Discrete-Event Simulation:
A First Course

Section 4.3: Continuous-Data Histograms
Consider a real-valued sample \(S = \{x_1, x_2, \ldots, x_n\} \)

Data values are generally distinct

Assume lower and upper bounds \(a, b \)

\[
a \leq x_i < b \quad i = 1, 2, \ldots, n
\]

Defines interval of possible values for random variable \(X \)

\[
\mathcal{X} = [a, b) = \{x | a \leq x < b\}
\]
Partition the interval \(\mathcal{X} = [a, b) \) into \(k \) equal-width bins

\[
[a, b) = \bigcup_{j=0}^{k-1} B_j = B_0 \cup B_1 \cup \cdots \cup B_{k-1}
\]

- The bins are \(B_0 = [a, a + \delta), B_1 = [a + \delta, a + 2\delta) \ldots \)
- Width of each bin is \(\delta = (b - a)/k \)
Continuous Data Histogram

- For each $x \in [a, b)$, there is a unique bin B_j with $x \in B_j$
- Estimated *density* of random variable X is

$$\hat{f}(x) = \frac{\text{the number of } x_i \in S \text{ for which } x_i \in B_j}{n \delta}$$

- Continuous-data histogram: a “bar” plot of $\hat{f}(x)$ versus x
- *Density*: relative frequency normalized via division by δ
- $\hat{f}(x)$ is piecewise constant
Example 4.3.1: buffon

- $n = 1000$ observations of the needle from buffon
- Let $a = 0.0$, $b = 2.0$, and $k = 20$ so that $\delta = (b - a)/k = 0.1$

As $n \to \infty$ and $k \to \infty$ (i.e., $\delta \to 0$), the histogram will converge to the probability density function.
Choose a, b so that few, if any, data points are outliers
If k is too large (δ is too small), histogram will be “noisy”
If k is too small (δ is too large), histogram will be too “smooth”
Keep figure aesthetics in mind
Typically $\lfloor \log_2(n) \rfloor \leq k \leq \lfloor \sqrt{n} \rfloor$ with a bias toward

$$k \approx \lfloor (5/3)^{3/2}n \rfloor$$
Example 4.3.2: Smooth, Noisy Histograms

- \(k = 10 \ (\delta = 0.2) \) gives perhaps too smooth a histogram
- \(k = 40 \ (\delta = 0.05) \) gives too noisy a histogram

Guidelines: \(9 \leq k \leq 31 \) with bias toward
\[k \approx \lfloor (5/3)^{3\sqrt{1000}} \rfloor = 16 \]

Note no vertical lines to horizontal axis
Define \(p_j \) to be the relative frequency of points in bin \(B_j \)

Define the bin midpoints

\[
m_j = a + \left(j + \frac{1}{2} \right) \delta \quad j = 0, 1, \ldots, k - 1
\]

Then \(p_j = \delta \hat{f}(m_j) \)

Note that \(p_0 + p_1 + \cdots + p_{k-1} = 1 \) and \(\hat{f}(\cdot) \) has unit area

\[
\int_a^b \hat{f}(x) \, dx = \cdots = \sum_{j=0}^{k-1} p_j = 1
\]
Consider the two integrals
\[\int_{a}^{b} x \hat{f}(x) \, dx \quad \text{and} \quad \int_{a}^{b} x^2 \hat{f}(x) \, dx \]

Because \(\hat{f}(\cdot) \) is piecewise constant, integrals become summations
\[
\int_{a}^{b} x \hat{f}(x) \, dx = \cdots = \sum_{j=0}^{k-1} m_j p_j
\]
\[
\int_{a}^{b} x^2 \hat{f}(x) \, dx = \cdots = \left(\sum_{j=0}^{k-1} m_j^2 p_j \right) + \frac{\delta^2}{12}
\]

Continuous-data histogram mean, standard deviation are defined in terms of these integrals.
Continuous-data histogram mean and standard deviation:

\[\bar{x} = \int_{a}^{b} x \hat{f}(x) \, dx \quad \quad s = \sqrt{\int_{a}^{b} (x - \bar{x})^2 \hat{f}(x) \, dx} \]

\(\bar{x} \) and \(s \) can be evaluated exactly by summation

\[\bar{x} = \sum_{j=0}^{k-1} m_j p_j \]

\[s = \sum_{j=0}^{k-1} \frac{(m_j - \bar{x})^2 p_j}{12} + \frac{\delta^2}{12} \quad \text{or} \quad s = \sum_{j=0}^{k-1} m_j^2 p_j - \bar{x}^2 + \frac{\delta^2}{12} \]

Some choose to ignore the \(\frac{\delta^2}{12} \) term
Continuous-data histogram \(\bar{x}, s \) will differ slightly from sample \(\bar{x}, s \)

Quantization error associated with binning of continuous data

If difference is not slight, \(a, b, \) and \(k \) (or \(\delta \)) should be adjusted

Example 4.3.3: 1000-point Buffon sample

Let \(a = 0.0, b = 2.0, \) and \(k = 20 \)

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>Histogram</th>
<th>Histogram with (\delta = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>1.135</td>
<td>1.134</td>
</tr>
<tr>
<td>(s)</td>
<td>0.424</td>
<td>0.426</td>
</tr>
</tbody>
</table>

Essentially no impact of \(\delta^2/12 \) term
Algorithm 4.3.1

```c
long count[k];
\delta = (b - a) / k;
n = 0;
for (j = 0; j < k; j++)
    count[j] = 0; /* initialize bin counters */
outliers.lo = outliers.hi = 0;
while (more data ) {
    x = GetData();
    n++;
    if ((a <= x) and (x < b)) {
        j = (long) (x - a) / \delta;
        count[j]++; /* increment bin counter */
    }
    else if (a > x)
        outliers.lo++;
    else
        outliers.hi++;
}
return n, count[], outliers; /* p_j = (count[j] / n) */
```
Example 4.3.4: Using cdh

- Use cdh to process first $n = 1000$ wait times
- $(a, b, k) = (0.0, 30.0, 30)$

Effective width $\hat{f}(w)$

Histogram $\bar{x} = 4.57$ and $s = 4.65$
Continuous-Data Histograms

Point Estimation

- Inherent uncertainty in any MC simulation derived estimate
- Four-fold increase in replications yields a two-fold decrease in uncertainty (e.g., craps)
- As \(n \to \infty \), a DDH will look like a CDH
- As such, natural to treat the discrete data as continuous to experiment with uncertainty
- You can use \texttt{cdh} on discrete data
 - You cannot use \texttt{ddh} on continuous data
Example 4.3.5: The Square-Root Rule

- \(n = 1000 \) estimates of craps for \(N = 25 \) plays

\[(a, b, k) = (0.18, 0.82, 16) \]

\[N = 25 \]

- Note these are density estimates, not relative frequency estimates
- As \(N \to \infty \), histogram will become taller and narrower
- Centered on mean, consistent with \(\int_0^1 \hat{f}(p) \, dp = 1 \)
Example 4.3.5: The Square-Root Rule

Four-fold increase in N yields two-fold decrease in uncertainty
Random Events, Exponential Inter-Events

- Generate \(n \) random events via calls to \(\text{Uniform}(0, t) \) with \(t > 0 \)
- Sort the event times in increasing order
 \[
 0 < u_1 < u_2 < \cdots < u_n < t
 \]
- With \(u_0 = 0 \), define the inter-event times as
 \[
 x_i = u_i - u_{i-1} \quad i = 1, 2, \ldots, n
 \]
- Let \(\mu = t/n \) and note that the sample mean is approximately \(\mu \)
 \[
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{u_n - u_0}{n} \approx \frac{t}{n} = \mu
 \]
A histogram of the inter-event times x_i has exponential shape.

Smallest inter-event times are the most likely.

As $n \to \infty$ and $\delta \to 0$, $\hat{f}(x) \to f(x) = \frac{1}{\mu} \exp(-x/\mu)$.
Drawback of CDH: need to choose k

Two different choices for k can give quite different histograms

Estimated cumulative distribution function for random variable X:

$$\hat{F}(x) = \frac{\text{the number of } x_i \in S \text{ for which } x_i \leq x}{n}$$

Empirical cumulative distribution function: plot of $\hat{F}(x)$ versus x

With an empirical CDF, no parameterization required

However, must store all the data and then sort
Example 4.3.7: An Empirical CDF

- $n = 50$ observations of the needle from Buffon

- Upward step of $1/50$ for each of the values generated

\[\hat{F}(x) \]
Continuous Data Histogram:
- Superior for detecting *shape* of distribution
- Arbitrary parameter selection is not ideal

Empirical Cumulative Distribution Function:
- Nonparametric, therefore less prone to sampling variability
- Shape is less distinct than that of a CDH
- Requires storing and sorting entire data set
- Often used for statistical “goodness-of-fit” tests
Example 4.3.8: Combining CDH and Empirical CDF

- Increase to $n = 1\,000\,000\,000$ samples from Buffon
- Use 200 equal-width bins (a la CDH) to create an empirical CDF

Very smooth curve — close to theoretical CDF