Discrete-Event Simulation:

A First Course

Section 2.1: Lehmer Random Number Generators: Introduction

Section 2.1: Lehmer Random Number Generators: Introduction

- ssq1 and sis1 require input data from an outside source
- The usefulness of these programs is limited by amount of available data
- What if more data needed?
- What if the model changed?
- What if the input data set is small or unavailable?
- A random number generator address all problems
- It produces real values between 0.0 and 1.0
- The output can be converted to random variate via mathematical transformations

Random Number Generators

- Historically there are three types of generators
- table look-up generators
- hardware generators
- algorithmic (software) generators
- Algorithmic generators are widely accepted because they meet all of the following criteria:
- randomness - output passes all reasonable statistical tests of randomness
- controllability - able to reproduce output, if desired
- portability - able to produce the same output on a wide variety of computer systems
- efficiency - fast, minimal computer resource requirements
- documentation - theoretically analyzed and extensively tested

Algorithmic Generators

- An ideal random number generator produces output such that each value in the interval $0.0<u<1.0$ is equally likely to occur
- A good random number generator produces output that is (almost) statistically indistinguishable from and ideal generator
- We will construct a good random number generator satisfying all our criteria

Conceptual Model

- Conceptual Model:
- Choose a large positive integer m. This defines the set $\mathcal{X}_{m}=\{1,2, \ldots, m-1\}$
- Fill a (conceptual) urn with the elements of \mathcal{X}_{m}
- Each time a random number u is needed, draw an integer x "at random" from the urn and let $u=x / m$
- Each draw simulates a sample of an independent identically distributed sequence of $\operatorname{Uniform}(0,1)$
- The possible values are $1 / m, 2 / m, \ldots(m-1) / m$.
- It is important that m be large so that the possible values are densely distributed between 0.0 and 1.0

Conceptual Model

- 0.0 and 1.0 are impossible
- This is important for some random variates
- We would like to draw from the urn with replacement
- For practical reasons, we will draw without replacement
- If m is large and the number of draws is small relative to m, then the distinction is largely irrelevant

Lehmer's Algorithm

- Lehmer's algorithm for random number generation is defined in terms of two fixed parameters:
- modulus m, a fixed large prime integer
- multiplier a, a fixed integer in \mathcal{X}_{m}
- The integer sequence x_{0}, x_{1}, \ldots is defined by the iterative equation

$$
x_{i+1}=g\left(x_{i}\right)
$$

with

$$
g(x)=a x \bmod m
$$

- $x_{0} \in \mathcal{X}_{m}$ is called the initial seed

Lehmer Generators

- Because of the mod operator, $0 \leq g(x)<m$
- However, 0 must not occur since $g(0)=0$
- Since m is prime, $g(x) \neq 0$ if $x \in \mathcal{X}_{m}$.
- If $x_{0} \in \mathcal{X}_{m}$, then $x_{i} \in \mathcal{X}_{m}$ for all $i \geq 0$.
- If the multiplier and prime modulus are chosen properly, a Lehmer generator is statistically indistinguishable from drawing from \mathcal{X}_{m} with replacement.
- Note, there is nothing random about a Lehmer generator
- For this reason, it is called a pseudo-random generator

Intuitive Explanation

- When ax is divided by m, the remainder is "likely" to be any value between 0 and $m-1$
- Similar to buying numerous identical items at a grocery store with only dollar bills.
- a is the price of an item, x is the number of items, and $m=100$.
- The change is likely to be any value between 0 and 99 cents

Parameter Considerations

- The choice of m is dictated, in part, by system considerations
- On a system with 32 -bit 2 's complement integer arithmetic, $2^{31}-1$ is a natural choice
- With 16 -bit or 64 -bit integer representation, the choice is not obvious
- In general, we want to choose m to be the largest representable prime integer
- Given m, the choice of a must be made with great care

Example 2.1.1

- If $m=13$ and $a=6$ with $x_{0}=1$ then the sequence is

$$
1,6,10,8,9,2,12,7,3,5,4,11,1, \ldots
$$

- The ellipses indicate the sequence is periodic
- If $m=13$ and $a=7$ with $x_{0}=1$ then the sequence is

$$
1,7,10,5,9,11,12,6,3,8,4,2,1 \ldots
$$

- Because of the $12,6,3$ and $8,4,2,1$ patterns, this sequence appears "less random"
- If $m=13$ and $a=5$ then
$1,5,12,8,1, \ldots$ or $2,10,11,3,2, \ldots$ or $4,7,9,6,4, \ldots$
- This less-than-full-period behavior is obviously undesirable

Central Issues

- For a chosen (a, m) pair, does the function $g(\cdot)$ generate a full-period sequence?
- If a full period sequence is generated, how random does the sequence appear to be?
- Can $a x \bmod m$ be evaluated efficiently and correctly?
- Integer overflow can occur when computing ax

Full Period Considerations

- From Appendix B, b mod $a=b-\lfloor b / a\rfloor a$
- There exists a non-negative integer $c_{i}=\left\lfloor a x_{i} / m\right\rfloor$ such that

$$
x_{i+1}=g\left(x_{i}\right)=a x_{i} \bmod m=a x_{i}-m c_{i}
$$

Therefore (by induction)

$$
\begin{aligned}
& x_{1}=a x_{0}-m c_{0} \\
& x_{2}=a x_{1}-m c_{1}=a^{2} x_{0}-m\left(a c_{0}+c_{1}\right) \\
& x_{3}=a x_{2}-m c_{2}=a^{3} x_{0}-m\left(a^{2} c_{0}+a c_{1}+c_{2}\right)
\end{aligned}
$$

$$
x_{i}=a x_{i-1}-m c_{i-1}=a^{i} x_{0}-m\left(a^{i-1} c_{0}+a^{i-2} c_{1}+\ldots+c_{i-1}\right)
$$

Full Period Considerations

- Since $x_{i} \in \mathcal{X}_{m}$, we have $x_{i}=x_{i} \bmod m$. Therefore, letting

$$
\begin{aligned}
& c=a^{i-1} c_{0}+a^{i-2} c_{1}+\ldots+c_{i-1}, \text { we have } \\
& \quad x_{i}=a^{i} x_{0}-m c=\left(a^{i} x_{0}-m c\right) \bmod m=a^{i} x_{0} \bmod m
\end{aligned}
$$

Theorem (2.1.1)

If the sequence $x_{0}, x_{1}, x_{2}, \ldots$ is produced by a Lehmer generator with multiplier a and modulus m then

$$
x_{i}=a^{i} x_{0} \bmod m
$$

- It is an eminently bad idea to compute x_{i} by first computing a^{i}
- Theorem 2.1.1 has significant theoretical value

Full Period Considerations

$\left(b_{1} b_{2} \ldots b_{n}\right) \bmod a=\left(b_{1} \bmod a\right)\left(b_{2} \bmod a\right) \cdots\left(b_{n} \bmod a\right) \bmod a$ Therefore

$$
x_{i}=a^{i} x_{0} \bmod m=\left(a^{i} \bmod m\right) x_{0} \bmod m
$$

- Fermat's little theorem states that if p is a prime which does not divide a, then $a^{p-1} \bmod p=1$.
Thus, $x_{m-1}=\left(a^{m-1} \bmod m\right) x_{0} \bmod m=x_{0}$

Theorem (2.1.2)

If $x_{0} \in \mathcal{X}_{m}$ and the sequence $x_{0}, x_{1}, x_{2} \ldots$ is produced by a Lehmer generator with multiplier a and (prime) modulus m then there is a positive integer p with $p \leq m-1$ such that $x_{0}, x_{1}, x_{2} \ldots x_{p-1}$ are all different and

$$
x_{i+p}=x_{i} \quad i=0,1,2, \ldots
$$

That is, the sequence is periodic with fundamental period p. In addition $(m-1) \bmod p=0$.

Full Period Multipliers

- If we pick any initial seed $x_{0} \in \mathcal{X}_{m}$ and generate the sequence $x_{0}, x_{1}, x_{2}, \ldots$ then x_{0} will occur again
- Further x_{0} will reappear at index p that is either $m-1$ or a divisor of $m-1$
- The pattern will repeat forever
- We are interested in choosing full-period multipliers where $p=m-1$

Example 2.1.2

- Full-period multipliers generate a virtual circular list with $m-1$ distinct elements.

Finding Full Period Multipliers

Algorithm 2.1.1

```
p = 1;
x = a;
while (x != 1) {
    p++;
    x = (a*x)% m; /* beware of a*x overflow */
}
if(p == m-1)
    /* a is a full-period multiplier */
else
    /* a is not a full-period multiplier */
```

- This algorithm is a slow-but-sure way to test for a full-period multiplier

Frequency of Full-Period Multipliers

- Given a prime modulus m, how many corresponding full-period multipliers are there?

Theorem (2.1.3)

If m is prime and $p_{1}, p_{2}, \ldots, p_{r}$ are the (unique) prime factors of $m-1$ then the number of full-period multipliers in \mathcal{X}_{m} is

$$
\frac{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right)}{p_{1} p_{2} \cdots p_{r}}(m-1)
$$

- Example 2.1.3 If $m=13$ then $m-1=12=2^{2} \cdot 3$. Therefore, there are $\frac{(2-1)(3-1)}{2 \cdot 3}(13-1)=4$ full-period multipliers (2, 6, 7, and 11)

Example 2.1.4

- If $m=2^{31}-1=2147483647$ then since the prime decomposition of $m-1$ is

$$
m-1=2^{31}-2=2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331
$$

the number of full period multipliers is

$$
\left(\frac{1 \cdot 2 \cdot 6 \cdot 10 \cdot 30 \cdot 150 \cdot 330}{2 \cdot 3 \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331}\right)\left(2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331\right)=534600000
$$

- Therefore, approximately 25% of the multipliers are full-period

Finding All Full-Period Multipliers

- Once one full-period multiplier has been found, then all others can be found in $\mathcal{O}(m)$ time

Algorithm 2.1.2

```
\(i=1 ;\)
\(x=a ;\)
while ( \(x\) ! = 1) \{
    if \((\operatorname{gcd}(i, m-1)==1)\)
    /* \(a^{i} \bmod m\) is a full-period multiplier*/
    \(i++\)
    \(x=(a * x) \% \quad m ; \quad / *\) beware \(a * x\) overflow \(* /\)
```

\}

Finding All Full-Period Multipliers

Theorem (2.1.4)

If a is any full-period multiplier relative to the prime modulus m then each of the integers

$$
a^{i} \bmod m \in \mathcal{X}_{m} \quad i=1,2,3, \ldots, m-1
$$

is also a full-period multiplier relative to m if and only if i and $m-1$ are relatively prime

Example 2.1.5

- If $m=13$ then we know from Example 2.1.3 there are 4 full period multipliers. From Example 2.1.1 $a=6$ is one. Then, since $1,5,7$, and 11 and relatively prime to 13

$$
\begin{aligned}
6^{1} \bmod 13=6 & 6^{5} \bmod 13 & =2 \\
6^{7} \bmod 13=7 & 6^{11} \bmod 13 & =11
\end{aligned}
$$

- Equivalently, if we knew $a=2$ is a full-period multiplier

$$
\begin{aligned}
2^{1} \bmod 13=2 & 2^{5} \bmod 13=6 \\
2^{7} \bmod 13=11 & 2^{11} \bmod 13=7
\end{aligned}
$$

Example 2.1.6

- If $m=2^{31}-1$ then from Example 2.1.4 there are 534600000 integers relatively prime to $m-1$. The first first few are $i=1,5,13,17,19 . a=7$ is a full-period multiplier relative to m and therefore

$$
\begin{aligned}
7^{1} \bmod 2147483647 & =7 \\
7^{5} \bmod 2147483647 & =16807 \\
7^{13} \bmod 2147483647 & =252246292 \\
7^{17} \bmod 2147483647 & =52958638 \\
7^{19} \bmod 2147483647 & =447489615
\end{aligned}
$$

are full-period multipliers relative to m

