
CSci 426 — Simulation — Spring 2021
Examples

To help you get a sense of my expectations, enclosed are (partial) solutions to three typical
exercises. These three exercises illustrate the range of “solution types” you will be expected
to produce.

• exercise 1.2.2: This is a multi-part exercise that requires a modify-an-existing-
program, do-some-computing, and explain-what-you-did solution. Note the explicit
reference to relevant material in the text. As an alternative to the in-line format used
to discuss how program ssq1 was modified, you could provide a printed copy of the
(complete) modified program with a highlighting marker used to clearly identify the
modifications.

• exercise 1.2.4: This is a prove/demonstrate/show mathematical exercise that requires
(of course) a mathematical solution.

• exercise 2.1.1: This is a multi-part exercise that requires a little bit of math and a
build-from-scratch program with corresponding numerical results. Note that a printed
copy of the program is included as part of the solution. Note also the explicit reference
to relevant material in the text.

You will note that all the solutions are typeset in LaTex.



Exercise 1.2.2

(a) Modify program ssq1 to output the additional statistics l̄, q̄ and x̄. (b) Similar to
example 1.2.8, use this program to compute a table of l̄, q̄ and x̄ for traffic intensities of
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2. (c) Comment on how l̄, q̄ and x̄ depend on the traffic
intensity. (d) Relative to examples 1.2.8 and 1.2.9, if it is decided that q̄ greater than
5.0 is not acceptable, to d.dd precision what systematic increase in service times would be
acceptable?

(a) The modification is based on the equations in theorem 1.2.1 or, equivalently, Little’s
equations (see page 1.2.9). In particular, relative to these equations, when program ssq1

terminates there will be the following correspondence between mathematical quantities and
program variables

cn ←→ departure∑n
i=1wi ←→ sum.wait∑n
i=1 di ←→ sum.delay∑n
i=1 si ←→ sum.service.

Because

l̄ =
(
n

cn

)
w̄ =

1

cn

n∑
i=1

wi

with analogous equations for q̄ and x̄, it follows that the only modification that must be
made to program ssq1 to output l̄, q̄ and x̄ is the addition of the following three printf

statements

printf("average nbr in the node .... = ", sum.wait / departure);

printf("average nbr in the queue ... = ", sum.delay / departure);

printf("utilization ................ = ", sum.service / departure);

(b) Using the data in the file ssq1.dat produces a traffic intensity of s̄/r̄ ' 0.721. To change
the traffic intensity to a specific value, say ρ, we can multiply each service time by ρ/0.721.
At the expense of needing to re-compile each time ρ is changed, the easiest way to accomplish
this modification to program ssq1 is to add the line

• #define FACTOR (0.7 / 0.721)

to the beginning of the program (for ρ = 0.7), and modify the function GetService

by changing the return to

• return(FACTOR * s);



With these changes to program ssq1, the following table of results is produced

traffic intensity x̄ q̄ l̄
0.60 0.60 0.96 1.56
0.70 0.70 1.68 2.38
0.80 0.80 2.99 3.79
0.90 0.90 7.49 8.39
1.00 0.99 25.85 26.84
1.10 1.00 69.44 70.44
1.20 1.00 105.86 106.86

(c) Etc.

(d) Etc.



Exercise 1.2.4

Complete the proof of theorem 1.2.1.

The solution to this exercise is based on the proof/derivation of the “wait” equation on
page 1.2.9, modified to handle the “delay” and “service” equations.

To derive the delay equation, for each job i = 1, 2, . . . , n define a delay indicator function
θi(t) that is 1 when the ith job is in the queue and is 0 otherwise

θi(t) =
{

1 ai < t < bi
0 otherwise.

Then the number in the queue at time t is

q(t) =
n∑

i=1

θi(t) 0 < t < cn

and so ∫ cn

0
q(t) dt =

∫ cn

0

n∑
i=1

θi(t) dt =
n∑

i=1

∫ cn

0
θi(t) dt =

n∑
i=1

(bi − ai) =
n∑

i=1

di.

The service equation can be derived in a similar way. Or, as an alternative, note that
l(t) = q(t) + x(t) for 0 < t < cn and wi = di + si for 1 = 1, 2, . . . , n so that we can use the
wait and delay equations to derive the service equation, as illustrated∫ cn

0
x(t) dt

∫ cn

0
x(t) dt =

∫ cn

0
(l(t)− q(t)) dt

=
∫ cn

0
l(t) dt−

∫ cn

0
q(t) dt

=
n∑

i=1

wi −
n∑

i=1

di

=
n∑

i=1

(wi − di)

=
n∑

i=1

si.



Exercise 2.1.1

For the tiny Lehmer generator defined by g(x) = ax mod 127, find all the full-period mul-
tipliers. (a) How many are there? (b) What is the smallest one? (a) Because the prime
factorization of m− 1 = 126 is 2 · 32 · 7 and because

(2− 1)(3− 1)(7− 1)

2 · 3 · 7
(2 · 32 · 7) = 36

from theorem 2.1.3 we know that there are 36 full-period multipliers.

(b) Provided the program parameter A is a full-period multiplier, the enclosed program,
based on algorithms 2.1.1 and 2.1.2, generates and prints (“finds”) all of the 36 full-period
multipliers. (If A is not a full-period multipler the program will produce no output.) By
inspection of the output we see that 3 is the smallest full-period multiplier.

/*

* exercise 2.1.1

*

* the output is ...

*

* 3 116 109 92 86 12 83 112 55 114 48 78

* 67 93 106 65 58 14 118 46 43 6 56 91

* 57 45 39 97 110 101 53 96 29 7 23 85

*

*/

#include <stdio.h>

#define M 127 /* for this modulus ... */

#define A 3 /* 3 is a full-period multiplier */

long g(long x)

{

return ((A * x) % M);

}

long gcd(long a, long b) /* from appendix B, use a > 0 and b > 0 */

{

long r = a % b;

while (r > 0) {

a = b;

b = r;



r = a % b;

};

return (b);

}

int main(void)

{

long p = 1;

long x = A;

int ok;

while (x != 1) { /* confirm that A is a full-period multiplier */

p++;

x = g(x);

}

if (p == M - 1)

ok = 1;

else

ok = 0;

if (ok) { /* use algorithm 2.1.2 */

long i = 1;

long j = 0; /* counts full-period multipliers */

x = A;

while (x != 1) {

if (gcd(i, M - 1) == 1) {

printf("%4ld", x);

j++;

if (j % 12 == 0)

printf("\n");

}

i++;

x = g(x);

}

}

return (0);

}


