
BranchScope: A New Side-Channel Attack on
Directional Branch Predictor

Dmitry Evtyushkin
College of William and Mary

devtyushkin@wm.edu

Ryan Riley
Carnegie Mellon University in Qatar

rileyrd@cmu.edu

Nael Abu-Ghazaleh
University of California Riverside

naelag@ucr.edu

Dmitry Ponomarev
Binghamton University

dponomar@binghamton.edu

Abstract
We present BranchScope — a new side-channel attack where
the attacker infers the direction of an arbitrary conditional
branch instruction in a victim program by manipulating the
shared directional branch predictor. The directional compo-
nent of the branch predictor stores the prediction on a given
branch (taken or not-taken) and is a different component
from the branch target buffer (BTB) attacked by previous
work. BranchScope is the first fine-grained attack on the di-
rectional branch predictor, expanding our understanding of
the side channel vulnerability of the branch prediction unit.
Our attack targets complex hybrid branch predictors with
unknown organization. We demonstrate how an attacker
can force these predictors to switch to a simple 1-level mode
to simplify the direction recovery. We carry out BranchScope
on several recent Intel CPUs and also demonstrate the attack
against an SGX enclave.

CCS Concepts • Security and privacy→ Side-channel
analysis and countermeasures; Hardware reverse en-
gineering;

Keywords Branch Predictor, Attack, Side-channel, SGX,
Microarchitecture Security, Timing Attacks, Performance
Counters

ACM Reference Format:
Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2018. BranchScope: A New Side-Channel Attack on
Directional Branch Predictor. In Proceedings of 2018 Architectural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173204

Support for Programming Languages and Operating Systems (AS-
PLOS’18). ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3173162.3173204

1 Introduction
Modern microprocessors rely on branch prediction units
(BPUs) to sustain uninterrupted instruction delivery to the
execution pipeline across conditional branches. When multi-
ple processes execute on the same physical core, they share
a single BPU. While attractive from utilization and complex-
ity considerations, the sharing potentially opens the door
for an attacker to manipulate the shared BPU state, create
a side-channel, and derive a direction or target of a branch
instruction executed by a victim process. Such leakage can
compromise sensitive data. For example, when a branch in-
struction is conditioned on a bit of a secret key, the key
bits are leaked directly. This occurs in implementations of
exponentiation algorithms [13, 32] and other key mathemat-
ical operations [3] of modern cryptographic schemes. The
attacker may also change the predictor state, changing its
behavior in the victim.

On modern microprocessors, the BPU is composed of two
structures: the branch target buffer (BTB) and the directional
predictor. Previous work has specifically targeted the BTB to
create side channels [1, 3, 21, 35]. In the BTB, the target of a
conditional branch is updated only when the branch is taken;
this can be exploited to detect whether or not a particular
victim branch is taken. The first attack in this area proposed
several BTB-based attacks that are based on filling the BTB
by the attacker, causing the eviction of entries belonging to
the victim. By observing the timing of future accesses [3],
the attacker can infer new branches executed by the victim.
We describe those attacks and their limitations in the related
work section. In other work [21], we recently proposed a
side-channel attack on the BTB that creates BTB collisions
between the victim and the attacker processes, thus allowing
the attacker to discover the location of a particular victim’s
branch instruction in the address space, bypassing address
space layout randomization. Lee et al. [35] built on that work
by exploiting the BTB collisions to also discover the direction

https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204

of the victim’s branch instructions. They demonstrated the
attack in kernel space against Intel SGX enclaves.

In this paper, we propose a new micro-architectural side-
channel attack, which we call BranchScope, that targets the
directional predictor as the source of information leakage.
To the best of our knowledge, BranchScope is the first at-
tack exploiting the directional predictor structure, showing
that BPUs can be vulnerable even if the BTB is protected.
BranchScopeworks by forcing collisions between the attacker
and selected victim branches and exploiting these collisions
to infer information about the victim branch. This attack
has new challenges not present in a BTB attack. In order to
achieve collisions, we must overcome the unpredictability of
the complex hybrid prediction mechanisms used in modern
CPUs. BranchScope overcomes this by generating branch
patterns that force the branch predictor to select the local
one-level prediction even when complex multi-level predic-
tors are present in the processor. Second, after collisions
are reliably created, the victim’s branch direction can be ro-
bustly disclosed by an attacker executing a pair of branches
with predefined outcomes, measuring the prediction accu-
racy of these branches, and correlating this information to
the predictor state and thus to the direction of the victim’s
branch.

We demonstrate BranchScope on three recent Intel x86_64
processors — Sandy Bridge, Haswell and Skylake. To perform
BranchScope, the attacker does not need to reverse-engineer
the details of the branch predictor operation, and only needs
to perform simple manipulations with the prediction state
machines from the user space. We also demonstrate how
BranchScope can be extended to attack SGX enclaves even if
recently-proposed protections are implemented. We show
that BranchScope can be performed across hyperthreaded
cores, advancing previously demonstrated BTB-based attacks
which leaked information only between processes scheduled
on the same virtual core [21]. This capability relaxes the
attacker’s process scheduling constraints, allowing a more
flexible attack. Finally, we describe countermeasures to pre-
vent the BranchScope attack in future systems.

The recent Meltdown [36] and Spectre [34] attacks demon-
strated the vulnerability of speculative execution to side-
channel attacks, directly impacting the security of current
systems and leading to data exfiltration. Branch predictors
are critical to these attacks since the attacker must mistrain,
or even directly pollute (known as a Branch poisoning at-
tack) the branch predictor to force the predictor to guess the
address of the victim selected vulnerable code. The branch
poisoning attack presented in Spectre is based on the same
basic principle as BranchScope — exploiting collisions be-
tween different branch instructions in the branch predictor
data structures. In this context, we believe that BranchScope
can provide additional tools for attackers to use specula-
tion to perform more advanced and flexible attacks. As the

community considers defenses against these attacks, the vul-
nerability outlined in BranchScope must also be addressed.
In summary, the main contributions and the key results

of this paper are:

• We propose BranchScope — the first side-channel at-
tack explicitly targeted at extracting sensitive infor-
mation through the directional branch predictor (as
opposed to existing work targeting the Branch Target
Buffer). BranchScope is not affected by defenses against
BTB-based attacks.
• We demonstrate that BranchScope works reliably and
efficiently from user space across three generations of
Intel processors in the presence of system noise, with
an error rate of less than 1%.
• We show that BranchScope can be naturally extended
to attack SGX enclaves with even lower error rates
than in traditional systems.
• We describe both hardware and software countermea-
sures to mitigate BranchScope, providing branch pre-
diction units that are secure to side channel attacks.

2 Background: Branch Predictor Unit
Modern branch predictors [15, 31, 41, 43, 50] are typically
implemented as a composition of a simple one-level bimodal
predictor indexed directly by the program counter (we refer
to it as the 1-level predictor [49]), and a gshare-style 2-level
predictor [57]. The gshare-like predictor exploits the obser-
vation that the branch outcome depends on the results of
recent branches, and not only on the address of the branch. A
selector table indexed by the branch address identifies which
predictor is likely to perform better for a particular branch
based on the previous behavior of the predictors. This design
combines the best features of both component predictors.
Figure 1 illustrates one possible design of such a hybrid

predictor. The 1-level predictor stores its history in the form
of a 2-bit saturating counter in a pattern history table (PHT).
The gshare predictor has a more complex indexing scheme
that combines the program counter with the global history
register (GHR). The GHR records the outcomes of the last sev-
eral branches executed by the program. The branch history
information is also stored in the PHT using a 2-bit saturating
counter; the only difference between the two predictors is
how the PHT is indexed.
If the branch is predicted to be taken, the target address

of the branch is obtained from a structure called the Branch
Target Buffer (BTB), which is a simple direct mapped cache
of addresses that stores the last target address of a branch
that maps to each BTB entry. Published side channel attacks
(described in Section 11) on the BPU have all targeted the
BTB. In contrast, BranchScope targets the direction prediction
unit of the BPU.

Branch address
PHT

TTN N

TTN N

TTN N

TTN N

Target 1

Target 2
Target 3

Target 4

BTB

Direction Prediction

Target Prediction

Selector Table

T T T TN N N N N
GHR

Figure 1. A Combined Branch Predictor

3 Threat Model and Attacker Capabilities
Our attack assumes the existence of a victim and a spy pro-
grams. The victim program contains secret information that
the spy program is trying to infer, without having the au-
thority to access this information directly. The threat model
makes three primary assumptions:

• Co-residency on the same physical core: We assume
that the victim and the spy programs are running on
the same physical core since the BPU is shared at the
virtual core level. Prior work [21] has shown possible
techniques for forcing such co-residency.
• Victim slowdown: To perform a high-resolution Branch-
Scope attack, where we are able to detect the behavior
of an individual execution of a branch, the victim pro-
cess needs to be slowed down. This slowdown is a
common requirement of high-resolution side-channel
attacks [26, 33]. Slowing down the victim is an orthog-
onal issue that can be accomplished by a variety of
means, for example by exploiting the Linux scheduler
as proposed by Gullasch et al. [26] or performing mi-
croarchitectural performance degradation attack [4].
Importantly, in a threat model where a malicious OS
is attacking an SGX compartment, the OS can control
the scheduling at fine-grain to slow down the victim.
• Triggering victim code execution: We assume that the
attacker can initiate code execution of the victim pro-
cess such that it can force the victim to execute the tar-
geted vulnerable operation at any time. This assump-
tion holds for many applications that are triggered
by external input. For example, consider a server that
sends out encrypted data; the attacker can trigger a
response from this server by sending a request to it.
We do not assume that the attacker can observe the
contents of the response from the victim.

We believe that these three assumptions hold in a large num-
ber of realistic attack scenarios making BranchScope a serious
threat to modern systems, on par with other side-channel
attacks. Later in the paper, we support this claim by demon-
strating BranchScope on a real SGX-based platform.

4 BranchScope Attack Overview
In this section, we present the an overview of BranchScope.
We start with background information and a high-level overview
of the attack, and then move to the details.

In general, the attack proceeds as follows:
• Stage 1: Prime the PHT entry. In this stage, the attacker
process primes a targeted PHT entry into a specified
state. This priming is accomplished by executing a
carefully-selected randomized block of branch instruc-
tions. This block is generated one-time, a-priori by the
attacker.
• Stage 2: Victim execution. Next, the attacker initiates
the execution of a branch it intends to monitor within
the victim process and waits until the PHT state is
changed by the victim’s activity.
• Stage 3: Probe the PHT entry. Finally, the attacker ex-
ecutes more branch instructions targeting the same
PHT entry as the victim while timing them to observe
their prediction outcomes. The attacker correlates the
prediction outcomes with the state of the PHT to iden-
tify the direction of the victim’s branch.

The attacker must be able to cause collisions between
its branches and the branches of the victim process in the
PHT. These collisions, given knowledge of the operation of
the predictor, allow the attacker to uncover the direction of
the victim’s branch. Specifically, by observing the impact
of that branch (executed in stage 2 above) on the predic-
tion accuracy of an attacker’s probing branches executed
in stage 3. If the PHT indexing is strictly determined by the
instruction address (as in the 1-level predictor), creating col-
lisions in the PHT between the branches of two processes is
straightforward, since the virtual addresses of victim’s code
are typically not a secret. If address space layout randomiza-
tion (ASLR) is used to randomize code locations, the attacker
can de-randomize using data disclosure [48], or side channel
attacks on ASLR [21, 24, 28, 30, 54].

BranchScope requires the following two abilities:
• Establishing Collisions. The attack relies on gener-
ating collisions within the predictor. Creating colli-
sions is greatly simplified if the predictor in use is the
simply indexed 1-level predictor instead of the more
complex gshare-like predictor. The attack must force
both the attack code and the victim code to use the
1-level predictor.
• Prime Probe Strategy. After the attacker forces a
collision in the PHT, she still needs to be able to in-
terpret the state of the PHT in order to determine the
direction of the victim’s branch. Therefore, we need to
understand how to prime a particular PHT entry into
a desired starting state in stage 1. This starting state
must enable us to correlate some observable behavior
of a probe operation from the attacker in stage 3 with
the direction of the victim’s branch.

In the next two sections, we explain how the attacker achieves
these two goals.

5 Attack Capability I: Establishing
collisions by controlling selection logic

BranchScope’s strategy to establish collisions is to force both
the spy code and victim code to use the 1-level predictor,
which makes the PHT entry used a simple function of the
branch address. We start with an experiment that demon-
strates how the selection logic works, and then use these
observations to force the use of the 1-level predictor for our
target branches. We performed these experiments on three
recent Intel processors: i5-6200U based on Skylake microar-
chitecture, i7-4800MQ based on Haswell microarchitecture
and i7-2600 based on Sandy Bridge Microarchitecture.

5.1 Understanding the Selection Logic
The selection logic within the hardware attempts to choose
the predictor that is more accurate. To gain insight into how
this selection operates as the 2-level predictor learns a branch
execution pattern we conduct the following experiment. An
irregular but repeating sequence of branch outcomes from
the same branch instruction cannot be predicted accurately
by the simple 1-level predictor since the branch outcome
is not a function of the two preceding branches. However,
such a sequence is predictable by a 2-level predictor once its
history is initialized. To understand how quickly the learn-
ing process proceeds and the selection of the gshare-like
predictor over the 1-level predictor occurs, we performed
the following experiment on two recent Intel processors:
i5-6200U based on Skylake microarchitecture, and i7-2600
based on Haswell microarchitecture.
• We initialize an array of 10 bits to a randomly selected
state. This bit pattern serves to control whether the
branch is taken in our experiment.
• We execute a single branch instruction conditional
on the array bits, once for each bit. We repeat the
series of branches 20 times in a row and record the
total number of incorrect predictions in this branch
sequence for each of the iterations. We use hardware
performance counters to track prediction, enabling
accurate measurement with a resolution of a single
branch misprediction.

An 1-level predictor will not be able to predict better than 50%
on average, but a gshare style predictor should eventually
learn the pattern.
The prediction accuracy from this experiment (averaged

over multiple runs) is presented in Figure 2. As seen from the
Figure, as the first iteration is executed, the misprediction
rate is about 50% (five out of ten branches are mispredicted).
This result is expected, since in this stage the 2-level predic-
tor does not have any prior state, while the 1-level predictor
is not capable of predicting such patterns in principle. As the

branch pattern repeatedly executes, the branch mispredic-
tion rate decreases, as more history is accumulated by the
2-level predictor structures. When the branch pattern is re-
peated about 5 – 7 times, the predictor accuracy approaches
100% and stays at that value. Both CPUs demonstrated simi-
lar behavior, with the Skylake processor learning the pattern
slightly faster.

These results indicate that eventually (after 5-7 iterations,
or 50-70 executions of the branch) for this pattern, the 2-level
predictor is used exclusively. However, when the branch is
first encountered, either the 1-level or 2-level predictor is
used but is not predicting effectively.

1 3 5 7 9 11 13 15 17 19
Times branch sequence executed

0

1

2

3

4

5

Av
er

ag
e

m
isp

re
di

ct
io

ns i5-6200U
i7-2600

Figure 2. Average number of mispredictions for a sequence
of branch instructions in individual runs

Next we focus on the initial behavior of the predictor (early
iterations in Figure 2). We conjecture that for new branches
whose information is not stored in the predictor history, the
1-level predictor is used. This hypothesis intuitively makes
sense since the 2-level predictor takes a longer time to learn
the branch pattern compared to a simple 1-level predictor.
For example, if an “almost-always-taken” branch at the end
of the loop is executed, the 1-level predictor will converge to
the “strongly taken” state after 2-3 executions. On the other
hand, the 2-level predictor will use different history register
values and thus different PHT entries for every instance
of the branch, making it significantly slower to converge.
We carried out experiments to validate the use of 1-level
predictor for branches with no history and found that it
holds for all three Intel platforms. We can detect the use
of the 1-level predictor when collisions can be established
simply based on the branch addresses.

5.2 Forcing usage of the 1-level predictor
We will now discuss how to use the knowledge gleaned from
our previous experiment in order to force the hardware to
choose the 1-level predictor for both the attacker and victim
code.

Attacker code We use the observation that new branches
use the 1-level predictor directly in the attacker code to force

the use of the 1-level predictor: we cycle through a number
of branches placed at addresses that collide with the victim
branch (if that also uses the 1-level predictor) in the branch
predictor, such that at any time the attack branch being used
does not exist in the BPU, forcing the unit to use the 1-level
predictor.

Victim code The more difficult task is to force the victim
code to use the 1-level predictor; the victim code is not under
the control of the attacker. To force the BPU to use the 1-level
predictor for the targeted victim branch, the attacker needs
to accomplish one of two goals: 1) ensure that the branches
used by the attack have not been recently encountered, thus
starting the prediction for these branches from the 1-level
mode; 2) make the 2-level predictor inaccurate and prolong
its training time, forcing the selector to choose the 1-level
mode at least for several branches. Thus, the attacker must
ensure that at least one of these two properties (if not both)
hold to force the victim code to use the 1-level predictor.
We accomplish this goal by developing a sequence of

branch-intensive code that the attacker executes to drive
the BPU to a state that lowers the 2-level predictor accu-
racy and potentially replaces the victim branches. As a result
of executing this sequence, the victim code will use the 1-
level predictor when it executes its branch, enabling us to
achieve collisions. This code serves another critical function:
it forces the PHT entries to a desired state that enables us to
reliably detect the branch outcome per the operation of the
prediction FSM (reverse engineered in the next section). To
maximize its efficiency, the randomizing code has to have
two properties. First, the executed branches must not con-
tain any regular patterns predictable by the 2-level predictor.
To this end, the directions of branches in the code are ran-
domly picked with no inter-branch dependencies. Second,
the code must affect a large number of entries inside the
PHT. This is accomplished by executing a large number of
branch instructions and randomizing memory locations of
the these instructions by either placing or not placing a NOP
instruction between them. The outcome patterns are ran-
domized only once (when the block is generated) and are not
re-randomized during execution. These manipulations with
the branch predictor must be performed before the victim
executes the target branch (during stage 1 of the attack).
The total number of branch instructions needed to be

executed in this manner depends on the size of BPU’s inter-
nal data structures on a particular CPU. We experimentally
discovered that executing 100,000 branch instructions is suf-
ficient to randomize the state of most PHT entries and to
effectively disable the 2-level predictor. An example of such
a code is presented in Listing 1. Reducing the size of this
code is a topic of future research; for example, if we focus
only on evicting a particular branch, we may be able to come
up with a shorter sequence of branches that map to the same
PHT and replace that entry.

randomize_pht:
cmp %rcx, %rcx;
je .L0; nop; .L0: jne .L1; nop; .L1: je .L2;
............
.L99998: je .L99999; nop; .L99999: nop;

Listing 1. Pseudo-code of the spy program. je and jne are
randomly selected, achieving random pattern of taken and
not-taken branches

6 Attack Capability II: Prime Probe
Strategy

Having developed a reliable approach to establish collisions
between the attacker and the victim, the next task is to un-
derstand the operation of the prediction logic to develop
a prime-probe strategy that enables us to infer the victim
branch direction. The attack should prime the PHT entry be-
fore the victim branch and probe it after the branch to infer
the branch direction. At the core of the predictor structures
are a set of Finite State Machines (FSM) that produce the pre-
diction decision. Typically, one of these FSMs is maintained
for every entry in the PHT table. Both the 1-level and 2-level
predictor in a combined predictor structure use the same
FSM logic and possibly even the same PHT differing only in
the indexing function to the PHT.

6.1 Understanding the prediction logic
We begin with a hypothesis that each PHT entry consists of
a textbook two-bit saturating counter FSM with four states:
strongly taken (ST), weakly taken (WT), weakly not taken
(WN) and strongly not taken (SN). We generate several
branch instructions targeting the same PHT and observe
the resulting predictions (Figure 3). We note that the actual
implementation of the state machine on these processors is
unknown and can be more complex. For example, the imple-
mentation may include additional state transfers and may
rely on inputs from other CPU data structures. However, we
discovered that the behavior of the branch predictors on the
processors is consistent with this simple textbook model.
Consider the following three steps in which a single test

branch with no previous history is executed within one pro-
cess. This essentially mimics our three attack stages, but
within the same process. First, we execute the aforemen-
tioned branch instruction three times to prime the corre-
sponding PHT entry by placing it into one of the strong
states (either ST or SN). Second, we execute the same branch
one more time with both taken and not-taken outcomes (in
two separate trials). This is called the target stage, similar
to stage 2 of the attack. Finally, we execute the same branch
two more times detecting mispredictions (we call it the prob-
ing stage, similar to stage 3 of the attack). During this stage,
we also record the prediction accuracy for each of the two
probing branches.

Table 1 depicts our observations for all possible cases. For
example, consider the case when the branch in question
was executed three times with not-taken outcome (the prime
stage). The expectation is that this activity will shift the FSM
to the SN state. When the branch is executed once with taken
outcome in the target stage, the FSM is switched to the WN
state. Finally, the branch is executed two more times with
taken outcome during the probing stage. In this case, the first
branch executed in the probing stage will be mispredicted,
while the second branch will be predicted correctly. In con-
trast, if the branch in the target stage was not-taken, the FSM
would stay in the SN state. In that case, both branches in
the probe stage would be mispredicted. Therefore, by observ-
ing the difference in the prediction outcomes for the two
branches in the probing stage, the attacker can determine
the direction of the victim’s branch in the target stage. This
is the key observation exploited by BranchScope.

T T T T

STWT

NN N N

SN WN

Strong states

Weak states

Figure 3. Two-bit FSM with four states: SN – strongly not
taken, WN – weakly not taken, WT – weakly taken, ST –
strongly taken

Prime State
after
Prime

Target State
after
Target

Probe Observation

TTT ST T ST TT HH
TTT ST T ST NN MM
TTT ST N WT TT HH
TTT ST N WT NN MH1

NNN SN T WN TT MH
NNN SN T WN NN HH
NNN SN N SN TT MM
NNN SN N SN NN HH

Table 1. FSM transitions for a single PHT entry. The entry
is set into one of the strong states in the prime stage, a
branch is executed once in the target stage, and the resulting
state is recorded using performance counters in the probing
stage. MM – two mispredictions in the probing stage, MH
– misprediction followed by a hit (correct prediction) in the
probing stage

According to Table 1, it is possible to determine a PHT
state by performing two individual probes with the same
branch instruction, with taken and with not-taken outcomes.
For example, assume that the observed prediction pattern of
the two probing branches is two hits (HH)when probingwith
two taken branches (TT) and two mispredictions (MM) when
probing with two non-taken branches (NN). In this case, we
can conclude that the PHT entry in question is located in

the strongly taken (ST) state (rows 1 and 2 in Table 1). Note
that a peculiarity that we discovered in Skylake processors
makes the strongly taken (ST) and weakly taken (WT) states
indistinguishable on that processor. However, this limitation
does not prevent recognizing the other states. It also does
not prevent BranchScope attack on Skylake since the attacker
can always pick a PHT randomization code that places the
target PHT entry into a state without such ambiguity.

6.2 Setting and probing predictor state
Executing the block of random branch instructions (Listing 1)
allows the attacker to force the victim code to use 1-level
predictor, as we discussed in previous section. However, a
carefully selected randomization code can also serve to prime
the targeted PHT entry into a state required by the attacker.
To better understand the nature of PHT randomization

and the effects of system noise, and select appropriate ran-
domization code for our attack to reliably place the PHT
entries into the attacker-specified state, we performed an
experiment composed of 10 000 iterations. In each iteration,
we generated a new randomization code block and then per-
formed the following activities 1 000 times: a) executed the
generated block of branches, b) performed a PHT probing
operation for a fixed address. For probing operation, we con-
sidered two scenarios: 1) two taken branches, and 2) two
non-taken branches. For every iteration, we collected 1 000
measurements for each probing pattern and determined sta-
tistical distribution of the PHT states.

To collect the statistical profiles, we only accounted for the
iterations that produced stable PHT states. We assumed that
the results are stable if the most frequent prediction pattern
in both variations of the probing code occurs more than
85% of the time (out of 1 000 executions). Again, the state
of a PHT entry is not always the same after executing the
same randomization code due to the various system effects.
The results show that most randomly generated blocks of
branch code produce stable PHT state, the distribution of
patterns for both variations of probing code (along with cut-
off point) is shown in Figure 4a. Each point on the graph
represents the percentage of the most frequent prediction
pattern of the probing code for each PHT randomization code
block (each iteration of the experiment). Each iteration is
depicted by a point on the graph, where the x-axis represents
the percentage of the most frequent prediction pattern for
the TT probing code, while the y-axis represents the most
frequent prediction pattern for the NN probing code. As seen
from the graph, 83% of all randomized code blocks result in
stable dominant prediction patterns for both probing code
sequences. The stable patterns can be translated into one
of the FSM states of the PHT entry targeted by the probing
branch address using Table 1. However, when the prediction

1MH is observed on Haswell and Sandy Bridge, while MM is observed on
Skylake

patterns are not stable (the most frequent pattern appears
less than 85% of times for either of the probing combinations)
we assume that this particular iteration of the experiment
is too noisy due to the various system-level effects on the
predictor, such as the invocation of the 2-level predictor, or
a different PHT state inherited by the randomizing code due
to some intermittent processing). In this case, we consider
the measurements to be unreliable and too noisy, and drop
this particular iteration from our collected statistics. In the
following piechart, we classify these cases as unknown.
Figure 4b depicts the distribution of the decoded PHT

states for the PHT entry targeted by the probing branches. In
addition to the four standard stable states with their distinct
patterns, we observed another pattern with a stable behavior.
This additional pattern consists of two correct predictions
(HH) in the probing code regardless of the type of probing.
Such a pattern indicates that the PHT randomization code
has no effect on the target branch and the BPU can always
produce a correct prediction. This likely indicates 2-level
predictor is used for this branch. We refer to this case as
dirty.
To implement BranchScope, the attacker needs to ensure

that at the time of victim’s execution of stage 2 of the attack,
the PHT entry corresponding to the target branch is in the
state desired by the attacker. The attacker cannot simply
set this state at will, because she needs to execute the PHT
randomization code at the end of stage 1, which resets the
entire PHT. However, the attacker can randomly generate
the blocks of code that randomize the PHT until the block is
found that leaves the target PHT entry in the desired state,
using the analysis above. Finding the appropriate random-
ization code is a one-time effort by the attacker and can be
performed during the pre-attack stage. This is a key element
of BranchScope.
We can now create a mapping between the predictor be-

havior and the direction of the branch in the target stage.
The main conclusion is that it is possible for a process to de-
termine the direction of the target branch only by examining
whether the two probing branches were correctly predicted
or not.

6.3 Discussion and Extensions
Knowing the states of PHT entries associated with different
memory addresses potentially allows the attacker to spy on
multiple branch instructions in victim process in a single
episode of execution. To pursue such an aggressive attack,
the adversary needs to understand some details of the PHT
organization. To this end, we performed the following ex-
periment.

First, we execute the randomization code to set the initial
state of the PHTs. Next, for a given range of virtual addresses,
we place a branch instruction at each address and execute
these branches. Finally, we evaluate the state of the PHT
entry corresponding to the virtual address at which each

30 40 50 60 70 80 90 100
TT Probing

30

40

50

60

70

80

90

100

NN
 P

ro
bi

ng

(a)

Unknown

18.5%

Dirty
4.9%

ST

23.9%

WT

14.9%

WN

14.3%

SN

23.4%

(b)

Figure 4. Distribution of PHT States

branch instructions was placed. The PHT state was deter-
mined in a similar way as in our previous experiment, using
the dictionary that translates the prediction outcomes of the
probing code to the PHT state. This experiment allows us
to probe the entire PHT. Figure 5a demonstrates the results
when the branch instruction was placed in the range of vir-
tual addresses from 0x300000 to 0x30010f. As can be seen
from the figure, two adjacent addresses can be in different
states. This experiment shows that the granularity of PHT’s
indexing function is a single byte.

The PHT probing data can be used to discover the size of
PHT. Assuming the PHT index is calculated with a simple
modulo operation, the task of reverse-engineering the PHT
size is trivial. The observed patterns repeat after each N
addresses, where N is the size of the PHT. We use this insight
to discover the PHT size on our experimental machine. All
measured states are presented as a vector of states:
V = [v0, . . . ,vn] | vi ∈

{
ST,WT,WN, SN,Unk.,Dirty

}
(1)

The vector V can be split into equal-length subvectors of
sizew . We refer tow as the window size. Then, Sw is the set
containing all subvectors of sizew :

Sw =
{
[vzw , . . . ,v (z+1)w−1] | 0 ≤ z <

|V |

w

}
(2)

The function H (w) represents the mean of Hamming dis-
tances computed over all possible pairs of subvectors in Sw :

H (w) =
1
n

∑
D (x) ∀x ∈

(
Sw
2

)
; n =

�����

(
Sw
2

) ����� (3)

where D (x) is the Hamming distance between two vectors.
Based on this, the size of the PHT can be defined as follows:

SizePHT = Min
(H (w)

w

)
∀w ∈

{
2, . . . ,

|V |

2

}
(4)

If the resulting function has several local minima, the value
with lowest value of w is selected. To find the size of PHT
we obtained measurements form 216 contiguous addresses.
Then we tested all possible window sizes from 2 to 216 and
computed the ratio H (w)

w . To speed up the process, instead

of trying all possible permutations, we computed Hamming
distances of 100 random permutations for each window size.
The results showing the minimal value of the ratio are pre-
sented in Figure 5b. Theminimal value is attained for window
size 214. Thus, we make a conclusion that the size of PHT is
16 384 entries. Figure 5c demonstrates the collected data in
the aligned form such that items in each rowmap to the same
PHT entries. The repeated pattern can be clearly observed.

0x300000-0x30000f
0x300010-0x30001f
0x300020-0x30002f
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
0x300100-0x30010f

-ST -WT -WN -SN

-Unknown -2level

(a)
16300 16350 16400 16450

Window size (W)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ha
m

m
in

g
di

st
an

ce
 ra

tio
 (H

/W
)

(b)

0x300000-0x30002e
0x304000-0x30402e
0x308000-0x30802e
0x30c000-0x30c02e

(c)

Figure 5. Demonstration PHT probing for a range of ad-
dresses and its alignment

7 Implementation of BranchScope
Based on the steps described above, in this section, we con-

struct and evaluate the actual attack. BranchScope consists
of a spy process that executes the prime (stage 1) and triggers
a victim process being attacked to execute (stage 2). The spy
then executes the probe (stage 3) to complete the attack. We
assume that the spy can slow down the victim process in or-
der to allow it to execute a single branch instruction during
the context switch. In such a scheduling scenario, the spy can
prime, then allow the victim to execute a single branch, and
then probe. In the standard case, this requirement can be met
using [26]. In the case of an SGX enclave, and many other
isolated execution solutions [12, 16, 17, 53] this requirement
is trivially met because the SGX threat model assumes the
attack controls the OS, and hence scheduling.
To demonstrate this attack, we first carry out a covert

channel experiment. First, we generate a large array of ran-
dom bits. This array is loaded to the address space of the
victim process (the spy does not have access to this array).
The victim repeatedly executes a branch instruction, whose
outcome depends on values stored in the array (as shown in
Listing 2). The relevant portions of the disassembled victim
code is presented in Listing 2(B). The branch is taken when
the value of the if condition is zero. The spy’s pseudo-code
is shown in Listing 3. The task of the spy is to determine

Original 0 1 1 1 1 1 0 1 1 0
Spy
Measurements

M
M

H
H

M
H

H
H

M
H

H
H

M
M

H
H

M
M

M
M

Decoded
Results

0 1 1 1 1 1 0 1 0 0
if(){

}

Victim

if(){

}

Spy

Direct
Pred

TNNNNNTNNT NN

Spy Dict: MM, HM – 0
MH, HH – 1MHMHMHMHMM

MHHHHHMHMM

Figure 6. Demonstration of BranchScope. The attacker pro-
cess primes and probes direction predictor, then uses the
dictionary to receive direction of the victim branch

int sec_data[]
= {1,0,1,1,..};
i = 0;
void victim_f(){
//Victim Branch
if(sec_data[i])
asm("nop;nop");
i++;
}

mov 0x601080(,%rax,4),%eax
test %eax,%eax
je 300006d <victim_f+0x6d>
nop
nop

(A) (B)

Listing 2. Pseudo-code of the Victim Program (A) and Dis-
assembly of the if-statement (B)

int probe_array [2] = {1, 1};//Not-taken
int main(){
for(int i = 0; i < N_BITS; i++){
randomize_pht();//(1)
usleep(SLEEP_TIME);//Wait for victim
spy_function(probe_arr); } }

void spy_function(int array [2]){
for(int i = 0; i < 2; i++){
a = read_branch_mispred_counter();
if(array[i])// <- Spy branch

asm("nop; nop; nop;");
b = read_branch_mispred_counter();
store_branch_mispred_data(b - a); } }

Listing 3. Pseudo-code of the attacker program

the contents of the secret array, based on the observed be-
havior of the branch predictor. The core of the spy program
is spy_function() which executes a single branch instruc-
tion (in the if statement) and records the prediction data
associated with that branch for future analysis. To achieve
a collision of the spy’s branch with the victim’s branch in-
side the PHT structure, we placed the two branch instruc-
tions at identical virtual addresses in both processes. This
ensures that when the BPU uses the 1-level predictor, the
two branches will be mapped to the same PHT entry. To
obtain more directions of the victim’s branches, the three
steps are repeated starting from executing the randomized

code block that places the PHT entry into a required initial
state and turns off 2-level prediction mechanisms.

The attacker process relies on hardware performance coun-
ters [51] for precise detection of correct and incorrect pre-
diction events. If access to the performance counters is not
available, timingmeasurements using the time stamp counter
can also be used as we discuss in the next section. The spy
extracts a sequence of branch misprediction values and de-
codes this sequence to determine the victim’s branch direc-
tion. For example, if the attacker observes a sequence of two
mispredicted branches or one correctly predicted and one
mispredicted branch, then the victim branch is detected as
taken, otherwise it is not-taken. An example of data leakage
across the covert channel is presented in Figure 6. The figure
also demonstrates an erroneously received bit. Note that the
dictionary of patterns that we use in this experiment is ex-
tended with rarely observed misprediction patterns in order
to include all four possible combinations.
To measure this error rate on the covert channel, we use

it to transfer 1 million bits, once with all bits set to 0, an-
other with all set to 1, and the third with randomly chosen
bit values. For each bit, we execute the branch condition
dependent on the bits value, either taken or not taken. The
attacker is scheduled on the same core as the victim process.
The bits collected by the attacker are compared with the
original bits and the error rate calculated. We performed this
experiment on three recent x86_64 processors from Intel —
Skylake, Haswell and Sandy Bridge — under two settings. In
the first setting, the benchmark was scheduled on an isolated
physical core, with no other user processes running. In the
second setting, no restrictions were set. Since each physical
core on our experimental machines has two hardware thread
contexts, other normal system activity was simultaneously
executed on the core in this noisy setting.
We performed the above experiment 10 times and com-

puted the average rates. The results are presented in Table 2.
BranchScope features excellent accuracy on both processors
with slightly better results on Skylake and Haswell. The Sky-
lake and Haswell processors showed very low error rate even
with the presence of external noise. This can be explained by
a larger size of the predictor tables in the improved branch
predictor design [46] when compared to the older Sandy
Bridge processor.

8 Detecting Branch Predictor Events with
Timestamp Counter

A key functionality required for the BranchScope attack is the
ability to detect branch predictor events. In Sec 7 we made
use of hardware performance counters to detect the missed
branches. This approach, relies on the hardware explicitly
providing the branch prediction result. In order to make use
of this, however, an attacker would need at least partially
elevated privileges.

All 0 All 1 Random
SL isolated 0.46% 0.51% 0.63%
SL with noise 0.64% 0.63% 0.74%
Haswell isolated 0.16% 0.27% 0.46%
Haswell with noise 0.37% 0.29% 0.67%
SB isolated 0.68% 1.76% 2.44%
SB with noise 1.76% 4.88% 3.38%

Table 2. Average error rate for transmitting bits using
BranchScope on Intel Skylake (SL), Haswell and Sandy Bridge
(SB) processors

An alternative approach is to detect branch related events
by observing their effect on the CPU performance. An incorrectly-
predicted branch results in fetching of wrong-path instruc-
tions and significant cycles lost for restarting the pipeline.
Therefore, the attacker can track the number of cycles to de-
termine if the branch was predicted correctly. This timekeep-
ing can be realized with rdtsc or rdtscp instructions on
Intel processors. These instructions provide user processes
with direct access to timekeeping hardware, bypassing sys-
tem software layers.
The BranchScope attack requires the attacker to detect

whether a single instance of a branch execution was cor-
rectly or incorrectly predicted, rather than relying on the
aggregate BPU performance. To evaluate the applicability of
the rdtscp instruction as a dependable measurement mech-
anism for the purposes of our attack, we performed a series
of experiments. First, we collected time measurements of
a single branch instruction when it is correctly and incor-
rectly predicted for two cases: taken branch and non-taken
branch. For each case, 100 000 samples were collected. The
resulting data, along with computed mean values, is pre-
sented in Figure 7. The case when the actual branch outcome
was not-taken is depicted in Figure 7a, while the case with
taken outcome is shown in 7b. As seen from the figures, a
branch misprediction has a noticeable performance impact,
and the effect is present regardless of the actual direction
of the branch. The slowdown is clear in the individual data
points, as well as in the mean values. To eliminate the impact
of caching on these measurements, we executed each branch
instance two times, but only recorded the latency during the
second execution, after the instruction has been placed in
the cache.
Specifically, we recorded the latencies of a single branch

instruction executed two consecutive times when the BP cor-
rectly predicts the outcome (prediction hit). We refer to this
measurements as H1 and H2. Then we performed the same
measurement for the case when the direction was mispre-
dicted. We refer to these measurements asM1 andM2. Since
the latency of a mispredicted branch must be higher that the
correctly predicted one, we can compute the branch event
detection error rate as the percentage of cases whenH1 > M1
or H2 > M2. We compute this error rate individually for the

(a) (b)

Figure 7. Latency (cycles) of a not-taken (a) and taken (b)
branch instruction

first the second measurements. In addition, to amortize the
noise, instead of relying on a single time measurement, we
collected multiple measurements and computed the mean
value. The results are presented in Figure 8. As expected,
the error rate is higher in the first measurement (due to
caching effects), within the range of 20-30%. The second
measurement has a low error rate of about 10% when a sin-
gle measurement is used and further reduces to almost 0 as
the number of measurements approaches 10.

These results demonstrate the feasibility of time measure-
ments using the rdtscp instruction as the branch event de-
tection mechanism. Even though correctly detecting events
in the first execution of a branch is challenging, it does not
affect the BranchScope attack, because the attacker can place
a PHT entry into a state that revels the outcome of the vic-
tim’s branch based only on the observations of the second
branch execution. To illustrate this, consider the case when
the state of the PHT entry associated with the victim branch
is strongly taken (ST) and the attacker uses non-taken branch
for probing. If the outcome of the victim’s branch is taken,
then the attacker will observe the MM pattern. When the
victim’s branch outcome is not-taken, the spy will observe
MH pattern. Therefore, to reveal the direction of the vic-
tim’s branch, only the observations from the second branch
execution is relevant.
Figure 9 demonstrates how different states of PHT entry

affect the timing of probing branches. The graph features
measurements for all four states and for both types of the
probing and also depicts the standard deviation for each
result. It is easy to see from the graph that the PHT states
can be reliably distinguished using time measurements.

9 Attack Applications of BranchScope
BranchScope can be directly leveraged to target a system that
supports isolated execution, such as Intel’s SGX [42], or be
used as a general side channel attack in conventional envi-
ronments. In this section, we first overview Intel SGX and
attack considerations in such an environment, then describe

1 3 5 7 9 11 13 15 17 19
Number of Measurements

0%

5%

10%

15%

20%

25%

30%

35%

Er
ro

r R
at

e

1st measurement 2nd measurement

Figure 8. Branch predictor event detection error rate as a
function of the number of RDTSCP measurements

ST(MM) WT(MH) WN(HH) SN(HH)0

20

40

60

80

100

120

140

160

La
te

nc
y

(m
s)

Probe with two not-taken branches
1st measurement
2nd measurement

ST(HH) WT(HH) WN(MH) SN(MM)0

20

40

60

80

100

120

140

La
te

nc
y

(m
s)

Probe with two taken branches
1st measurement
2nd measurement

Figure 9. Probe latency (both first and second measurement)
depending on the state of PHT

a series of specific attacks that can be conducted on a victim
even when it is running inside of an SGX enclave.

9.1 Overview of Intel SGX
Intel’s Software Guard Extensions (SGX) is a hardware-based
isolated execution system designed to protect application se-
crets from compromised system software, such as operating
system kernels and hypervisors.SGX extensions to the x86-
64 ISA offer applications a set of instructions which can be
used to launch a secure enclave that is embedded within the
address space of the application. Accesses to enclave mem-
ory are controlled by the SGX hardware to prevent access
from the outside of the enclave. Therefore, if an application
stores sensitive code and data inside an enclave, the secrets
are inaccessible to even system software.

In addition to providing runtime access control to enclave
memory pages, SGX supports mechanisms for memory en-
cryption and integrity checking to provide protection against
physical attacks on memory. SGX is a major effort from
the industry to provide hardware support for security and

All 0 All 1 Random
SGX with noise 0.008% 0.53% 0.73%
SGX isolated 0.003% 0.153% 0.51%

Table 3. Covert channel benchmark: average error rate for
transmitting bits using BranchScope on Intel Skylake when
a trojan (victim) executes in an SGX enclave and the spy is a
regular process assisted by the OS

trusted computing, and is currently the subject of a signifi-
cant amount of research.

Isolated execution environments such as SGX can be vul-
nerable to side channel attacks. While memory is protected,
many CPU hardware resources still remain shared between
enclave and non-enclave code. The side-channel threat in
an isolated execution context may be even more serious
for two reasons. First, users tend to place more trust in sys-
tems claiming advanced security features [5]. Second, the
threat model assumes that the attacker has full control over
system software. This means that the attacker has full con-
trol over scheduling an enclave, the ability to control noise
from prefetchers, caches, as well as other workloads. The
OS can also control other parameters such as the CPU core
frequency, page translation, low-level performance counters
andmany other functionswhich otherwise add noise. Several
recent works have studied this problem in detail. For exam-
ple, Moghimi et al. [44] investigated how SGX can “amplify”
known cache attacks, making isolated entities extremely vul-
nerable to such attacks. Schwarz et al. [47] demonstrated
how SGX can be used to conceal cache attacks, making anti-
malware software, even one running at the kernel level, in-
capable of detecting cache side-channel attacks. Finally, SGX
enclaves were shown to be vulnerable to traditional cache
side-channel attacks [22] as well as some new attacks unique
to SGX, in particular page table side-channel attacks [54].

9.2 BranchScope attack scenarios
In an SGX environment, the control over the OS gives the at-
tacker unique capabilities to perform the BranchScope attack
in a low-noise environment. The success of the attack largely
depends on the ability to perform branch manipulations with
precise timing. The attacker controlled OS can easily manip-
ulate victim execution timings. For example the attacker can
configure the Advanced Programmable Interrupt Controller
(APIC) in such a way that enclave code is interrupted after
several instructions are executed [35]. Alternatively, the at-
tacker can unmap certain memory pages to force a interrupt
when an enclave executes certain code [54].

Covert channel attack on SGX: To illustrate BranchScope
in an SGX environment, we repeat our covert channel bench-
mark with the sender running inside the SGX enclave using
BranchScope to communicate to a receiver outside SGX. Ta-
ble 3 illustrates BranchScope’s covert channel quality: the

error rates are acceptable even in the presence of noise; how-
ever, when the OS controls the noise (by preventing other
processes from running), the quality of the channel is im-
proved.

Next we overview other examples of applications that can
be attacked using BranchScope. The attacks would work
whether these applications are running as usual or inside of
an SGX enclave.

Montgomery ladder: The Montgomery ladder is a popular
algorithm used in modular exponentiation [32] and scalar
multiplication [45] algorithms. Both these mathematical op-
erations constitute the key components of traditional RSA as
well as elliptic curve (ECC) implementations of public-key
cryptography. Montgomery ladder is based on performing
operations regardless of bit value ki in secret key k . This
implementation mitigates timing and power side channels
by equalizing the execution paths. However it requires a
branch operating with direct dependency from the value
of ki . Yarom et. al. [55] demonstrated the vulnerability of
the OpenSSL implementation of ECDSA cipher using the
FLUSH+RELOAD cache side channel attack. In this attack
the CPU cache was used to spy on the direction of the tar-
get branch. BranchScope can directly recover the direction
of such branch. Although most recent versions of crypto-
graphic libraries do not contain branches with outcomes
dependent directly on the bits of a secret key, often some
limited information can still be recovered [6, 8] and many
outdated libraries are still in use.

libjpeg: Another example of how our attack can reveal sen-
sitive information is an attack against libjpeg, a popular JPEG
encoding/decoding library. The attack is possible because of
the inverse cosine transform (IDCT) operation performed
during decompression. In this optimization elements in rows
and columns of coefficient matrices are compared to 0 to
avoid costly computations. Each such comparison is real-
ized as an individual branch instruction. By spying on these
branches the BranchScope is capable of recovering infor-
mation about relative complexity of decoded pixel blocks.
Attacks on libjpeg were previously demonstrated using the
page fault side channel [27, 54] by counting the number of
times the optimization can be applied, resulting in recovery
of an original image. The BranchScope attack is advanta-
geous as it not only allows to distinguish the cases when
all row/column elements are zero, but also indicates which
element is not equal to zero.

ASLR value recovery: BranchScope can also be used to infer
control code within victim enclaves. The attacker may learn
not only whether a certain branch was taken or not, but also
detect the location of branch instruction in a victim’s vir-
tual memory by observing branch collisions. This allows the
attacker to bypass the address space layout randomization

(ASLR) protection. Previously, similar attacks were demon-
strated using the BTB [21, 35]. As indicated by Gruss [23]
the BTB-based attack does not work on recent Intel’s proces-
sors. This makes the direction predictor a unique candidate
for this class of attacks.

10 Mitigating BranchScope
The root cause of branch-based attacks is the execution of
branch instructions that are conditioned on the state of secret
data. Our goal in this paper is to highlight this new source of
leakage in a branch predictor unit as a source of vulnerability.
In this section, we overview several possible defenses against
BranchScope both in software and hardware. Exploring these
defenses is an interesting direction for future research.

10.1 Software-only Mitigations
Software-only solutions can be highly sensitive to the under-
lying organization of the branch predictor unit. In addition
to the side channel threat, malicious entities can commu-
nicate between each other using BranchScope, bypassing
existing restrictions. For example, a sealed SGX enclave can
transfer sensitive information to regular process violating
security properties of the SGX system. Software mitigation
techniques cannot provide protections from covert channels
as they do not remove the source of leakage in hardware,
leaving attackers free to use it to communicate covertly.
One possible mitigation technique is to algorithmically

remove dependencies of branch outcomes on secret data [3].
However, it is challenging to apply such protection to large
code bases, thus this mechanism can only be limited to the
key parts of programs operating with sensitive data.

Another possible approach that has a broader applicability
is to eliminate conditional branches from target programs.
This technique, known as if-conversion [10], is a compiler
optimization that converts conditional branches to sequen-
tial code using conditional instructions such as cmov, effec-
tively turning control dependencies into data dependencies.
If-conversion removes conditional branch instructions, thus
mitigating the BranchScope attack. Several studies [9, 11]
used if-conversion as a mitigation for timing side-channel
attacks. It is easy to apply this method to simple branches
with few dependencies. However, conversion of complex
control flow (different code is executed depending on branch
outcomes) is challenging. It is unknown if it possible to con-
vert real-world applications to branch-free code. Moreover,
highly-predictable branches typically perform worse when
if-converted [10].

10.2 Hardware-supported Defenses
The design of the branch predictor mechanism can be rearchi-
tected to mitigate leakage through the directional branch

predictor unit. In this section, we overview several possi-
ble such mitigations. Exploring effective mitigations is an
interesting direction for future research.

Randomization of the PHT: BranchScope requires the
ability to create predictable collisions in the PHT (e.g., based
on virtual address). To prevent such collisions, the PHT in-
dexing function can be modified to receive as input some
data unique to this software entity. For example, this can
be part of the SGX hardware state, or simply some random
number generated by the process. One time randomization
may be vulnerable to a probing attack that examines PHT
entries one by one until it finds the collision; periodic ran-
domization can be used (sacrificing some performance). This
solution is similar to randomizing the mapping of caches as
a protection against side-channel attacks [52].

Removing prediction for sensitive branches Since not
all branch instructions can leak sensitive information, a mit-
igation approach can be taking favoring this observation.
A software developer can indicate the branches capable of
leaking secret information and request them to be protected.
Then the CPU must avoid predicting these branches, rely
always on static prediction and avoid updating any BPU
structures after such branches are executed. Although this
mitigation technique has a negative performance overhead
it offers perfect security for most security sensitive branches.
As with the software techniques, this method does not pro-
tect again ts the covert channel attack.

Partitioning the BPU The BPU may be partitioned such
that attackers and victims do not share the same structures.
For example, SGX code may use a different branch predictor
than normal code. Alternatively, mechanisms to request a
private partition of the BPU may be supported [37]. With
partitioning, the attacker loses the ability to create collisions
with the victim.

Other solutions. Other solutions are also possible. For ex-
ample, we may remove the attacker’s ability to measure
the outcome of a branch accurately, by removing or adding
noise to the performance counters or the timing measure-
ments [39]. Another solutionmay change the prediction FSM
to make it more stochastic, interfering with the attacker’s
ability to precisely infer the direction of the branch taken
by the victim. Finally, a class of solutions may focus on de-
tecting the attack footprint and invoking mitigations such
as freezing or killing the attacker process if an ongoing at-
tack is detected. In an SGX context where the attacker has
compromised the OS this may be difficult; alternatively, the
SGX code may decide to remap itself or stop execution if it
detects an ongoing attack.

11 Related Work
The first research studying branch predictor based side-
channels was conducted by Aciicmez et al. [1–3]: they pre-
sented four different attacks, demonstrating them against
implementations of the RSA encryption standard. The first
attack exploits the deterministic behavior of the branch pre-
dictor by simulating the exponentiation steps and measuring
the time differences that depend on the prior state of the
predictor. The second attack assumes that the spy process
runs on a parallel virtual core alongside with the victim. The
spy constantly removes the victim’s entries from the BTB in
order to force the branch predictor to predict all branches
as not-taken (assuming that BTB misses result in not-taken
predictions). The third attack is also based on the spy fill-
ing the BTB with its own data. The main difference here is
that this attack is synchronous, meaning that the attacker
can perform the BTB filling right before the target branch
is executed. Finally, in the last attack, the spy also executes
in parallel and fills the BTB, but this time instead of measur-
ing the total execution time of the cryptographic algorithm,
the spy detects evictions of its BTB entries when the victim
process executes taken branches. They later significantly
improved the last attack’s accuracy by carefully adjusting
the intensiveness of the BTB filling. This attack is most in-
teresting due to the demonstrated practical results with high
accuracy.
All attacks described above are substantially different

from BranchScope. All but the first attack (which is a timing-
analysis attack) rely on filling the BTB (which is a cache-like
structure) and thus are similar to the cache side-channel at-
tacks [38, 56]. This makes it possible to apply existing cache
protection techniques [14, 52] to protect the BTB. In con-
trast, BranchScope exploits the hybrid property of modern
branch predictors and manipulates the data directly in the
directional predictor, thus opening up a previously unex-
plored side-channel. Branch predictors have been used for
constructing covert channels in [19, 20, 29]. However, these
works rely on the did not investigate the possibility of fine-
grained branch direction recovery. Bhattacharya et al.[7]
considered a fault attack on RSA combined with the analysis
of the number of branch mispredictions.

Recent works exploited microarchitectural features to con-
struct covert channels [18, 40]. These channels allow attack-
ers to bypass system isolation, including Intel SGX [25]. As
we demonstrated, BranchScope can be used in a similar fash-
ion to transfer information across isolation boundaries.

12 Concluding Remarks
In this paper we presented BranchScope — a new micro-
architectural side-channel attack that exploits directional
branch predictor to leak secret data. We demonstrated the
attack on recent Intel processors. Our results showed that

secret bits can be recovered by the attacker with very low er-
ror rate and without the knowledge of the internal predictor
organization. Therefore, researchers and system developers
have to consider BranchScope as a new security threat while
designing future systems. We proposed several countermea-
sures to protect future systems from BranchScope.

13 Acknowledgments
This paper was made possible by NPRP grant 8-1474-2-626
from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the re-
sponsibility of the authors.

References
[1] O. Aciicmez, K. Koc, and J. Seifert. On the power of simple branch

prediction analysis. In Symposium on Information, Computer and
Communication Security (ASIACCS). IEEE, 2007.

[2] O. Aciicmez, K. Koc, and J. Seifert. Predicting secret keys via branch
prediction. In The cryptographers’ track at the RSA conference, 2007.

[3] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch
prediction vulnerabilities in OpenSSL and necessary software coun-
termeasures. In Cryptography and Coding, pages 185–203. Springer,
2007.

[4] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol,
and Yuval Yarom. Amplifying side channels through performance
degradation. In Proceedings of the 32nd Annual Conference on Computer
Security Applications, pages 422–435. ACM, 2016.

[5] Iosif Androulidakis and Gorazd Kandus. Feeling secure vs. being secure
the mobile phone user case. In Global security, safety and sustainability
& e-Democracy, pages 212–219. Springer, 2012.

[6] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruin-
derink, Nadia Heninger, Tanja Lange, Christine van Vredendaal, and
Yuval Yarom. Sliding right into disaster: Left-to-right sliding win-
dows leak. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 555–576. Springer, 2017.

[7] Sarani Bhattacharya and DebdeepMukhopadhyay. Fault Attack reveal-
ing Secret Keys of Exponentiation Algorithms from Branch Prediction
Misses. Cryptology ePrint Archive, Report 2014/790, 2014.

[8] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[9] Jonathan Burket and Samantha Gottlieb. If-Conversion to Combat
Control Flow-based Timing Attacks. 2014.

[10] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. The
impact of if-conversion and branch prediction on program execution
on the intel® itanium processor. In Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, pages 182–
191. IEEE Computer Society, 2001.

[11] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn
De Sutter. Practical mitigations for timing-based side-channel attacks
on modern x86 processors. In Security and Privacy, 2009 30th IEEE
Symposium on, pages 45–60. IEEE, 2009.

[12] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:Minimal
Hardware Extensions for Strong Software Isolation. InUSENIX Security
Symposium, pages 857–874, 2016.

[13] Jean-Francois Dhem, Francois Koeune, Philippe-Alexandre Leroux,
Patrick Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. A
practical implementation of the timing attack. In Smart Card Research
and Applications, pages 167–182. Springer, 2000.

[14] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev.
Non-Monopolizable Caches: Low-Complexity Mitigation of Cache
Side-Channel Attacks. In ACM Transactions on Architecture and Code

Optimization, Special Issue on High Performance and Embedded Archi-
tectures and Compilers, January 2012.

[15] Marius Evers, Po-Yung Chang, and Yale N Patt. Using hybrid branch
predictors to improve branch prediction accuracy in the presence
of context switches. In ACM SIGARCH Computer Architecture News,
volume 24, pages 3–11. ACM, 1996.

[16] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev,
Nael Abu Ghazaleh, and Ryan Riley. Iso-X: A flexible architecture
for hardware-managed isolated execution. In Proceedings of the 47th
Annual IEEE/ACM International Symposium onMicroarchitecture, pages
190–202. IEEE Computer Society, 2014.

[17] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry V Ponomarev,
Nael Abu Ghazaleh, and Ryan Riley. Flexible hardware-managed
isolated execution: Architecture, software support and applications.
IEEE Transactions on Dependable and Secure Computing, 2016.

[18] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation and mit-
igations. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 843–857. ACM, 2016.

[19] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Covert channels through branch predictors: a feasibility study. In
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy, page 5. ACM, 2015.

[20] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and Mitigating Covert Channels Through Branch Predic-
tors. ACM Transactions on Architecture and Code Optimization (TACO),
2015.

[21] Dmitry Evtyushkin, Dmitry Ponomarev, andNael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. InMicroarchi-
tecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on, pages 1–13. IEEE, 2016.

[22] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, , and TiloMüller.
Cache Attacks on Intel SGX. 2017.

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémen-
tine Maurice, and Stefan Mangard. KASLR is Dead: Long Live KASLR.
In International Symposium on Engineering Secure Software and Systems,
pages 161–176. Springer, 2017.

[24] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 368–379. ACM, 2016.

[25] Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian
Lettner, and Manuel Costa. Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory. 2017.

[26] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice. In Security and
Privacy (SP), 2011 IEEE Symposium on, pages 490–505, 2011.

[27] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-Resolution
Side Channels for Untrusted Operating Systems. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 299–312, Santa
Clara, CA, 2017. USENIX Association.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 191–205. IEEE, 2013.

[29] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sri-
ram Vishwanath, and Mohit Tiwari. Understanding contention-based
channels and using them for defense. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on, pages
639–650. IEEE, 2015.

[30] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 380–392. ACM, 2016.

[31] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with
perceptrons. In High-Performance Computer Architecture, 2001. HPCA.
The Seventh International Symposium on, pages 197–206. IEEE, 2001.

[32] Marc Joye and Sung-Ming Yen. The Montgomery powering ladder.
In Cryptographic Hardware and Embedded Systems-CHES 2002, pages
291–302. 2002.

[33] Mehmet Kayaalp, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In De-
sign Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pages
1–6. IEEE, 2016.

[34] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution.
ArXiv e-prints, January 2018.

[35] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In Usenix Security Symposium, 2017.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.

[37] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Ger-
not Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on, pages
406–418. IEEE, 2016.

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-Level Cache Side-Channel Attacks are Practical. In 36th IEEE
Symposium on Security and Privacy (S&P 2015), 2015.

[39] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. ACM SIGARCH Computer Architecture
News, 40(3):118–129, 2012.

[40] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: cross-cores cache covert channel. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 46–64. Springer, 2015.

[41] Scott McFarling. Combining branch predictors. Technical report,
Technical Report TN-36, Digital Western Research Laboratory, 1993.

[42] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Inno-
vative instructions and software model for isolated execution. HASP@
ISCA, 10, 2013.

[43] Pierre Michaud, André Seznec, and Richard Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. In ACM SIGARCH
Computer Architecture News, volume 25, pages 292–303. ACM, 1997.

[44] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX Amplifies The Power of Cache Attacks. arXiv
preprint arXiv:1703.06986, 2017.

[45] ThomazOliveira, Julio López, and Francisco Rodríguez-Henríquez. The
Montgomery ladder on binary elliptic curves. Journal of Cryptographic
Engineering, pages 1–18, 2017.

[46] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch
prediction and the performance of interpreters: don’t trust folklore.
In Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 103–114. IEEE Computer
Society, 2015.

[47] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware Guard Extension: Using SGX to Conceal
Cache Attacks. arXiv preprint arXiv:1702.08719, 2017.

[48] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM conference on Computer
and communications security (CCS), pages 298–307, 2004.

[49] James E Smith. A study of branch prediction strategies. In Proceedings
of the 8th annual symposium on Computer Architecture, pages 135–148.
IEEE Computer Society Press, 1981.

[50] Eric Sprangle, Robert S Chappell, Mitch Alsup, and Yale N Patt. The
agree predictor: A mechanism for reducing negative branch history
interference. InACM SIGARCHComputer Architecture News, volume 25,
pages 284–291. ACM, 1997.

[51] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting
hardware performance counters. In Fault Diagnosis and Tolerance
in Cryptography, 2008. FDTC’08. 5th Workshop on, pages 59–67. IEEE,
2008.

[52] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting
software cache-based side channel attacks. InACMSIGARCHComputer
Architecture News, volume 35, pages 494–505. ACM, 2007.

[53] Johannes Winter. Trusted computing building blocks for embedded
linux-based ARM trustzone platforms. In Proceedings of the 3rd ACM
workshop on Scalable trusted computing, pages 21–30. ACM, 2008.

[54] Yuanzhong Xu,Weidong Cui, andMarcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In Security and Privacy (SP), 2015 IEEE Symposium on, pages 640–656.
IEEE, 2015.

[55] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryp-
tology ePrint Archive, 2014:140, 2014.

[56] Yuval Yarom and Katrina E Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. IACR Cryptology ePrint
Archive, 2013:448, 2013.

[57] Tse-Yu Yeh and Yale N Patt. Two-level adaptive training branch pre-
diction. In Proceedings of the 24th annual international symposium on
Microarchitecture, pages 51–61. ACM, 1991.

	Abstract
	1 Introduction
	2 Background: Branch Predictor Unit
	3 Threat Model and Attacker Capabilities
	4 BranchScope Attack Overview
	5 Attack Capability I: Establishing collisions by controlling selection logic
	5.1 Understanding the Selection Logic
	5.2 Forcing usage of the 1-level predictor

	6 Attack Capability II: Prime Probe Strategy
	6.1 Understanding the prediction logic
	6.2 Setting and probing predictor state
	6.3 Discussion and Extensions

	7 Implementation of BranchScope
	8 Detecting Branch Predictor Events with Timestamp Counter
	9 Attack Applications of BranchScope
	9.1 Overview of Intel SGX
	9.2 BranchScope attack scenarios

	10 Mitigating BranchScope
	10.1 Software-only Mitigations
	10.2 Hardware-supported Defenses

	11 Related Work
	12 Concluding Remarks
	13 Acknowledgments
	References

