Discrete-Event Simulation:

A First Course

Section 2.3: Monte Carlo Simulation

Section 2.3: Monte Carlo Simulation

- With Empirical Probability, we perform an experiment many times n and count the number of occurrences n_a of an event $\mathcal A$
 - ullet The *relative frequency* of occurrence of event ${\cal A}$ is n_a/n
 - The frequency theory of probability asserts that the relative frequency converges as $n \to \infty$

$$\Pr(\mathcal{A}) = \lim_{n \to \infty} \frac{n_a}{n}$$

- Axiomatic Probability is a formal, set-theoretic approach
 - \bullet Mathematically construct the sample space and calculate the number of events ${\cal A}$
- The two are complementary!

Example 2.3.1

Roll two dice and observe the up faces

 If the two up faces are summed, an integer-valued random variable, say X, is defined with possible values 2 through 12 inclusive

sum,
$$x$$
: 2 3 4 5 6 7 8 9 10 11 12
 $Pr(X = x)$: $\frac{1}{36}$ $\frac{2}{36}$ $\frac{3}{36}$ $\frac{4}{36}$ $\frac{5}{36}$ $\frac{6}{36}$ $\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{1}{36}$

• Pr(X = 7) could be estimated by replicating the experiment many times and calculating the relative frequency of occurrence of 7's

Random Variates

- A Random Variate is an algorithmically generated realization of a random variable
- u = Random() generates a Uniform(0,1) random variate
- How can we generate a *Uniform*(a, b) variate?

Generating a Uniform Random Variate

Equilikely Random Variates

• Uniform(0,1) random variates can also be used to generate an Equilikely(a,b) random variate

$$0 < u < 1 \iff 0 < (b - a + 1)u < b - a + 1$$

$$\iff 0 \le \lfloor (b - a + 1)u \rfloor \le b - a$$

$$\iff a \le a + \lfloor (b - a + 1)u \rfloor \le b$$

$$\iff a \le x \le b$$

• Specifically, x = a + |(b - a + 1)u|

Generating an Equilikely Random Variate

Examples

- Example 2.3.3 To generate a random variate x that simulates rolling two fair dice and summing the resulting up faces, use x = Equilikely(1, 6) + Equilikely(1, 6); Note that this is not equivalent to x = Equilikely(2, 12);
- Example 2.3.4 To select an element x at random from the array a[0], a[1], ..., a[n-1] use i = Equilikely(0, n-1); x = a[i];

Galileo's Dice

- If three fair dice are rolled, which sum is more likely, a 9 or a 10?
 - There are $6^3 = 216$ possible outcomes

$$Pr(X = 9) = \frac{25}{216} \cong 0.116$$
 and $Pr(X = 10) = \frac{27}{216} = 0.125$

- Program galileo calculates the probability of each possible sum between 3 and 18
- The drawback of Monte Carlo simulation is that it only produces an estimate
 - Larger n does not guarantee a more accurate estimate

Example 2.3.6

 Frequency probability estimates converge slowly and somewhat erratically

 You should always run a Monte Carlo simulation with multiple initial seeds

Geometric Applications

• Generate a point at random inside a rectangle with opposite corners at (α_1, β_1) and (α_2, β_2)

 $x = \text{Uniform}(\alpha_1, \alpha_2); y = \text{Uniform}(\beta_1, \beta_2);$

Geometric Applications

• Generate a point (x, y) at random on the circumference of a circle with radius ρ and center (α, β)

$$\theta$$
 = Uniform($-\pi$, π); $x = \alpha + \rho * \cos(\theta)$; $y = \beta + \rho * \sin(\theta)$;

Example 2.3.8

• Generate a point (x, y) at random *interior* to the circle of radius ρ centered at (α, β)


```
\theta = Uniform(-\pi, \pi); r = Uniform(0, \rho);

INCORRECT! x = \alpha + r * \cos(\theta); y = \beta + r * \sin(\theta);
```


Acceptance/Rejection

• Generate a point at random within a circumscribed square and then either accept or reject the point

Generating a Random Point

```
do {
     x = \text{Uniform}(-\rho, \rho);
     y = \text{Uniform}(-\rho, \rho); while (x * x + y * y >= \rho * \rho);
x = \alpha + x;
y = \beta + y;
return (x, y);
```


Buffon's Needle

• Suppose that an infinite family of infinitely long vertical lines are spaced one unit apart in the (x, y) plane. If a needle of length r > 0 is dropped at random onto the plane, what is the probability that it will land crossing at least one line?

- *u* is the *x*-coordinate of the left-hand endpoint
- v is the x-coordinate of the right-hand endpoint, $v = u + r \cos \theta$
- The needle crosses at least one line if and only if v > 1

Program buffon

- Program buffon is a Monte Carlo simulation
 - The random number library can be used to automatically generate an initial seed

```
Random Seeding
PutSeed(-1);  /* any negative integer will do */
GetSeed(&seed);  /* trap the value of the initial seed */
    .
    .
    printf("with an initial seed of %ld", seed);
```

 Inspection of the program buffon illustrates how to solve the problem axiomatically

Axiomatic Approach to Buffon's Needle

• "Dropped at random" is interpreted (modeled) to mean that u and θ are independent Uniform(0,1) and $Uniform(-\pi/2,\pi/2)$ r.v.s

Axiomatic Approach to Buffon's Needle

- The shaded region has a curved boundary defined by the equation $u = 1 r \cos(\theta)$
- If $0 < r \le 1$, the area of the shaded region is

$$\pi - \int_{-\pi/2}^{\pi/2} \left(1 - r\cos\theta\right) d\theta = r \int_{-\pi/2}^{\pi/2} \cos\theta \, d\theta = \dots = 2r$$

• Therefore, because the area of the rectangle is π the probability that the needle will cross at least one line is $2r/\pi$

