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e describe the ETAQA (efficient technique for the solution of quasi birth-death processes) approach for

the exact analysis of M/G/1 and GI/M/1-type processes, and their intersection, i.e., quasi birth-death
processes. ETAQA exploits the repetitive structure of the infinite portion of the chain and derives a finite
system of linear equations. In contrast to the classic techniques for solution of such systems, the solution of
this finite linear system does not provide the entire probability distribution of the state space, but simply allows
calculation of the aggregate probability of a finite set of classes of states from the state space, appropriately
defined. Nonetheless, these aggregate probabilities allow for computation of a rich set of measures of interest
such as the system queue length or any of its higher moments. The proposed solution approach is exact and, for
the case of M/G/1-type processes, compares favorably to the classic methods as shown by detailed time and
space complexity analysis. Detailed experimentation further corroborates that ETAQA provides significantly less
expensive solutions when compared to the classic methods.
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1. Introduction

Matrix-analytic techniques, pioneered by Neuts (1981,
1989) provide a framework that is widely used for
exact analysis of a general and frequently encoun-
tered class of queueing models. In these models, the
embedded Markov chains are two-dimensional gener-
alizations of elementary GI/M/1 and M/G/1 queues
(Kleinrock 1975) and their intersection, i.e., quasi
birth-death (QBD) processes. GI/M/1 and M/G/1
queues model systems with interarrival and service
times characterized by general distributions rather
than simple exponentials and are often used as the
modeling tool of choice in modern computer and
communication systems (Nelson 1995, Ramaswami
and Wang 1996; Squillante 1998, 2000). As a conse-
quence, various analytic methodologies for their solu-
tion have been developed by Neuts (1989), Latouche
(1993), Latouche and Stewart (1995), Meini (1998), and
Grassman and Stanford (2000).

In this paper, we present ETAQA, an analytic solu-
tion technique for the exact analysis of M/G/1-type,
GI/M/1-type Markov chains, and their intersection,
i.e., quasi birth-death processes. Neuts (1981) defines
various classes of infinite-state Markov chains with
a repetitive structure. In all cases, the state space
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& is partitioned into the boundary states #© =
(s9,..., 50} and the sets of states representing each
repetitive level ¥V = {SY), ., s, for j > 1. For the
M/G/1-type Markov chains, the infinitesimal gener-
ator Q,;,6;1 has upper block Hessenberg form and
Neuts (1989) proposes matrix-analytic methods for
their solution. The key in the matrix-analytic solution
is computation of an auxiliary matrix G. Similarly,
for Markov chains of the GI/M/1-type, the infinites-
imal generator has a lower block Hessenberg form,
and Neuts (1981) proposes the very elegant matrix-
geometric solution. QBD processes with a block tri-
diagonal infinitesimal generator can be solved using
either methodology, but matrix geometric is the pre-
ferred one (see Latouche and Ramaswami 1999).

The traditional matrix-analytic algorithms were de-
veloped based on the concept of stochastic comple-
mentation, as explained in Riska and Smirni (2002b)
and provide a recursive function for computation of
the probability vector @ that corresponds to &0,
for j > 1. This recursive function is based on G (for
the case of M/G/1-type processes) or R (for the case
of GI/M/1-type processes). Iterative procedures are
used for determining G or R (see details in Latouche
1993 and Meini 1998). For more details on stochastic
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complementation and its application for the devel-
opment of matrix-analytic algorithms, see Riska and
Smirni (2002b).

ETAQA (which stands for the efficient technique for
the analysis of QBD processes by aggregation) was
first introduced in Ciardo and Smirni (1999) for solu-
tion of a limited class of QBD processes. This lim-
ited class allowed the return from level #U*D to level
FW, j>1, to be directed toward a single state only.
This same result was extended in Ciardo et al. (2004)
for solution of M/G/1-type processes with the same
restriction, i.e., returns from any higher level #U™ in
the Markov chain to its lower level ¥V have to be
directed to a single state only.

In this paper, we adapt the ETAQA approach
for solution of general processes of the M/G/1-type,
GI/M/1-type, as well as QBDs, ie., we relax the
above strong assumption of returns to a single state
only, and provide a general solution approach that
works for any type of returns to the lower level, i.e.,
transitions from any state in level #U*D to any state
in level ¥, j > 1 are allowed. In contrast to the
matrix-analytic techniques for solving M/G/1-type
and GI/M/1-type processes that use a recursive func-
tion for computation of the probability vectors of each
level, ETAQA uses a different treatment: It constructs
and solves a finite linear system of m +2n unknowns,
where m is the number of states in the boundary por-
tion of the process and n is the number of states in
each of the repetitive “levels” of the state space, and
obtain an exact solution. Instead of evaluating the sta-
tionary probability distribution of all states in each
of the repetitive levels #V) of the state space &, we
calculate the aggregate stationary probability distribu-
tion of n classes of states 7%, 1 <i <n, appropriately
defined (see Figure 1). This approach could be per-
ceived as similar to lumpability since an aggregate
probability distribution is computed, or perhaps also
stochastic complementation. We stress that the finite
system of m 4 2n linear equations that ETAQA pro-
vides is not an infinitesimal generator, so aggregation
of the infinite set & into a finite number of classes of
states does not result in a Markov chain, so it cannot
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be considered similar to any lumpability of stochastic
complementation techniques.

Yet, computation of the aggregate probability dis-
tribution that we compute with our method is exact.
Furthermore, this aggregate probability distribution
provides the means for calculating a variety of mea-
sures of interest, including the expected queue length
and any of its higher moments. Although ETAQA
does not allow for exact calculation of the queue-
length distribution, it provides the means to compute
the coefficient of variation (via the second moment) as
well as the skewness of the distribution (via the third
moment), which in turn provide further information
about the queueing behavior of the system.

ETAQA results in solutions that are significantly
more efficient than those from traditional methods for
M/G/1-type processes. For QBD and GI/M/1-type
processes, ETAQA results in solutions that are as effi-
cient as the classic ones. We provide detailed big-O
complexity analysis of ETAQA and the most efficient
alternative methods. These results are further corrob-
orated via detailed experimentation.

An additional important issue is related to the
numerical stability of the method, especially for
M/G/1-type processes. Riska and Smirni (2002a), a
preliminary version of this paper that focused on
M/G/1-type processes only, provides experimental
indications that the method is numerically stable.
Here, we do not focus on numerical stability, but we
instead illustrate that the method generalizes to the
solution of M/G/1-type, GI/M/1-type, and QBD pro-
cesses of any type. Numerical stability of ETAQA and
its connection to matrix-analytic methods is explored
formally in Stathopoulos et al. (2005), where ETAQA’s
numerical stability is proved and shown to be often
superior to the alternative matrix-analytic solutions.

In Section 2 we outline the matrix-analytic meth-
ods for the solution of M/G/1-type, GI/M/1-type,
and QBD processes. ETAQA, along with detailed time
and storage complexity analysis for the solution of
M/G/1-type, GI/M/1-type, and QBD processes is
presented in Sections 3, 4, and 5, respectively. We
experimentally compare its efficiency with the best

Aggregation of an Infinite & into a Finite Number of Classes of States
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known methods in a set of realistic examples (see Sec-
tion 6) for the case of M/G/1-type processes. Finally,
we summarize our findings and report on ETAQA's
efficiency in Section 7.

2. Background

We assume continuous time Markov chains, or
CTMC s, so we refer to the infinitesimal generator Q,
but our discussion applies just as well to discrete-
time Markov chains, or DTMCs. Neuts (1981) defines
various classes of infinite-state Markov chains with
a repetitive structure. In all cases, the state space
& is partitioned into the boundary states ¥© =
(s, ..., s} and the sets of states #0) = {SY), s,
for j > 1, while w© and ') are the stationary proba-
bility vectors for states in #© and ¥V, for j > 1.

2.1. M/G/1-Type Processes
For the class of M/G/1-type Markov chains, the
infinitesimal generator Q,;,;/; is block-partitioned as

L. FO F@ FB F@ ...
L FO F@ FO
B L FO F@ ... [. (1)

0 B L FO

Qum/cn =

©c o W

“L,” “F” and “B” describe “local,” “forward,” and
“backward” transition rates, respectively, in relation
to a set of states #U) for j > 1, and a “*” indicates
matrices related to #©.

For solution of M/G/1-type processes, several algo-
rithms exist in Grassman and Stanford (2000), Bini
et al. (2000), Meini (1998), and Neuts (1989). These
algorithms first compute G as the solution of the
matrix equation

B+LG+ ) FVG/™ =0. ()
j=1

The matrix G, which is stochastic if the process is
recurrent and irreducible, has an important proba-
bilistic interpretation: Entry (k,[) in G is the condi-
tional probability of the process first entering U~
through state [, given that it starts from state k of
&1, as defined in Neuts (1989, p. 81). The probabilis-
tic interpretation of G is the same for both DTMCs
and CTMCs. The interpretation in Neuts (1989, p. 81)
is consistent with the discussion in Latouche and
Ramaswami (1999, p. 142), where CTMCs are taken
into consideration. G is obtained by solving (2) itera-
tively. However, recent advances show that comput-
ing G is more efficient when displacement structures

are used based on representation of M/G/1-type pro-
cesses by QBD processes, as discussed in Meini (1998),
Bini et al. (2000), Bini and Meini (1998), and Latouche
and Ramaswami (1999). The most efficient algorithm
to compute G is the cyclic reduction in Bini et al.
(2000).

Calculation of the stationary probability vector
is based on Ramaswami’s (1988) recursive formula,
which is numerically stable because it entails only
additions and multiplications. Neuts (1989) and Rama-
swami (1988) suggest that subtractions on such formu-
las could be numerically unstable. Ramaswami’s for-
mula defines the following recursion among stationary
probability vectors @'/ for j > 0:

-1
) (T,(f»g(j) +3 1T<k>5(jk)) SO vix1, (3)
k=1

where S and S are defined as

§0 =Y ROGH, j=1,
=i

SPV=3"F'G"/, j>0 (letting FO=L). (4
I=j

Given the above definition of @) and the normal-
ization condition, a unique vector w(® can be obtained
by solving the following system of m linear equations:

o0 00 -1
=© [(i _ §<1>s(°>_11§)° 117 - (Z gm) (Z s<f>> 1T]
j=1 j=0

=[0]1], ©)
where “°” indicates that we discard one (any) column
of the corresponding matrix, since we added a column
representing the normalization condition. Once w(© is
known, we can then iteratively compute w") for j > 1,
stopping when the accumulated probability mass is
close to one. After this point, measures of interest can
be computed. Since the relation between ) for j > 1
is not straightforward, computing measures of inter-
est requires generation of the whole stationary proba-
bility vector. For a limited set of measures of interest
such as first and second moments of queue length,
Lucantoni (1983) proposes closed-form (but complex)
formulas that do not require knowledge of the entire
vector .

Meini (1997a) gives an improved version of Rama-
swami’s formula. Once w© is known using (5),
the stationary probability vector is computed using
matrix-generating functions associated with triangu-
lar Toeplitz matrices. A Toeplitz matrix has equal ele-
ments in each of its diagonals, which makes them
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easier to handle than general matrices. These matrix-
generating functions are computed efficiently using
fast Fourier transforms (FFTs):

70 = by~
. ot (6)
7l = —gl-DzYy-1 j>2,
where @) = [#®, ..., 7a®] and 7@ = [gCE-D+D

w#)] for i > 2. Matrices Y, Z, and b are

FsO® g g@ Sr-1 7]
0 SO g Sr-2)
Y=| 0 0 SO Sr-3 |,
| 0 0 o ... SO )
r sk o .- 0 0 ]
skr-1) gk ... 0 0
Z= ,
s g® ... §b 0
s g sr-1) g
rgm’
S@

where p is a constant that defines how many of matri-
ces SO and S are computed. In the above repre-
sentation, the matrix Y is an upper block-triangular
Toeplitz matrix and the matrix Z is a lower block-
triangular Toeplitz matrix.

2.2. GI/M/1-Type Processes
For GI/M/1-type Markov chains, the infinitesimal
generator Qg;/y/; is block-partitioned as

?)

Mmoo © o

0
0
Qcimpn = B® B® L F
L

Key to the general solution of the generator in (7) is
the fact that the following geometric relation holds

among the stationary probability vectors =) and ="
for states in FV:

) = TT(l)Rj_l, Vj >1, (8)

where R is the solution of the matrix equation

F+RL+) R*'B® =0, )
k=1

and can be computed using iterative numerical algo-
rithms. Matrix R, the geometric coefficient, has an
important probabilistic interpretation: Entry (k, ) of R
is the expected time spent in state | of ¥, before the
first visit into #(~1, expressed in time units A’, given
the starting state is k in #¢~D. A’ is the mean sojourn
time in state k of D for i > 2, as defined in Neuts
(1981, pp. 30-35). Latouche (1993) describes several
iterative numerical algorithms for computation of R.
The normalization condition and (9) are then used to
obtain @w® and w® by solving the following system
of m + n equations:

[11(0),11(1)]
Le F 17
. |: (Z}?:l Rk_lﬁ(k))o L+Zlio=1 RkB(k) (I_R)—llT j|
=[0]1]. (10)

For k > 1, w® can be obtained numerically from
(8). More importantly, useful performance metrics are
computed exactly in explicit form. For example, aver-
age queue length is computed using =w»(I—R)~217.

2.3. Quasi Birth-Death Processes

Intersection of GI/M/1-type and M/G/1-type pro-
cesses is the special case of the quasi birth-death
(QBD) processes, whose infinitesimal generator Qg
is of the block tri-diagonal form

rl)

0 0

QQBD = (11)

o o W
o W - m
m o © ©

F 0
L F
B L

While the QBD case falls under both M/G/1 and
GI/M/1-type processes, it is most commonly asso-
ciated with GI/M/1-type matrices because it can
be solved using the well-known matrix-geometric
approach introduced in Neuts (1981) (which we out-
lined in Section 2.2), and provides simple closed-
form formulas for measures of interest such as the
expected queue length. In the case of QBD processes,
(9) reduces to the matrix-quadratic equation

F+RL+R’°B=0. (12)
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QBD processes have been studied extensively and sev-
eral fast algorithms have been proposed for solution
of (12), most notably the logarithmic-reduction algo-
rithm, proposed by Latouche and Ramaswami (1999).
Ramaswami and Latouche (1986) and Ramaswami
and Wang (1996) identify several cases that allow for
explicit computation of R. Once R is known, w® and
V) are obtained by solving the following system of
m+ n equations:

A

F
L+RB

lT
I-R)"17

Le

[11(0), 1.‘.(1)] R
BO

}=[0|1]- (13)

Again, the average queue length is computed as in
the GI/M/1 case.

3. ETAQA Solution for M/G/1-Type

Processes

In Section 2.1, we described the matrix-analytic
method for solution of M/G/1-type processes. Here,
we present ETAQA, an aggregated technique that
computes only @, m¥, and the aggregated probabil-
ity vector @ = Y%, w. This approach is exact and
very efficient with respect to both its time and space
complexity (see Section 3.2).

Block partitioning of the infinitesimal generator
in (1) defines a block partitioning of the stationary
probability vector @ as @ = [w?, =@, «® . ] with
7@ e R" and =" € R", for i > 1. First, we rewrite the
matrix equality wQ,,,c, =0 as

=OL + =OB =0
aOFD) £ zOL 4+ z@B -0
aOF® 4 gOFO 4 g@OL 4+ 7OB =0

mOFO 1 mOFQ 4+ m@FD 1+ 0L+ m@B = 0

(14)

The first step toward solution of an M/G/1-type
process is computation of G. We assume that G is
available, i.e., it has been computed using an efficient
iterative method, e.g., the cyclic-reduction algorithm
of Bini et al. (2000), or that it can be explicitly obtained
if the process falls in one of the cases identified by

Ramaswami and Latouche (1986) and Ramaswami
and Wang (1996).

THEOREM 1. Given an ergodic CTMC with infinitesi-
mal generator Q1 having the structure (1), with sta-
tionary probability vector m = [w @, m®, =@, ], the
system of linear equations

XX =[1,0], (15)

where X € RU2mxm+2n) - defined as

17| L 1”:(1>_Z;i3§<i>(; (Z?izﬁ“)wLZ?igg“)GV
X=|1|B| L-Y,89G (L FO+305,89G) ,
17| 0| B-X2,89G | (2, F)+L+Y2, SOG)°

(16)

M, ™), where

admits a unique solution x = [w®, =
w0 =y ),

Proor. We first show that [w®, ), #™¥] is a solu-
tion of (15) by verifying that it satisfies four matrix
equations corresponding to the four sets of columns
we used to define X.

(i) The first equation is the normalization con-
straint:

w017 4+ 7017 4 71T =1, 17)

(ii) The second set of m equations is the first line
in (14):
mOL+wOB=0. (18)

(iii) The third set of n equations is derived begin-
ning from the second line in (14):

7 OFY 4 L+ w@B =0.

Because our solution does not compute mw® explic-
itly, we rewrite @@ such that it is expressed in terms
of ¥, «, and =™ only. By substituting w®® in the
above equation we obtain

7OF) 4 zOL 4 zWB - w)B=0.  (19)
j=3

To compute the sum -, w(), we use Ramaswami’s
recursive formula (3) and obtain

7 = _ (7080 4 7gMSO) | z@gM)(§®)-1
7 = _ (708 4 7SO L 7@SO | 7®gM)(5®)1
— (w986 4 zSH | zAgO)

+ 78D 4 mW8My (SO,

w0 —

(20)

where 8O, for i >3, and S%, for j > 0 are determined
using the definitions in (4).

From the definition of G in (2), it follows that
B=—(L+Y> FYG)G=-SOG. After summing all
equations in (20) by part and multiplying by B, we
obtain

i mB = <1T<0> i §0) 4 M i S 4 i ) i s<i>>

j=3 i=3 i=2 j=2 i=1

. (S(O))_ls(O)G,
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vO v oy yo ... U wao W@ WO
L| Fo | F@ | §O Y, O SOG| SWG | §9G
Bl L | FO| F@ > F® sOG | s®G | sWwG
0| B| L | FO L+Y7, FO SG | S@G | SOG
o o B| L B+L+Y 2, FO -B | SOG | S®@G
ol o| o| B B+L+Y7, FO 0 | -B | SWG
Y Z
FO — Y, SO G ¥, Fo 4 ¥, SHG
L-Y7, SOG! >z, FO 4+ ¥, SOG!
B-— Z?; SHG! L+ Zl?il FO 4+ Z;iz SOG
B->%, SHG! L+>%, FG@ +37, SOG
B->7, SOG! L+Y%, FO 4+ >, sHGi
Figure 2 The Blocks of Column Vectors Used to Prove Linear Independence

which further results in

3 @B =
j=3 i

SOG + = iS(i)G

i=2

e

Il
[

+a Y s0G.

i=1

1)

Substituting (21) into (19), we obtain the third set of
equations as a function of @@, ®®, and =™ only

() (f:m _ i §<f>G> L (L _ i 5(1‘)(;)
i=3

i=2

+ (B -y s<">G> =0.

i=1

(22)

(iv) Another set of n equations is obtained by sum-
ming all lines in (14) starting from the third line:

() i FO 4 i FO 4 i ) <L n i F(i))
i=1

i=2 i=1 j=2

Since Y 2 ; !B can be expressed as a function of @,
w, and =™ only as in (21), the above equation can
be rewritten as

() ( RO i gmG) 1 (i FO 4 i S“)G>
2 i=3 i=1 i=2

+ ™ (Z FO4+L+)" s“)G) =0. (23)
i=1

i=1

In steps (i) through (iv), we showed that the vector
[7©@, 7@, ™) satisfies (17), (18), (22), and (23), so it
is a solution of (15). Now we have to show that this
solution is unique. For this, it is enough to prove that
the rank of X is m + 2n by showing that its m + 2n
rows are linearly independent.

Since the process with infinitesimal generator
Q61 is ergodic, we know that 17 and the set of vec-
tors corresponding to all the columns of Q,,,¢,; except
any one of them, are linearly independent. We also
note that by multiplying a block column of Q,,;/; by
a matrix, we get a block column that is a linear combi-
nation of the columns of the selected block column. In
our proof, we use multiplication of the block columns
with powers of G.

We begin from the columns of the infinitesimal gen-
erator. In Figure 2, we show the blocks of column
vectors that we use in our proof. The blocks labeled
V@ for i > 0 are the original block columns of Q1.
The block U is obtained by summing all V® for i > 2:
U=Y2,V® Blocks WY for i > 1 are obtained by
multiplying the block columns V@ for j > i+ 2 with
the (j — i+ 1)th power of G and summing them

Z V(j+2)Gj7i+l/
j=i

WO = i>1,

which are used to define Y=V® — % W@ and Z=
U+3>72, W,

In X defined in (16), we use the three upper blocks
of VO, Y, and Z. We argue that the rank of the matrix
[VO|Y|Z] is m+2n —1 because we obtained Y and
Z respectively as linear combination of blocks V¥
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and V@ with the blocks W for i > 1, and none of
the columns used to generate W for i > 1 is from
either V@ or V@, Recall that Q,;, is an infinites-
imal generator, so the defect is one and the rank of
[VO|Y|Z] is exactly m+2n — 1. Substituting anyone
of these columns with a column of 1s, we obtain the
rank m+2n. O

3.1. Computing Measures of Interest for
M/G/1-Type Processes

We now consider the problem of obtaining station-
ary measures of interest once ©©, ®®, and w® have
been computed. Traditionally, such metrics can be
calculated using moment-generating functions, as in
Grassman and Stanford (2000).

Here, we consider measures that can be expressed
as the expected reward rate

r=y 3 o0,

j=0iex()

where p! is the reward rate of state s”. For example,
to compute the expected queue length in steady state,
where #0) represents the system states with j cus-
tomers in the queue, we let p(]) = j. To compute the
second moment of the queue length, we let p(]) 2.

Slnce our solution approach computes w®, «(¥, and
> °, w7, we rewrite r as

= ,n.(U)p(O)T + ,n.(l)p(l)T + Z ﬂ(j)p(j)T,
j=2

where p@ =[p, ..., pP and p? =[p?, ..., p¥], for
j > 1. Then, we must show how to compute the above
summation without explicitly using the values of ="/
for j > 2. We can do so if the reward rate of state sV,
forj>2andi=1,...,n,is a po ]ynomlal of degree k

in j with arbitrary coeff1c1ents 1 , al S, a

Vi>=2,Vie(l,2,...,n},

p! =al allj ... 4 aljk, (24)
The definition of p(]) illustrates that the set of mea-
sures of interest that we can compute includes any
moment of the probability vector w. The only met-
rics of interest that we cannot compute using our
aggregate approach are those whose reward rates p(])
for states s " have different coefficients in their poly-
nomial representation, for different inter-level index
j>2. The set of measures of interest that cannot
be computed by the following methodology seldom
arises in practice, since we expect that within each
inter-level of the repeating portion of the process the
states have similar probabilistic interpretation.

We compute 377, wp0T as

S m)pl)
j=2

=Y (@ +allj ... 4 a[k]]'k)T
j=2

Z O]T_'_Z]ﬂ_ ) [T
j= j=2
() gI1IT
j=2
— (lOQ00T 4 HIQMIT 4y KT
and the problem is reduced to computation of !l =
P j'm¥, for 1=0,..., k.

We show how t*l, k > 0, can be computed recur-
sively, starting from rl%, which is simply =®. Multi-
plying (14) from the second line on by the appropriate
factor j* results in

2kmOFD 4 2k gl
3FaOFO 4 3l

L + 2*n@B =0

DEOD 4 3km@L 4 3tg®B =0

Summing these equations by parts, we obtain

03 (j 4+ 1)FD 4+ = (sz+ > +2)kF<f>>

j=1 j=1

gef £ def
+ 2w ( TG+ +1E0 + (1)L
h=2 j=1
+ i hE )
———
=rlk]

which can then be rewritten as

hé [(ZZ< )(f+1)lhk—’F(j))

j=11=0

k
+ (Z (?)1%“1)} +1B=—f—f.
1=0

Exchanging the order of summations, we obtain

k oo o0
3 (’;) 3 a k! <L +> G+ 1)’F<f>> +B=—f—f.

1=0 h=2 j=1

=rlk-1]

Finally, isolating the case / =0 in the outermost sum-
mation we obtain

=1

—f—f— i()r[Ml(LJri(jJrl)lF(/)),

=1 j=1
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which is a linear system of the form r"(B + L +
Y2, F0) = blkl, where the right-hand side bl*! is an
expression that can be effectively computed from w(©,
n, and the vectors r'¥ through r'*~!I. However, the
rank of B4+ L+ Y, F? is n— 1. This is true because
B+L+Y %, F¥ is an infinitesimal generator with rank
n —1, so the above system is under-determined. We
drop any of the columns of B+ L+ >, FY, result-
ing in X

!l (B +L+ ZFU)) = (bl")°, (25)

i=1

and obtain one additional equation for r'*! by using
the flow-balance equations between |J_,&" and
U1 ¢ for each j>1 and multiplying them by the
appropriate factor j*,

K

26O S FOT 4 2k S FO1T = 2k @ B1T
1=1

Il
8]

e

3@ S FO1T 4 350 Y FO17
1=2

(26)

Il
[

+ 3*m®@ Y FO1" = 3*\z®B1”
I=1

Let

=]

I=j

We then sum all lines in (26) and obtain

w0y Fp, g1 5 3+ 1) F 17
j=2

j=1
dé‘ff dé\ff
+ 3 w3+ 1) Fy 1T =Y fmB1T,
h=2 j=1 j=2
N—
—=rlkl

which, with steps analogous to those just performed
to obtain (25), can be written as

rH(E,  —B)1T =, (28)
where

A Kk >,
= —<fc +h+) (l)f[k” > 'Fo,j '1T>- (29)
1= j=1

Note that the n x n matrix
(B+L+Fp 1) | (Fy, 1 — B)1’ (30)

has full rank. This is true because B + L + F, q; is
an infinitesimal generator with rank 7 — 1, so has

a unique stationary probability vector y satisfying
v(B+L+Fp ;) =0. However, this same vector must
satisfy yB1" > vyFj; ;17 to ensure that the process
has positive drift toward #©, so is ergodic, and so
v(Fj iy — B)1" < 0, which shows that (Fj ;; — B)1"
cannot be possibly obtained as linear combination of
columns in B + L + F, q;; therefore the n x n matrix
defined in (30) has full rank.

So, we can compute t*l using (25) and (28), i.e.,
solving a linear system in n unknowns (of course, we
must do so first for =1, ...,k —1). As an example,
consider 11, which is used to compute measures such
as the first moment of the queue length. In this case,

bl — — (1‘:(0) S+ 1)FO 4 m® (ZL +3 G+ 2)1:(1')>

j=1 j=1

ra® (L+§:(j+1)F(j)>>,

j=1

and

el = — (ﬂ(o) Y jFo p+ w0 (G + DE
j=2 =1

+7® Y jF, ,.])1T.

j=1

In the general case that was considered here,
some measures might be infinite. For example, if the
sequences are summable but decrease only like 1/j"
for some h > 1, then the moments of order 1 — 1 or
higher for the queue length do not exist (are infinite).
From a practical point of view, we always store a
finite set of matrices from the sequences {F): j > 1)
and {F0: j > 1}, so the sums of type lA:[k,j]Aand Fii, i
for j > 1, k > 0 are always finite. When {FV): j > 1}
and {F%): j > 1} have a nicer relation, like a geometric
one, the treatment in this section can be modified to
simplify the different sums introduced here, and give
closed-form formulas.

3.2. Time and Storage Complexity

In this section, we present a detailed comparison of
ETAQA for M/G/1-type processes with the Matrix-
analytic method using the FFT implementation of
Ramaswami’s recursive formula as in Section 2.1.
The complexity analysis is within the accuracy of O-
notation. O*(x) denotes the time complexity of solv-
ing a linear system described by x nonzero entries,
and n{A} denotes the number of nonzero entries in A.
In the general case, n{F} and 7{F} mean n{U;_, F?}
and n{U/_, F"}, respectively.

Since practically, we cannot store an infinite num-
ber of matrices, we store up to p matrices of type FO)
and F¥, j > 1. Furthermore, for the matrix-analytic
method to reach the necessary accuracy, it is necessary
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to compute up to s block vectors w? of the stationary
probability vector .

We outline the required steps for each method and
analyze the computation and storage complexity of
each step up to the computation of the expected
queue length of the process. We do not include the
cost to compute the matrix G since both methodolo-
gies require the computation of G as a first step. G
should be computed with an efficient method like the
cyclic-reduction algorithm of Bini et al. (2000). Fur-
thermore, we do not consider the cost of computing
S® and S® for i > 0 since they are required in both
methodologies.

Analysis of ETAQA for M/G/1 processes is as fol-
lows

¢ Computation of the aggregate stationary proba-
bility vector w®, =, and =®

—O(p(mn{ﬁ, G} + nn{F,G})) to compute
y* . 8OG and Y7, S9UG for i > 1, and k =1,2,3,
whose sparsity depends directly on the sparsity of G,
F® and F% for i > 1.

—O(p(n{F} + n(F})) to compute 7, F? and
7, FO).

—O(n{B,L,L,F,F,G}) for the solution of the
system of m + 2n linear equations.

e Storage requirements for computation of @,
w0 and w®

—O(mn +n?) to store Y2, 8 and Y, SO,

—m +2n to store 7w, &, and w®.

¢ Computation of the expected queue length

—O(p(n{F} + 1{F})) to compute Y, *F? and
PN j*E0), where k is constant.

—O!(n{F, L, B}) for solution of the sparse system
of n linear equations.

Analysis of the M/G/1 matrix-analytic methodol-
ogy:

* Computation of the stationary probability vec-
tor @ R R

—O(p(mn{F, G} + nn{F, G})) to compute S? for
i>1and S® for i>0. R

—O(n® + mn{F, G} + nn{B}) to compute the
inverses of S© and 7, S? and additional multipli-
cations of full matrices.

—Ok(m?) to solve the system of m linear equa-
tions.

—O(pn® + sn* + plogp) (Meini 1997a) since the
FFT-based version of Ramaswami’s recursive formula
is used to compute the s vectors of the stationary
probability vector.

¢ Storage requirements for computation of =

—O(p(mn+n?)) to store all sums SO for i > 1 and
S® for i > 0.

—m to store @(©.

—sn to store w® for 1 <i < legs.

¢ Computation of the expected queue length:
O(sn).

The ETAQA solution is more efficient in both com-
putation and storage. In comparison to the matrix-
analytic solution, it entails only a few steps and is
thus much easier to implement. Because we do not
need to generate the whole stationary probability vec-
tor, s does not appear for ETAQA-M/G/1. Usually s
is several times higher than p or n.

Furthermore, since the ETAQA solution does not
introduce matrix inversion or multiplication, the spar-
sity of the original process is preserved, resulting in
significant savings in both computation and storage.
Sparsity of G is key for preserving sparsity of the orig-
inal process, in both methods. There are special cases
where G is very sparse (e.g.,, G is a single-column
matrix if B is single-column). In these cases, the sums
S® for i >1, and S® for i > 0 almost preserve the
sparsity of the original process and reduce computa-
tion and storage.

4. ETAQA Solution for GI/M/1-Type

Processes
We apply the same aggregation technique from Sec-
tion 3 to obtain the exact aggregate solution of
GI/M/1-type processes. Using the same block parti-
tioning of m allows us to rewrite the matrix equality

T"QGI/M/l =0as
7OL + S wBO =0

i=1

TOF + L + S @B =0
i=2

nOF + 7@ + iﬁmg(i—a —0 - (31)

i=3

7OF + 7L + Y aB0 =0

i=4

Assuming that R is available, we apply the same steps
as for the case of M/G/1-type processes and formu-
late the following theorem:

THEOREM 2. Given an ergodic CTMC with infinitesi-
mal generator Qg 1 having the structure (7), with sta-
tionary probability vector m = [w®, w®, 7@, ], the
system of linear equations

XX =[1, 0], (32)

where X € RU2mxm+2n) - defined as

17 i £ 0°
BO L F°
X=| 17 ,
i Y R2(1-R)B? | Y R1(I-R)B? <F+L+ZR”B<’>>
i=2 i=1 i=1

(33)
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admits a unique solution x = [w®, 7w, 7], where
7 = ),

Proor. (i) The first equation is the normalization
constraint:

w017 4+ 7017 4 71T =1, (34)

(ii) From the first line in (31), wOL + sOBO 4
>, OB = 0. Now ¥, aOBO = Zfiz(Z}”;, 7l —
Yrin w))B® and after simple derivations that
exploit the geometric relation of the stationary proba-
bility vectors w7, for j > 2, we obtain wOL+=MB® +
) Y2, R(I-R)B® =0.

(iif) From the second line of (31) and using simi-
lar derivations as in step (i), we get wOF + w(VL +
w3 R (I-R)BY =0.

(iv) By summing the remaining lines in (31),
wOF + w)(L + F) + 372, 372, wVBY? = 0. Express-
ing 37,3 %, w/BI™? as a function of w®, we get
aOF+a®(L+F+ Y7 R -BD)=0.

X has full rank because Qg;/y/; has a defect of one.
We obtained the second and third block columns in X
by keeping their respective first two upper blocks in
the first block column of Q51 and substituting the
remaining lower blocks with one block that results as
a linear combination of the remaining lower blocks
within the same block column of Q;,/;- We obtained
the fourth block column in X by keeping the first two
upper blocks from the third block column of Qg 1
and substituting the rest with one block that results
as a linear combination of the remaining lower blocks
of the third block column in Qg4 plus all remain-
ing blocks in Qg /1 (i-e., from the fourth block col-
umn of Qg1 onward). Substituting anyone of these
columns with a column of ones, we obtain the rank
m+2n. O

4.1. Computing Measures of Interest for
GI/M/1-Type Processes

For GI/M/1-type processes, as for M/G/1-type pro-

cesses, ETAQA allows computation of the reward rate

of state sf]), for j>2and i=1,...,n, if it is a poly-

nomial of degree k in j with arbitrary coefficients

a0 Q.

Vi>2,Vie(l,2,...,n}, p,(-j) =a¥0]+a[1]j+~-+a,[k]jk.

i
We follow the same steps as those in Section 3.1. ¥l
is obtained by solving the system of linear equations

] (Frie DROBY) | (0-R) SR

i=1 j=2i=j

+ Z Z Ri—lB(i) _ F>1T]

j=1 i=j

= [ | 9], (35)

where
bl = — <w(0>2’<f= + mM(2FL + 3%F)
ko rk
+>° (Z)r[k” (L+ ZZF)>
1=1
and

ko rk
K — _ ok OF [k
c ( T —i—Z(l)r

I=1

: (i i((i —2)'I-(i—1)'R)R?B?

j=2i=j

+ Z]] Z RiB(i+1) _ F)):[T'

=0 i=j

The n x n matrix in (35) has full rank, because the
proof follows the same steps as those in the proof of
Theorem 2.

4.2, Time and Storage Complexity
In this section, we present a detailed comparison of
our ETAQA solution with the matrix-geometric solu-
tion in Section 2.2. The complexity analysis is within
the accuracy of O-notation. We assume that up to p
of the B®, and B®, j > 1 matrices are stored. We out-
line the required steps for each method and analyze
the computation and storage complexity up to the
computation of the expected queue length. Since both
methods require R, we do not include this cost in our
analysis and assume that it is efficiently computed.

Analysis of ETAQA-GI/M/1 solution:

* Computation of the aggregate stationary proba-
bility vectors w®, w), and =™

—O(p(mn{ﬁ, R} + nn{B,R})) to compute
Y2, REFI-R)BD for j=1,2, and Y2, R7/(I-R)B®
for j=0, 1.

—O(n{L,F,B, L, B,R)}) to solve a system of m +
2n linear equations.

e Storage requirements for computation of w®,
w1, and w®

—O(mn + n?) to store Y2, R(I — R)B® for j =
1,2 and ¥, R=/(I-R)BY for j=0, 1.

—n? to store R.

—m +2n to store w©@, w@, and =w™.

¢ Computation of the queue length

—O"(n{F, L, B, R}) to solve a system of n linear
equations.

—O(p*(mn{B, R} + nn{B,R})) for the sums re-
quired to construct matrices of the system of linear
equations.

Analysis of matrix-geometric solution:
¢ Computation of the boundary stationary proba-
bility vectors w® and =@
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—O(p(mn{ﬁ, R} + nn{B,R})) to compute
Y2, RTBD for j=1,2 and Y, R/B® for j =0, 1.
—O(n®) to compute (I—R)~!
—OL(n{i, F,B,L,F,B, R}) to solve a system of
m+ n linear equations.
e Storage requirements for computation of w(©®
and w®
—O(mn+n?) to store Y2, R“/B® for j=1,2 and
Y2 RBY for j=0, 1.
—O(n?) to store R and (I-R)~1.
—m+n to store w® and w®
e Computation of queue length is O(n?) because it
calculates the closed-form formula: wVR(I — R)~217.
The appeal of the classic matrix-geometric method
is its simplicity. The geometric relation between
the vectors of the stationary probability distribution
allows for simple closed-form formulas for compu-
tation of measures of interest such as the expected
queue length. The ETAQA-GI/M/1 method performs
better when we are interested only in computation
of the probability vectors, depending on the system
sparsity, the size of the matrices, and the number of
stored matrices that capture the behavior of the whole
process, but not when we are interested in computing
measures of interest.

5. ETAQA for QBD Processes

QBD processes are essentially a subcase of both
M/G/1-type and GI/M/1-type processes and can
be therefore solved with either the matrix-analytic
method from Section 2.1 or the matrix-geometric
method from Section 2.2. Matrix-geometric is better
because it is simple and provides closed-form formu-
las for measures of interest such as expected queue
length. However, we solve QBDs using ETAQA-
M/G/1, because from the complexity analysis in Sec-
tions 3.2 and 4.2, ETAQA-M/G/1 is more efficient.
Assuming knowledge of G for a QBD process with
the infinitesimal generator as in (11), the aggregate
solution for the QBD process is as follows:

THEOREM 3. Given an ergodic CTMC with infinitesi-
mal generator Qqpp, having structure (11), with stationary
probability vector w = [w®, wV, w®, ], the system of
linear equations

=11,0], (36)
where X € RUH2mxm+2n) - defined as
17| L| F 0°
x=|1 8| L F . (37)
1" | 0 | B—-FG | (L+F+FG)°

admits a unique solution x = [w®, 7w, 7], where

7 =y ),

Proor. The steps are identical to those in the Proof
of Theorem 1, because QBDs are a special case of
M/G/1-type processes. O

5.1. Computing Measures of Interest for QBD
Processes

As in the M/G/1 case, ETAQA allqws the compu-

tation of the reward rate of state sf ), for j>2and

i=1,...,n,if it is a polynomial of[ kdegree k in j with

arbltrary coefficients l[ I a[u - ¥

), p% =alpallj g ol

Vji=2,Vie(l,2,...
We follow the same steps as in Section 3.1, albeit sig-
nificantly simplified. Observe that that ¥ is simply
n® while, for k > 0, 'l can be computed after obtain-
ing 1!l for 0 <1 <k, by solving the system of n linear
equations:
(B + L+ F)° = bl
(38)

rI(F - B)1" =M,

where

b = — <2kn<0>i= + 2kmDL 4 34w VF

ko rk
+>° (l) (2" F + r”‘”L)) and
1=

M= 2

k
FaOF1T - Y (?) *IF17.

=1

The rank of the system of linear equations in (38) is n,
since QBDs are a special case of M/G/1-type pro-
cesses.

We conclude by reiterating that to compute the kth
moment of the queue length, we must solve k systems
of n linear equation each. In particular, the expected
queue length is obtained by solving only one system
of n linear equations.

5.2. Time and Storage Complexity

In this section, we present a detailed comparison of
our aggregate solution for QBD processes with the
matrix-geometric method for QBDs in Section 2.3. We
outline the required steps for each method and ana-
lyze the computation and storage complexity up to
the computation of the expected queue length. We
assume that the algorithm of choice to compute R in
the matrix-geometric solution for QBDs is logarithmic
reduction, as it is the most efficient one. Therefore
in our analysis we do not include the cost to com-
pute G, which is the first matrix to be computed by
the logarithmic reduction algorithm of Latouche and
Ramaswami (1999).
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Analysis of ETAQA-QBD:
¢ Computation of the aggregate stationary proba-
bility vector [7w©@, @, 7]

—O(nn{F, G}) to compute FG.

—OYL,F,B,B,L,F,G) to solve the system of
m+2n linear equations.

e Storage requirements for computation of [w(©,
70, 7]
—O(n?) for FG.
—m+2n for [#©, 7@, 7®)].
* Computation of the queue length

—O(n{F, L, B}) to compute F+L+B and F —B.

—O"(n{F,L,B}) to solve a system of n linear
equations.

Analysis of the matrix-geometric method for QBDs:
¢ Computation of the boundary stationary proba-
bility vector [w(©, m®]

—O(n%) to compute R from G (last step of the
logarithmic-reduction algorithm) using the relation
R =—F(L+FG)™! (see the Online Supplement to this
paper on the journal’s website).

—O(n®) to compute (I—R)™".

—O(nn{R, B}) to compute RB.

—OYL,F,B, L, B, R) to solve the system of m+n
linear equations.

e Storage requirements to compute w® and ="

—O(n?) for R and (I-R)™.

—m+n for w® and =w®.

e Computation of the queue length is O(n?). The
computation uses the formula «) -R-(I-R)2-1".

Sparsity of G is key to preserving sparsity of the
original process in ETAQA-QBD, while the matrix-
geometric method uses R which is usually dense. The
ETAQA-QBD solution is as efficient as the matrix-
geometric method. We save storage (though this gain
is not obvious using O-notation) because the aggre-
gate solution requires only temporal storage of FG,
while the matrix-geometric method needs persistent
storage of R and (I-R)™".

6. Computational Efficiency

Section 3 analyzed using O-notation the computa-
tional and storage efficiency of ETAQA-M/G/1. Here,
we present further numerical evidence that ETAQA-
M/G/1 is more efficient than other methods. We
use the classic Ramaswami formula and Meini’s
(1997a) FFT implementation of it, the most effi-
cient algorithm to solve M/G/1-type processes. We
used Meini’s implementation http://www.dm.unipi.
it/ meini/ric.html of the cyclic-reduction algorithm to
compute G which is required in all three algorithms.
We also used Meini’s code for the FFT implementa-
tion of Ramaswami’s formula, made available to us
via personal communication (Meini 1997b). We imple-
mented the ETAQA-M/G/1 method and Ramaswami

formula in C. All experiments were conducted on
a 450 MHz Sun Enterprise 420R server with 4 GB
memory.

The M/G/1 process for our experiments is a gen-
eral BMAP/M/1 queue. In practice, it is not possible
to store an infinite number of F® and F® matrices,
1 < i < co. One should stop storing when all entries of
F® and FO for i > p are below a sufficient threshold
(i.e., very close to zero in a practical implementation),
as suggested in Latouche and Ramaswami (1999). As
illustrated in Section 3, computation time depends
on both the size (i.e.,, parameters m and n) and the
number (of stored) matrices (i.e., parameter p) that
define Q. One last parameter that affects computa-
tion time is the number s of vector probabilities that
should be computed so that the normalization condi-
tion 3°i_, w) =1 is reached (again, within a sufficient
numerical threshold).

We vary the parameters n, p, and s (for the case
of the BMAP/M/1 queue, m = n) and provide timing
results for computing the stationary vector w using
the Ramaswami formula and FFT, and computation
of (7, =, &) using ETAQA-M/G/1. We also pro-
vide timings for computing the queue length for all
methods. Results are presented in Figure 3.

The first experiment considers a BMAP/M/1 queue
with n =16 and p = 32, a relatively small case. The
timings of the three algorithms, which do not take
into consideration computation of G, are shown as
a function of s. Figure 3(a) depicts the computation
cost of the probability vector and Figure 3(b) illus-
trates the computation cost for the queue length. The
y-axis is in log-scale. The value of s does affect the
execution time of both matrix-analytic approaches,
but does not affect ETAQA-M/G/1. As expected, for
computing the stationary vector, FFT is superior to
the classic Ramaswami formula, behavior that persists
when we increase p and 7 (see Figures 3(c) and 3(e)).
ETAQA-M/G/1 consistently outperforms the other
two methods and its performance is insensitive to s
(see Figures 3(a), 3(c), and 3(e)).

Figures 3(b), 3(d), and 3(f) illustrate the computa-
tion cost of the queue length for the three algorithms
for various values of n, p, and s. The two implemen-
tations of Ramaswami’s formula have the same cost,
since the same classic formula is used for computing
queue length: first weight appropriately and then sum
the probability vector which is already computed.
The figures further confirm that the cost of solving a
small system of linear equations that ETAQA-M/G/1
requires for computation of queue length is in many
cases preferable to the classic methods. If this linear
system increases and s is also small, then the classic
methods may offer better performance.
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(a) Stationary probability vector: 16 x16 with 32 matrices
1,000 F— T T T T T T

CPU time in sec (log-scale)

p=256 p=512 p=1,024 p=2048 p=4,096 p=8,192 p=16384

(c) Stationary probability vector: 16 x16 with 128 matrices
1,000 T T T T T T T

100

CPU time in sec (log-scale)
=

0.1

p=256 p=512 p=1024 p=2048 p=4,096 p=8,192 p=16384

(e) Stationary probability vector: 32 x32 with 128 matrices
1,000 T T T T T T

100

CPU time in sec (log-scale)
=

0.1

p=256 p=512 p=1,024 p=2,048 p=4,096 p=8,192 p=16,384

CPU time in sec (log-scale)

CPU time in sec (log-scale)

(b) Queue length: 16 x16 with 32 matrices

0.01

0.001
p=256 p=512 p=1024 p=2,048 p=4,09 p=8192 p=16384

(d) Queue length: 16 x16 with 128 matrices

1 E T T T T T T T

0.1¢

0.01
p=256 p=512 p=1024 p=2,048 p=4,09 p=8192 p=16384

(f) Queue length: 32 x32 with 128 matrices
10 T T T T T T T

CPU time in sec (log-scale)

01
p=256 p=512 p=1024 p=2,048 p=4,096 p=8,192 p=16,384

| M/G/1 Aggregate

Ramaswami [N

FFT Ramaswami [

Figure 3 Execution Times in Seconds

7. Concluding Remarks
We have presented ETAQA, an aggregate approach
for solving M/G/1-type, GI/M/1-type, and QBD pro-
cesses. Our exposition focuses on computing effi-
ciently the exact probabilities of the boundary states
of the process and the aggregate probability distribu-
tion of the states in each of the equivalence classes
corresponding to a specific partitioning of the remain-
ing infinite portion of the state space. Although the
method does not compute the probability distribution
of all states, it still provides enough information for
“mathematically exact” computation of a rich set of
Markov reward functions such as the expected queue
length or any of its higher moments.

We presented detailed analysis of the computation
and storage complexity of our method. For M/G/1-
type processes, ETAQA requires a few simple steps

that provide significant savings in both computa-
tion and storage when compared with the tradi-
tional matrix-analytic and matrix-geometric solutions,
respectively. These gains are a direct outcome of the
fact that ETAQA computes only the aggregate station-
ary probability vector instead of the entire stationary
probability vector computed by the matrix-analytic
methods. Additionally, ETAQA closely preserves the
structure (and thus the sparsity) of the original pro-
cess, thus facilitating computational gains, in contrast
to the classic methods that instead introduce struc-
tures that destroy the sparsity of the original matrices.

For GI/M/1-type and QBD processes, ETAQA has
the same complexity as the matrix-geometric method
for computation of the stationary probability vec-
tor, but the classic method results in less expen-
sive and more intuitively appealing formulas for the
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computation of measures of interest such as the ex-
pected queue length.

An issue that often arises in numerical solutions
of Markov chains is numerical stability, which has
hardly been investigated, if at all, as stated in
Latouche and Ramaswami (1999). Methods that recur-
sively compute probability vectors via a formula that
entails only addition and multiplication are consid-
ered numerically stable. Ramaswami’s recursive for-
mula for M/G/1-type processes is a case of a stable
algorithm. Once subtractions are involved, the pos-
sibility of numerical instability increases because of
the loss of significance (as discussed in Neuts 1989,
p- 165). Our construction of X in (16) does intro-
duce subtraction, but in Stathopoulos et al. (2005), we
provide theoretical and experimental evidence that
ETAQA is numerically stable.
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