Section 3.2: Multi-Stream Lehmer RNGs
Typical DES models have many stochastic components
Want a unique source of randomness for each component
One (poor) option: multiple RNGs
Better option: one RNG with multiple “streams” of random numbers
one stream per stochastic component
We will partition output from our Lehmer RNG into multiple streams
Example 3.2.1: \texttt{ssq2} Arrival and Service Processes

- \texttt{ssq2} has two stochastic components: arrival and service
- Allocate a different generator state variable to each

```
double GetService(void)
{
    double s;
    static long x = 12345;
    PutSeed(x);
    s = Uniform(1.0, 2.0);
    GetSeed(&x);
    return (s);
}
```

- \(x\) represents the current state of the service process
Example 3.2.2: ssq2 Arrival and Service Processes

- Arrival should have its own static variable, initialized differently

```c
double GetArrival(void)
{
    static double arrival = START;
    static long x = 54321;
    PutSeed(x);
    arrival += Exponential(2.0);
    GetSeed(&x);
    return (arrival);
}
```

- x represents the current state of arrival process
The Modified Arrival and Service Processes

- As modified, arrival and service times are drawn from different streams of random numbers
- Nothing magic about the choice of seed for each stream
- The choices may, in fact, be poor ones!
- Provided the streams don’t overlap, the processes are uncoupled
- Execution time cost is negligible (see Example 3.2.3)
Stream Considerations

- Potential problem: assignment of initial seeds to facilitate streams
- Each initial state should be chosen to produce disjoint streams
- If states are picked at whim, no guarantee of disjoint streams
- Some initial states may only be a few calls to Random apart

\[(a, m) = (48271, 2^{31} - 1)\]
We will develop a multi-stream version of \textit{rng}

Theorem (3.2.1)

Given \(g(x) = ax \mod m \) and integer \(j(1 < j < m - 1) \)

Jump function: \(g^j(x) = (a^j \mod m)x \mod m \)

Jump multiplier: \(a^j \mod m \)

If \(g(\cdot) \) generates \(x_0, x_1, x_2, \ldots \) then \(g^j(\cdot) \) generates \(x_0, x_j, x_{2j}, \ldots \)

Theorem 3.2.1 is the key to creating streams
Example 3.2.4: An Example Jump Function

- If \(m = 31 \) and \(a = 3 \) and \(j = 6 \), the jump multiplier is
 \[a^j \mod m = 3^6 \mod 31 = 16 \]

- If \(x_0 = 1 \) then \(g(x) = 3x \mod 31 \) generates
 \[1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, \ldots \]

- The jump function \(g^6(x) = 16x \mod 31 \) generates
 \[1, 16, 8, 4, 2, \ldots \]

- I.e., the first sequence is \(x_0, x_1, x_2, \ldots \); the second is
 \(x_0, x_6, x_{12}, \ldots \)
Using the Jump Function

- First, compute the jump multiplier $a^j \mod m$ (one time cost)
- Then, $g^j(\cdot)$ permits jumping from x_0 to x_j to x_{2j} to \ldots
- The user supplies one initial seed
- If j is chosen well, $g^j(\cdot)$ can “plant” additional initial seeds
- Each planted seed corresponds to a different stream
- Each planted seed is separated by j calls to Random
Section 3.2: Multi-Stream Lehmer RNGs

An Example 4-Stream Sequence

\[(a, m) = (48271, 2^{31} - 1)\]
Example 3.2.5: An Appropriate Jump Multiplier

- Consider $256 = 2^8$ different streams of random numbers
- Partition the RNG output sequence into 256 disjoint subsequences of equal length
- Find the largest $j < 2^{31}/2^8 = 2^{23}$ such that the jump multiplier is modulus-compatible
- $g^j(x) = (48271^j \mod m)x \mod m$ can be implemented via Alg 2.2.1
- Then $g^j(x)$ can be used to plant the other 255 initial seeds
- Possibility of stream overlap is minimized (though not eliminated!)
Maximal jump multiplier: \(a^j \mod m \) where \(j \) is the largest integer less than \(\lfloor m/s \rfloor \) such that \(a^j \mod m \) is modulus compatible.

Example 3.2.6: multipliers for \((a, m) = (48271, 2^{31} - 1)\) RNG

<table>
<thead>
<tr>
<th># of streams (s)</th>
<th>(\lfloor m/s \rfloor)</th>
<th>jump size (j)</th>
<th>jump multiplier (a^j \mod m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>2097151</td>
<td>2082675</td>
<td>97070</td>
</tr>
<tr>
<td>512</td>
<td>4194303</td>
<td>4170283</td>
<td>44857</td>
</tr>
<tr>
<td>256</td>
<td>8388607</td>
<td>8367782</td>
<td>22925</td>
</tr>
<tr>
<td>128</td>
<td>16777215</td>
<td>16775552</td>
<td>40509</td>
</tr>
</tbody>
</table>
Library rngs

- `rngs` is an upward-compatible multi-stream replacement for `rng`
- By default, provides 256 streams, indexed 0 to 255 (0 is the default)
- Only one stream is active at any time
- Six available functions:
 - `Random(void)`
 - `PutSeed(long x)`: superseded by `PlantSeeds`
 - `GetSeed(long *x)`
 - `TestRandom(void)`
 - `SelectStream(int s)`: used to define the active stream
 - `PlantSeeds(long x)`: “plants” one seed per stream
- Henceforth, `rngs` is the library of choice
Example 3.2.7: ssq2 Revisited

- Use rngs functions for GetArrival, GetService

GetArrival Method

double GetArrival(void) {
 static double arrival = START;
 SelectStream(0);
 arrival += Exponential(2.0);
 return (arrival);
}

GetService Method

double GetService(void) {
 SelectStream(2);
 return (Uniform(1.0, 2.0));
}

- Include "rngs.h" and use PlantSeeds(12345)
Uncoupling Stochastic Processes

- Per modifications, arrival and service processes are uncoupled.
- Consider changing the service process to
 \[\text{Uniform}(0.0, 1.5) + \text{Uniform}(0.0, 1.5) \]
- Without uncoupling, arrival process sequence would change!
- With uncoupling, the service process “sees” \textit{exactly} the same arrival sequence.
- Important variance reduction technique.
Extend the single-server service node model from Chapter 1
Consider multiple job types, each with its own arrival and service process

Example 3.2.8: Suppose there are two job types

1. *Exponential*(4.0) interarrivals, *Uniform*(1.0, 3.0) service
2. *Exponential*(6.0) interarrivals, *Uniform*(0.0, 4.0) service

Use rngs to allocate a different stream to each stochastic process
Example 3.2.8: Arrival Process

double GetArrival(int *j)
 /* Index j corresponds to job type */
{
 const double mean[2] = {4.0, 6.0};
 static double arrival[2] = {START, START};
 static int init = 1;
 double temp;
 if (init)
 {
 SelectStream(0);
 arrival[0] += Exponential(mean[0]);
 SelectStream(1);
 arrival[1] += Exponential(mean[1]);
 init = 0;
 }
 if (arrival[0] <= arrival[1])
 *j = 0;
 else
 *j = 1;
 temp = arrival[*j];
 SelectStream(*j);
 arrival[*j] += Exponential(mean[*j]);
 return (temp);
}
Example 3.2.8: Service Process

```c
double GetService(int j)
{
    const double min[2] = {1.0, 0.0};
    const double max[2] = {3.0, 4.0};
    SelectStream(j + 2);
    return (Uniform(min[j], max[j]));
}
```

- Index j matches service time to appropriate job type
- All four simulated stochastic processes are uncoupled
- Any process could be changed without altering the random sequence of others!
Consistency Checks

- With appropriate changes to $ssq2$, steady-state statistics are

 $\bar{r} \quad \bar{w} \quad \bar{d} \quad \bar{s} \quad \bar{l} \quad \bar{q} \quad \bar{x}$

 2.40 7.92 5.92 2.00 3.30 2.47 0.83

- Obvious consistency checks: $\bar{w} = \bar{d} + \bar{s}$ and $\bar{l} = \bar{q} + \bar{x}$

- Other consistency checks:
 - Both job types have avg service time of $2.0 \implies \bar{s} = 2.00$
 - Net arrival rate should be $1/4 + 1/6 = 5/12 \implies \bar{r} = 12/5 = 2.40$
 - \bar{x} should be ratio of arrival to service rates

\[
\frac{5/12}{1/2} = 5/6 \approx 0.83
\]