Quality, Maribor,
Slovenia, 1995.
[24] Li, W. and Henry, S., "Object-oriented metrics that
predict maintainability", Journal of Systems and Software,
vol. 23, no. 2, 1993, pp. 111-122.
[25] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information",
in Proceedings of 23rd International Conference on Software
Engineering, Toronto, Canada, May 12-19 2001, pp. 103-112.
[26] Marcus, A., "Semantic Driven Program Analysis", in
Proceedings of 20th IEEE International Conference on

Software Maintenance (ICSM'04), Chicago, IL, September
11-17 2004, pp. 496-473.
[27] Marcus, A. and Maletic, J. I., "Identification of High-
Level Concept Clones in Source Code", in Proceedings of
Automated Software Engineering (ASE'01), San Diego, CA,
November 26-29 2001, pp. 107-114.
[28] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery
of Traceability Links Between Software Documentation and
Source Code", Int. Journal of Software Engineering and
Knowledge Eng., vol. 15, no. 4, Oct. 2005, pp. 811-836.
[29] Marcus, A. and Poshyvanyk, D., "The Conceptual
Cohesion of Classes", in Proceedings of 21st IEEE
International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, Sept. 2005, pp. 133-142.
[30] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.,
"An Information Retrieval Approach to Concept Location in
Source Code", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE'04), Delft, The
Netherlands, November 9-12 2004, pp. 214-223.
[31] Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol,
G., and Rajlich, V., "Combining Probabilistic Ranking and
Latent Semantic Indexing for Feature Identification", in
Proceedings of 14th IEEE International Conference on
Program Comprehension (ICPC'06), Athens, Greece, 2006,
pp. 137-148.
[32] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev,
A., "IRiSS - A Source Code Exploration Tool", in Industrial
and Tool Proceedings of 21st IEEE International Conference
on Software Maintenance (ICSM'05), Budapest, Hungary,
September 25-30 2005, pp. 69-72.
[33] Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., and
Russo, B., "An Empirical Exploration of the Distributions of
the Chidamber and Kemerer Object-Oriented Metrics Suite",
Empirical Software Eng., 10 (1), Jan. 2005, pp. 81-104.
[34] Wilkie, F. G. and Kitchenham, B. A., "Coupling
measures and change ripples in C++ application software",
The Journal of Syst. and Software, vol. 52, 2000, pp. 157-164.
[35] Yu, P., Systa, T., and Muller, H., "Predicting fault-
proneness using OO metrics. An industrial case study", in
Proc. of 6th European Conf. on Software Maintenance and
Reengineering (CSMR'02), March 2002, pp. 99-107.
[36] Yu, Z. and Rajlich, V., "Hidden Dependencies in
Program Comprehension and Change Propagation", in Proc.
of 9th Int. Workshop on Program Comprehension, Toronto,
Canada, May 12 -13, 2001, pp. 293-299.
[37] Zhao, J., "Measuring Coupling in Aspect-Oriented
Systems", in Proc. of 10th IEEE International Soft. Metrics
Symposium (METRICS'04), Chicago, USA, 2004.
[38] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl,
S., "Mining Version Histories to Guide Software Changes",
IEEE Transactions on Software Engineering, vol. 31, no. 6,
June 2005, pp. 429-445.

