A Single-Server Queue

Section 1.2

Discrete-Event Simulation: A First Course
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A Single-Server Queue
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service node

o Single-sever service node consists of a server plus its queue

o If only one service technician, the machine shop model from
section 1.1 is a single-server queue
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A Single-Server Queue
Queue Discipline

Queue discipline: the algorithm used when a job is selected from
the queue to enter service

@ FIFO - first in, first out

@ LIFO — last in, first out

@ SIRO — serve in random order

@ Priority — typically shortest job first (SJF)
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A Single-Server Queue

Assumptions

@ FIFO is also known as first come, first serve (FCFS)

o The order of arrival and departure are the same

& This observation can be used to simplify the simulation

@ Unless otherwise specified, assume FIFO with infinite queue

capacity.

@ Service is non-preemptive

& Once initiated, service of a job will continue until completion
@ Service is conservative

@ Server will never remain idle if there is one or more jobs in the
service node
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A Single-Server Queue

Specification Model

For a job i:
@ The arrival time is a;
@ The delay in the queue is d;
@ The time that service begins is b; = a; + d;
@ The service time is s;
@ The wait in the node is w; = d; + s;
@ The departure time is ¢; = a; + w;
| wW; |
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A Single-Server Queue

Arrivals

@ The interarrival time between jobs i — 1 and i is
ri=aj—aj-1
where, by definition, ag = 0

|<— T3 —>|

T T T T time
ai—2 Q-1 a; aiy1
o Note that a; = a;_1 + r; and so (by induction)
ai=n+n+...+r i=1,2,3,...
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A Single-Server Queue

Algorithmic Question

o Given the arrival times and service times, can the delay times
be computed?
@ For some queue disciplines, this question is difficult to answer
o If the queue discipline is FIFO,
o d; is determined by when a; occurs relative to ¢;_1.

@ There are two cases to consider:
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A Single-Server Queue

o If a; < ¢j_1, job i arrives before job i — 1 completes:

1 iy f— si-1 —

ai—1 bi—1 Ci—1
‘ T . I T t

(¢33 b; (&
f—ri —| d; f— 5 —|
o If a; > ¢;_1, job i arrives after job i — 1 completes:

} di_1 } Si—1 —>|

a1 bi—1 Ci—1
L | | ; . t

a; ci

} T } S —
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A Single-Server Queue
Calculating Delay for Each Job

Algorithm 1.2.1

¢ = 0.0; /* assumes that ag = 0.0 */
i =0;
while ( more jobs to process ) {

[++:

a; = GetArrival();
if (8 < ¢i—1)
di=ci—1— aj;
else
d,' = OO,
s; = GetService();
¢i=aj+di+sj;
} .
n=ri,
return di, do, ..., dy,;
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A Single-Server Queue

Example 1.2.2

@ Algorithm 1.2.1 used to process n = 10 jobs

i1 2 3 4 5 6 7 8 9 10
read from file aj | 15 47 71 111 123 152 166 226 310 320
from algorithm  d; 0 11 23 17 35 44 70 41 0] 26
read from file si | 43 36 34 30 38 40 31 29 36 30

@ For future reference, note that for the last job
e a, =320
e c,=a,+d,+s, =320+ 26+ 30 =376
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A Single-Server Queue

Output Statistics

@ The purpose of simulation is insight — gained by looking at
statistics
@ The importance of various statistics varies on perspective:
o Job perspective: wait time is most important
o Manager perspective: utilization is critical
@ Statistics are broken down into two categories

o Job-averaged statistics
o Time-averaged statistics
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A Single-Server Queue

Job-Averaged Statistics

Job-averaged statistics: computed via typical arithmetic mean

@ Average interarrival time:

o 1/7 is the arrival rate

@ Average service time:

S|

s 1/5 is the service rate
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A Single-Server Queue

Example 1.2.3

@ For the 10 jobs in Example 1.2.2

@ average interarrival time is
7= a,/n=320/10 = 32.0 seconds per job

o average service is S = 34.7 seconds per job
o arrival rate is 1/7 ~ 0.031 jobs per second
s service rate is 1/5 = 0.029 jobs per second

@ The server is not quite able to process jobs at the rate they
arrive on average.
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A Single-Server Queue

Job-Averaged Statistics

@ The average delay and average wait are defined as

H—EZd- W—lznjw-
_n__ ’ _nizl I

@ Sufficient to compute any two of w,d,s
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A Single-Server Queue
Example 1.2.4

@ From the data in Example 1.2.2, d = 26.7
From Example 1.2.3, 5 = 34.7
Therefore w = 26.7 + 34.7 = 61.4.

@ Recall verification is one (difficult) step of model development

o Consistency check: used to verify that a simulation satisfies
known equations
o Compute W, d, and 5 independently
o Then verify that w =d + 5
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A Single-Server Queue
Time-Averaged Statistics

@ Time-averaged statistics. defined by area under a curve
(integration)

For SSQ, need three additional functions

@ [(t): number of jobs in the service node at time t
@ g(t): number of jobs in the queue at time t
o x(t): number of jobs in service at time t

@ By definition, /(t) = q(t) + x(t).
o I(t)=0,1,2,...

q(t)=0,1,2,.

x(t)=0,1
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A Single-Server Queue
Time-Averaged Statistics

@ All three functions are piece-wise constant

0= t
0 376

@ Figures for g(-) and x(+) can be deduced

q(t) =0 and x(t) =0 if and only if /(t) =0
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A Single-Server Queue
Time-Averaged Statistics

@ Over the time interval (0, 7):

I
time-averaged number in the node: [ = —/ I(t)dt
T Jo
: : _ 17
time-averaged number in the queue: §= — q(t)dt
T Jo
. . : 1/
time-averaged number in service: X = — x(t)dt
T Jo

@ Since /(t) = q(t) + x(t) forall t >0
I=g+x

o Sufficient to calculate any two of /, g, x
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A Single-Server Queue

Example 1.2.5

@ From Example 1.2.2 (with 7 = ¢j0 = 376),
/=1633 g=0710 x=0.923

@ The average of numerous random observations (samples) of
the number in the service node should be close to /.
@ Same holds for g and X

@ Server utilization: time-averaged number in service (X)
@ X also represents the probability the server is busy
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A Single-Server Queue
Little's Theorem

How are job-averaged and time-average statistics related?

Theorem (Little, 1961)

If (a) queue discipline is FIFO,
(b) service node capacity is infinite, and
(c) server is idle both at t =0 and t = ¢,
then

Jo (t)dt =377 wi and
o q(t)dt =37, d; and

ocn x(t)dt =71 si
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A Single-Server Queue
Little's Theorem Proof

Proof.

For each job i = 1,2, ..., define an indicator function

’l/)i(t):{ 1 a,<t<g

0 otherwise

Then )
I(t) = wi(t) 0<t<c,
i=1

and so

/Ocn I(t)dt = /Ocn z::@bi(t)dt — z:: /Ocn Pi(t)dt = z::(c,- —a) = E:: Wi

O

-

The other two equations can be derived similarly.
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A Single-Server Queue

Example 1.2.6

cumulative number

of arrivals

cumulative number

of departures
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A Single-Server Queue
Little's Equations

@ Using 7 = ¢, in the definition of the time-averaged statistics,
along with Little's Theorem, we have

[ n
c,,7:/ /(t)dt:ZW,': nw
0 i=1

@ We can perform similar operations and ultimately have

7:(£>W and 62(1)3 and 7:<£>§
Cn Cn Cn
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A Single-Server Queue
Computational Model

@ The ANSI C program ssql implements Algorithm 1.2.1

@ Data is read from the file ssql.dat consisting of arrival times
and service times in the format

a S
a
dn  Sn

@ Since queue discipline is FIFO, no need for a queue data
structure
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A Single-Server Queue
Example 1.2.8

@ Running program ssql with ssql.dat

1/F~0.10 and 1/5~0.14

o If you modify program ssql to compute /,q, and X

X ~ 0.28

@ Despite the significant idle time, g is nearly 2.
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A Single-Server Queue

Traffic Intensity

e Traffic intensity: ratio of arrival rate to service rate
1/r 5 9
L — — ()%
an/n an

1/s
@ Assuming cp/a, is close to 1.0, the traffic intensity and
utilization will be nearly equal

R IERY
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A Single-Server Queue
Case Study

Sven and Larry's Ice Cream Shoppe
@ owners considering adding new flavors and cone options

@ concerned about resulting service times and queue length

Can be modeled as a single-sever queue

@ ssql.dat represents 1000 customer interactions
@ Multiply each service time by a constant

@ In the following graph, the circled point uses unmodified data
@ Moving right, constants are 1.05, 1.10, 1.15, ...
o Moving left, constants are 0.95, 0.90, 0.85, ...
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A Single-Server Queue
Sven and Larry
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@ Modest increase in service time produces significant increase
in queue length

@ Non-linear relationship between G and X
@ Sven and Larry will have to assess the impact of the increased
service times
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A Single-Server Queue
Graphical Considerations
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@ Since both X and @ are continuous, we could calculate an
“infinite” number of points

@ Few would question the validity of “connecting the dots”
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A Single-Server Queue
Guidelines

@ If there is essentially no uncertainty and the resulting
interpolating curve is smooth, connecting the dots is OK

@ Leave the dots as a reminder of the data points

@ If there is essentially no uncertainty but the curve is not
smooth, more dots should be generated

@ If the dots correspond to uncertain (noisy) data, then
interpolation is not justified

@ Use approximation of a curve or do not superimpose at all

@ Discrete data should never have a solid curve
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