Section 2.2: Lehmer Random Number Generators: Implementation
For 32-bit systems, $2^{31} - 1$ is the largest prime

- We will develop an $m = 2^{31} - 1$ Lehmer generator
 - portable, efficient
 - in ANSI C

- ANSI C standard:

\[
\begin{align*}
\text{LONG} &= 2^{31} - 1 \\
\text{LONG} &= -(2^{31} - 1)
\end{align*}
\]
Overflow Is Possible

- Recall that \(g(x) = ax \mod m \)
- The \(ax \) product can be as big as \(a(m - 1) \)
If integers > m cannot be represented, integer overflow is possible

Not possible to evaluate g(x) in “obvious” way

Example 2.2.1: Consider (a, m) = (48271, 2^{31} − 1)
 \[a(m − 1) \approx 1.47 \times 2^{46} \implies \] at least 47 bits
 However, ax mod m no more than 31 bits

Consider (a, m) = (7, 13) from Example 2.1.1 for a 5-bit machine
 \[a(m − 1) = 84 \approx 1.31 \times 2^6 \implies \] at least 7 bits
Type Considerations

- Why `long`?
 - ANSI C standard guarantees 32 bits for `long`
 - Most contemporary computers are 32-bit

- Why not `float` or `double`?
 - Floating-point representation is inexact
 - An efficient integer-based implementation exists

- Why not `long long` — guarantees 64 bits?
 - Requires overhead on 32-bit systems

- 64-bit machines will not alleviate the problem
 - m would be $2^{64} - 59$, overflow still possible
Want an integer-based implementation

No calculation can give result \(m > 2^{31} - 1 \)

If \(m \) was not prime, then \(m = aq \)

\[
g(x) = ax \mod m = \cdots = a(x \mod q)
\]

Note: mod before multiply!

But \(m \) is prime, so \(m = aq + r \) where

\[
q = \left\lfloor \frac{m}{a} \right\rfloor \quad \text{and} \quad r = m \mod a
\]

Want remainder smaller than quotient \((r < q)\)
Example 2.2.4: \((q, r)\) Decomposition of \(m\)

- Consider \((a, m) = (48271, 2^{31} - 1)\)
 \[
 q = \left\lfloor \frac{m}{a} \right\rfloor = 44488 \quad \quad r = m \mod a = 3399
 \]
- Consider \((a, m) = (16807, 2^{31} - 1)\)
 \[
 q = 127773 \quad \quad r = 2836
 \]
- Note that \(r < q\) in both cases
- This (modulus compatibility) is important later!
Rewriting $g(x)$ To Avoid Overflow

\[
g(x) = ax \mod m \\
= ax - m\lfloor ax/m \rfloor \\
= ax + \left[-m\lfloor x/q \rfloor + m\lfloor x/q \rfloor\right] - m\lfloor ax/m \rfloor \\
= \left[ax - (aq + r)\lfloor x/q \rfloor\right] + \left[m\lfloor x/q \rfloor - m\lfloor ax/m \rfloor\right] \\
= \left[a(x - q\lfloor x/q \rfloor) - r\lfloor x/q \rfloor\right] + \left[m\lfloor x/q \rfloor - m\lfloor ax/m \rfloor\right] \\
= \left[a(x \mod q) - r\lfloor x/q \rfloor\right] + m\left[\lfloor x/q \rfloor - \lfloor ax/m \rfloor\right] \\
= \gamma(x) + m\delta(x)
\]

- Mods are done before multiplications!
Theorem 2.2.1: $\delta(x)$ Is Either 0 Or 1

Theorem (2.2.1)

If $m = aq + r$ is prime and $r < q$ and $x \in \mathcal{X}_m$

$$\delta(x) = 0 \quad \text{or} \quad \delta(x) = 1$$

where $\delta(x) = \lfloor x/q \rfloor - \lfloor ax/m \rfloor$

Proof.

Note for $u, v \in \mathbb{R}$ with $0 < u - v < 1$, $\lfloor u \rfloor - \lfloor v \rfloor$ is 0 or 1

Consider

$$\frac{x}{q} - \frac{ax}{m} = x \left(\frac{1}{q} - \frac{a}{m} \right) = x \left(\frac{m-aq}{mq} \right) = \frac{xr}{mq}$$

and since $r < q$

$$0 < \frac{xr}{mq} < \frac{x}{m} \leq \frac{m-1}{m} < 1$$
Theorem 2.2.1: $\delta(x)$ Depends Only On $\gamma(x)$

Theorem (2.2.1)

With $\gamma(x) = a(x \mod q) - r\lfloor x/q \rfloor$

\[
\delta(x) = 0 \quad \text{iff.} \quad \gamma(x) \in \mathcal{X}_m
\]
\[
\delta(x) = 1 \quad \text{iff.} \quad -\gamma(x) \in \mathcal{X}_m
\]

Proof.

- If $\delta(x) = 0$, then $g(x) = \gamma(x) + m\delta(x) = \gamma(x) \in \mathcal{X}_m$
 - If $\gamma(x) \in \mathcal{X}_m$, then $\delta(x) \neq 1$ otherwise $g(x) \not\in \mathcal{X}_m$

- If $\delta(x) = 1$, then $-\gamma(x) \in \mathcal{X}_m$ otherwise
 - $g(x) = \gamma(x) + m \not\in \mathcal{X}_m$
 - If $-\gamma(x) \in \mathcal{X}_m$, then $\delta(x) \neq 0$ otherwise $g(x) \not\in \mathcal{X}_m$
Algorithm 2.2.1: Computing $g(x)$

- Evaluates $g(x) = ax \mod m$ with no values $> m - 1$

```plaintext
Algorithm 2.2.1

t = a * (x % q) - r * (x / q);  /* t = γ(x) */
if (t > 0)
    return (t);  /* δ(x) = 0 */
else
    return (t + m);  /* δ(x) = 1 */
```

- Returns $g(x) = γ(x) + mδ(x)$
- The ax product is “trapped” in $δ(x)$
- No overflow
We must have $r < q$ in $m = aq + r$ (see proof of Theorem 2.2.1)

Multiplier a is modulus-compatible with m iff. $r < q$

Here, choose a modulus-compatible with $m = 2^{31} - 1$

Then algorithm 2.2.1 can port to any 32-bit machine

E.g., $a = 48271$ is modulus-compatible with $m = 2^{31} - 1$

$$r = 3399 \quad q = 44488$$
No modulus-compatible multipliers > \((m - 1)/2\)

More densely distributed on low end

Consider (tiny) modulus \(m = 401\): (Row 1: MP, Row 2: FP, Row 3: MP & FP)
Multiplier a is “small” iff. $a^2 < m$

If a is small, then a is modulus-compatible

All multipliers from 1 to $\lfloor \sqrt{m} \rfloor = 46340$ are modulus-compatible

If a is modulus-compatible, a is not necessarily small

$a = 48271$ is modulus-compatible with $2^{31} - 1$ but is not small

Start with a small (therefore modulus-compatible) multiplier
Search until the first full-period multiplier is found (Alg. 2.1.1)
Find one full-period modulus-compatible (FPMC) multiplier

The following (an extension of Alg. 2.1.2) generates all others

```
Algorithm 2.2.1

i = 1;
x = a;
while (x != 1) {
    if ((m % x < m / x) and (gcd(i, m - 1) == 1))
        /* x is full-period & modulus-compatible */
        i++;
    x = g(x); /* use Alg. 2.2.1 to evaluate g(x) */
}
```
Example 2.2.6: FPMC Multipliers For $m = 2^{31} - 1$

For $m = 2^{31} - 1$ and FPMC $a = 7$, there are 23093 FPMC multipliers

\[
\begin{align*}
7^1 \mod 2147483647 &= 7 \\
7^5 \mod 2147483647 &= 16807 \\
7^{113039} \mod 2147483647 &= 41214 \\
7^{188509} \mod 2147483647 &= 25697 \\
7^{536035} \mod 2147483647 &= 63295 \\
\vdots
\end{align*}
\]

- $a = 16807$ is a “minimal” standard
- $a = 48271$ provides (slightly) more random sequences
Choose the FPMC multiplier that gives “most random” sequence

No universal definition of randomness

In 2-space, \((x_0, x_1), (x_1, x_2), (x_2, x_3), \ldots\) form a lattice structure

For any integer \(k \geq 2\), the points

\[
(x_0, x_1, \ldots, x_{k-1}), (x_1, x_2, \ldots, x_k), (x_2, x_3, \ldots, x_{k+1}), \ldots
\]

form a lattice structure in \(k\)-space

Numerically analyze *uniformity* of the lattice

E.g., Knuth’s spectral test
Random Numbers Falling In The Planes

\[(a, m) = (23, 401)\]

\[(a, m) = (66, 401)\]
A Lehmer RNG in ANSI C with \((a, m) = (48271, 2^{31} − 1)\):

```c
Random Method
Random(void) {
    static long state = 1;
    const long A = 48271; /* multiplier */
    const long M = 2147483647; /* modulus */
    const long Q = M / A; /* quotient */
    const long R = M % A; /* remainder */
    long t = A * (state % Q) - R * (state / Q);
    if (t > 0)
        state = t;
    else
        state = t + M;
    return ((double) state / M);
}
```
ANSI C library `<stdlib.h>` provides the function `rand()`.

- Simulates drawing from 0, 1, 2, ..., \(m - 1 \) with \(m \geq 2^{15} - 1 \).
- Value returned is not normalized; typical to use
 \[
 u = \frac{(\text{double}) \ rand()}{\text{RAND_MAX}};
 \]

- ANSI C standard does not specify algorithm details.
- For scientific work, avoid using `rand()` (Summit, 1995).
A Good RNG Library

- Defined in the source files `rng.h` and `rng.c`
- Based on the implementation considered in this lecture
 - `double Random(void)`
 - `void PutSeed(long seed)`
 - `void GetSeed(long *seed)`
 - `void TestRandom(void)`

- Initial seed can be set directly, via prompt, or by system clock
- `PutSeed()` and `GetSeed()` often used together
- \(a = 48271 \) is the default multiplier
The following generates 400 2-space points at random

Generating 2-Space Points

```
seed = 123456789; /* or 987654321 */
PutSeed(seed);
\( x_0 = \text{Random}(); \)
for \( (i = 0; i < 400; i++) \) {
  \( x_{i+1} = \text{Random}(); \)
  Plot\( (x_i, x_{i+1}); /* \text{graphics function} */ \)
}
```

Generate one sequence with each initial seed
Lehmer Random Number Generators: Implementation

Scatter Plot Of 400 Pairs

Initial seed $x_0 = 123456789$

Initial seed $x_0 = 987654321$
Observations on Randomness

- In previous figure, no lattice structure is evident
- Appearance of randomness is an illusion
- If all \(m - 1 = 2^{31} - 2 \) points were generated, lattice would be evident
- Herein lies distinction between *ideal* and *good* RNGs
Example 2.2.11

- Plotting all pairs \((x_i, x_{i+1})\) for \(m = 2^{31} - 1\) would give a black square
- Any tiny square should appear (approximately) the same
- “Zoom in” to square with corners \((0, 0)\) and \((0.001, 0.001)\)

```plaintext
seed = 123456789; PutSeed(seed); x_0 = Random();
for (i = 0; i < 2147483646; i++) {
    x_{i+1} = Random();
    if ((x_i < 0.001) and (x_{i+1} < 0.001))
        Plot(x_i, x_{i+1});
}
```

- Results for multipliers \(a = 16807\) and \(a = 48271\) on the next slide
Scatter Plots for $m = 2^{31} - 1$

- Further justification for using $a = 48271$ over $a = 16807$
for $m = 2^{31} - 1$ there are 534,600,000 multipliers a that are full period

23,903 of these are modulus compatible

Section 10.1 discusses statistical tests for these numbers, but a lot of research has already been done

Nonrepresentative Subsequences: What if only 20 random numbers were needed and you chose seed $x_0 = 109,869,724$?

Resulting 20 random numbers:

0.64 0.72 0.77 0.93 0.82 0.88 0.67 0.76 0.84 0.84
0.74 0.76 0.80 0.75 0.63 0.94 0.86 0.63 0.78 0.67
Fast CPUs and cycling

- How long does it take to generate a full period for $m = 2^{31} - 1$?
 - 1980's: days
 - 1990's: hours
 - Today: minutes
 - Soon: seconds

- Recall:
 - *Ideal* generator draws from an urn “with replacement”
 - *Our* generator draws from an urn “without replacement”
 - Distinction is irrelevant *if number of draws is small* compared to m

- *Cycling*: generating more than $m - 1$ random values
- Cycling must be avoided within a single simulation