Discrete-Event Simulation:

A First Course

Section 6.1: Discrete Random Variables

Section 6.1: Discrete Random Variables

- A random variable X is discrete if and only if its set of possible values \mathcal{X} is finite or, at most, countably infinite
- A discrete random variable X is uniquely determined by
- Its set of possible values \mathcal{X}
- Its probability density function (pdf):

A real-valued function $f(\cdot)$ defined for each $x \in \mathcal{X}$ as the probability that X has the value x

$$
f(x)=\operatorname{Pr}(X=x)
$$

By definition,

$$
\sum_{x} f(x)=1
$$

Examples

- Example 6.1.1 X is Equilikely (a, b)
$|\mathcal{X}|=b-a+1$ and each possible value is equally likely

$$
f(x)=\frac{1}{b-a+1} \quad x=a, a+1, \ldots, b
$$

- Example 6.1.2 Roll two fair face

If X is the sum of the two up faces, $\mathcal{X}=\{x \mid x=2,3, \ldots, 12\}$
From example 2.3.1,

$$
f(x)=\frac{6-|7-x|}{36} \quad x=2,3, \ldots, 12
$$

Example 6.1.3

- A coin has p as its probability of a head
- Toss it until the first tail occurs
- If X is the number of heads, $\mathcal{X}=\{x \mid x=0,1,2, \ldots\}$ and the pdf is

$$
f(x)=p^{\times}(1-p) \quad x=0,1,2, \ldots
$$

- X is $\operatorname{Geometric}(p)$ and the set of possible values is infinite
- Verify that $\sum_{x} f(x)=1$:

$$
\sum_{x} f(x)=\sum_{x=0}^{\infty} p^{x}(1-p)=(1-p)\left(1+p+p^{2}+p^{3}+p^{4}+\cdots\right)=1
$$

Cumulative Distribution Function

- The cumulative distribution function(cdf) of the discrete random variable X is the real-valued function $F(\cdot)$ for each $x \in \mathcal{X}$ as

$$
F(x)=\operatorname{Pr}(X \leq x)=\sum_{t \leq x} f(t)
$$

- If X is Equilikely (a, b) then the cdf is

$$
F(x)={ }_{t=a} 1 /(b-a+1)=(x-a+1) /(b-a+1) \quad x=a, a+1, \ldots, b
$$

- If X is $\operatorname{Geometric(p)}$ then the cdf is

$$
F(x)=p_{t=0}^{x} p^{t}(1-p)=(1-p)\left(1+p+\cdots+p^{x}\right)=1-p^{x+1} \quad x=0,1,2, \ldots
$$

Example 6.1.5

- No simple equation for $F(\cdot)$ for sum of two dice
- $|\mathcal{X}|$ is small enough to tabulate the cdf

Relationship Between cdfs and pdfs

- A cdf can be generated from its corresponding pdf by recursion

For example, $\mathcal{X}=\{x \mid x=a, a+1, \ldots, b\}$

$$
\begin{aligned}
& F(a)=f(a) \\
& F(x)=F(x-1)+f(x) \quad x=a+1, a+2, \ldots, b
\end{aligned}
$$

- A pdf can be generated from its corresponding cdf by subtraction

$$
\begin{aligned}
& f(a)=F(a) \\
& f(x)=F(x)-F(x-1) \quad x=a+1, a+2, \ldots, b
\end{aligned}
$$

- A discrete random variable can be defined by specifying either its pdf or its cdf

Other cdf Properties

- A cdf is strictly monotone increasing: if $x_{1}<x_{2}$, then $F\left(x_{1}\right)<F\left(x_{2}\right)$
- The cdf values are bounded between 0.0 and 1.0
- Monotonicity of $F(\cdot)$ is the basis to generate discrete random variates in the next section

Mean and Standard Deviation

- The mean μ of the discrete random variable X is

$$
\mu=\sum_{x} x f(x)
$$

- The corresponding standard deviation σ is

$$
\sigma=\sqrt{\sum_{x}(x-\mu)^{2} f(x)} \quad \text { or } \quad \sigma=\sqrt{\left(\sum_{x} x^{2} f(x)\right)-\mu^{2}}
$$

- The variance is σ^{2}

Examples

- If X is Equilikely (a, b) then the mean and standard deviation are

$$
\mu=\frac{a+b}{2} \quad \text { and } \quad \sigma=\sqrt{\frac{(b-a+1)^{2}-1}{12}}
$$

When X is Equilikely $(1,6), \mu=3.5$ and $\sigma=\sqrt{\frac{35}{12}} \cong 1.708$

- If X is the sum of two dice then

$$
\mu=\sum_{x=2}^{12} x f(x)=7 \quad \text { and } \quad \sigma=\sqrt{\sum_{x=2}^{12}(x-\mu)^{2} f(x)}=\sqrt{35 / 6} \cong 2.415
$$

Another Example

- If X is $\operatorname{Geometric}(p)$ then the mean and standard deviation are

$$
\begin{aligned}
\mu & =\sum_{x=0}^{\infty} x f(x)=\sum_{x=1}^{\infty} x p^{x}(1-p)=\cdots=\frac{p}{1-p} \\
\sigma^{2} & =\left(\sum_{x=0}^{\infty} x^{2} f(x)\right)-\mu^{2}=\left(\sum_{x=1}^{\infty} x^{2} p^{x}(1-p)\right)-\frac{p^{2}}{(1-p)^{2}} \\
& \vdots \\
\sigma^{2} & =\frac{p}{(1-p)^{2}} \\
\sigma & =\frac{\sqrt{p}}{(1-p)}
\end{aligned}
$$

Expected Value

- The mean of a random variable is also known as the expected value
- The expected value of the discrete random variable X is

$$
E[X]=\sum_{x} x f(x)=\mu
$$

- Expected value refers to the expected average of a large sample $x_{1}, x_{2}, \ldots, x_{n}$ corresponding to $X: \bar{x} \rightarrow E[X]=\mu$ as $n \rightarrow \infty$.
- The most likely value x (with largest $f(x)$) is the mode, which can be different from the expected value

Example 6.1.10

- Toss a fair coin until the first tail appears
- The most likely number of heads is 0
- The expected number of heads is 1
- 0 occurs with probability $1 / 2$ and 1 occurs with probability 1/4

The most likely value is twice as likely as the expected value

- For some random variables, the mean and mode may be the same

For the sum of two dice, the most likely value and expected value are both 7

More on Expectation

- Define function $h(\cdot)$ for all possible values of X $h(\cdot): \mathcal{X} \rightarrow \mathcal{Y}$
- $Y=h(X)$ is a new random variable, with possible values \mathcal{Y}
- The expected value of Y is

$$
E[Y]=E[h(X)]=\sum_{x} h(x) f(x)
$$

Note: in general, this is not equal to $h(E[X])$

Example 6.1.11

- If $y=(x-\mu)^{2}$ with $\mu=E[X]$,

$$
E[Y]=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x)=\sigma^{2}
$$

- If $y=x^{2}-\mu^{2}$,

$$
E[Y]=E\left[X^{2}-\mu^{2}\right]=\sum_{x}\left(x^{2}-\mu^{2}\right) f(x)=\left(\sum_{x} x^{2} f(x)\right)-\mu^{2}=\sigma^{2}
$$

- So that $\sigma^{2}=E\left[X^{2}\right]-E[X]^{2}$
- $E\left[X^{2}\right] \geq E[X]^{2}$ with equality if and only if X is not really random

Example 6.1.12

- If $Y=a X+b$ for constants a and b,

$$
E[Y]=E[a X+b]=\sum_{x}(a x+b) f(x)=a\left(\sum_{x} x f(x)\right)+b=a E[X]+b
$$

- Suppose
- X is the number of heads before the first tail
- Win $\$ 2$ for every head and let Y be the amount you win
- The possible values Y you win are defined by

$$
y=h(x)=2 x \quad x=0,1,2, \ldots
$$

- Your expected winnings are

$$
E[Y]=E[2 X]=2 E[X]=2
$$

Discrete Random Variable Models

- A random variable is an abstract, but well defined, mathematical object
- A random variate is an algorithmically generated possible value of a random variable
- For example, the functions Equilikely and Geometric generate random variates corresponding to $\operatorname{Equilikely}(a, b)$ and $\operatorname{Geometric}(p)$ random variables, respectively

Bernoulli Random Variable

- The discrete random variable X with possible values $\mathcal{X}=\{0,1\}$
- $X=1$ with probability p and $X=0$ with probability $1-p$
- The pdf: $f(x)=p^{x}(1-p)^{1-x}$ for $x \in \mathcal{X}$
- The cdf: $F(x)=(1-p)^{1-x}$ for $x \in \mathcal{X}$
- The mean: $\mu=0 \cdot(1-p)+1 \cdot p=p$
- The variance: $\sigma^{2}=(0-p)^{2}(1-p)+(1-p)^{2} p=p(1-p)$
- The standard deviation: $\sigma=\sqrt{p(1-p)}$

Bernoulli Random Variate

- To generate a $\operatorname{Bernoulli}(p)$ random variate

```
Generating a Bernoulli Random Variate
if (Random()< 1.0-p)
    return 0;
else
    return 1;
```

- Monte Carlo simulation that uses n replications to estimate an unknown probability p is equivalent to generating an iid sequence of $n \operatorname{Bernoulli}(p)$ random variates

Example 6.1.14

- Pick-3 Lottery: pick a 3-digit number between 000 and 999
- Costs $\$ 1$ to play the game and wins $\$ 500$ if a player matches the 3-digit number chosen by the state
- Let $Y=h(X)$ be the player's yield

$$
h(x)= \begin{cases}-1 & x=0 \\ 499 & x=1\end{cases}
$$

- The player's expected yield is

$$
E[Y]=\sum_{0}^{1} h(x) f(x)=h(0)(1-p)+h(1) p=\cdots=-0.5
$$

Binomial Random Variable

- A coin has p as its probability of a head and toss this coin n times
- Let X be the number of heads; X is a $\operatorname{Binomial}(n, p)$ random variable
- $\mathcal{X}=\{0,1,2, \cdots, n\}$ and the pdf is

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2, \cdots, n
$$

- n tosses of the coin generate an iid sequence $X_{1}, X_{2}, \cdots, X_{n}$ of $\operatorname{Bernoulli}(p)$ random variables and $X=X_{1}+X_{2}+\cdots+X_{n}$

Verify that $\sum_{x} f(x)=1$

- Binomial equation

$$
(a+b)^{n}=\sum_{x=0}^{n}\binom{n}{x} a^{x} b^{n-x}
$$

- In the particular case where $a=p$ and $b=1-p$

$$
1=(1)^{n}=(p+(1-p))^{n}=\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Mean and Variance of Binomial($n, p)$

- The mean is

$$
\begin{aligned}
\mu=E[X] & =\sum_{x=0}^{n} x f(x)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}
\end{aligned}
$$

Let $m=n-1$ and $t=x-1$

$$
\mu=n p \sum_{t=0}^{m} \frac{m!}{t!(m-t)!} p^{t}(1-p)^{m-t}=n p(p+(1-p))^{m}=n p(1)^{m}=n p
$$

- The variance is

$$
\sigma^{2}=E\left[X^{2}\right]-\mu^{2}=\left(\sum_{x=0}^{n} x^{2} f(x)\right)-\mu^{2}=\cdots=n p(1-p)
$$

Pascal Random Variable

- A coin has p as its probability of a head and toss this coin until the $n^{\text {th }}$ tail occurs
- If X is the number of heads, X is a $\operatorname{Pascal}(n, p)$ random variable
- $\mathcal{X}=\{0,1,2, \ldots\}$ and the pdf is

$$
f(x)=\binom{n+x-1}{x} p^{x}(1-p)^{n} \quad x=0,1,2, \ldots
$$

Pascal Random Variable ctd.

- Negative binomial expansion:

$$
(1-p)^{-n}=1+\binom{n}{1} p+\binom{n+1}{2} p^{2}+\cdots+\binom{n+x-1}{x} p^{x}+\cdots
$$

- Prove that the infinite pdf sum converges to 1

$$
\sum_{x=0}^{\infty}\binom{n+x-1}{x} p^{x}(1-p)^{n}=(1-p)^{n}(1-p)^{-n}=1
$$

- It can also be shown that

$$
\begin{aligned}
\mu & =E[X]=\sum_{x=0}^{\infty} x f(x)=\cdots=\frac{n p}{1-p} \\
\sigma^{2} & =E\left[X^{2}\right]-\mu^{2}=\left(\sum_{x=0}^{\infty} x^{2} f(x)\right)-\mu^{2}=\cdots=\frac{n p}{(1-p)^{2}}
\end{aligned}
$$

Example 6.1.17

- If $n>1$ and $X_{1}, X_{2}, \ldots, X_{n}$ is an iid sequence of n Geometric (p) random variables, the sum is a Pascal (n, p) random variable
- For example,if $n=4$ and p is large, a head/tail sequence might be

$$
\begin{gathered}
\underbrace{\text { hhhhhtt }}_{x_{1}=6} \underbrace{\text { hhhhhhhh }}_{x_{2}=9} \underbrace{\text { hhhht }}_{x_{3}=4} \underbrace{\text { hhhhhhht }}_{x_{4}=7} \\
X=x_{1}+X_{2}+X_{3}+x_{4}=26
\end{gathered}
$$

- We see that a Pascal(n, p) random variable is the sum of iid Geometric(p) random variables

Poisson Random Variable

- Poisson (μ) is a limiting case of $\operatorname{Binomial}(n, \mu / n)$
- Fix μ and x as $n \rightarrow \infty$

$$
f(x)=\frac{n!}{x!(n-x)!} \quad \frac{\mu}{n}^{x} 1-\frac{\mu}{n}^{n-x}=\frac{\mu^{x}}{x!} \quad \frac{n!}{(n-x)!(n-\mu)^{x}} \quad 1-\frac{\mu}{n}{ }^{n}
$$

It can be shown that

$$
\lim _{n \rightarrow \infty} \frac{n!}{(n-x)!(n-\mu)^{x}}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} 1-\frac{\mu}{n}^{n}=\exp (-\mu)
$$

So that

$$
\lim _{n \rightarrow \infty} f(x)=\frac{\mu^{x}}{x!} \exp (-\mu)
$$

