
Enhancing Data Availability through Background Activities

Ningfang Mi

Computer Science Dept.

College of William and Mary

Williamsburg, VA 23187

ningfang@cs.wm.edu

Phone: 1-757-221-3484

Alma Riska

Seagate Research

1251 Waterfront Place

Pittsburgh, PA 15222

alma.riska@seagate.com

Phone: 1-412-918-7020

Evgenia Smirni

Computer Science Dept.

College of William and Mary

Williamsburg, VA 23187

esmirni@cs.wm.edu

Phone: 1-757-221-3580

Erik Riedel

Seagate Research

1251 Waterfront Place

Pittsburgh, PA 15222

erik.riedel@seagate.com

Phone: 1-412-918-7025

Abstract

Latent sector errors in disk drives affect only a few data
sectors and are often not detected till the affected data is
accessed again. They may cause data loss if the storage
system is operating under reduced redundancy, because of
previous failures. In this paper, we evaluate effectiveness
of two known techniques to detect and/or recover from la-
tent sector errors, namely scrubbing and intra-disk data re-
dundancy. These two techniques are treated as background
activities that complete without affecting the otherwise nor-
mal operation of the storage system. We focus on how disk
idle times can be managed to effectively complete these
background tasks without affecting foreground task perfor-
mance, while reducing the window of vulnerability for data
loss. We show via detailed trace-driven simulations that
scheduling policies for background jobs that are based on
careful monitoring of the stochastic characteristics of idle
times in disk drive, have a minimal effect on foreground task
performance while dramatically improving storage system
reliability.

Keywords: Foreground/background jobs; storage sys-
tems; idle periods.

1 Introduction

As digital storage of commercial data and of data for
strictly personal use becomes mainstream, high data avail-
ability and reliability become imminently critical. Disk
drives are a versatile permanent storage that offers a wide
range of capacities and efficient data access times. Conse-
quently, there are substantial efforts that focus on design-
ing of reliable disk-based storage systems by adding re-
dundancy. Data redundancy traditionally is provided using
parity locally in the form of disk arrays (i.e., RAIDs) [17],
but distributed storage schemes at a broader scale (e.g., the

Google File System [7]) enjoy popularity as the platform of
choice for large Internet service centers.

Upon a single disk failure, storage systems are designed
to restore the lost data using redundant information. The
data restoring process is not instantaneous and, for large ca-
pacity disks, can be up to 36 hours. During data restora-
tion the storage system operates with reduced redundancy
and any additional failure causes data loss. Although a sec-
ond entire disk failure during this period is less likely, data
loss may occur even if a few disk sectors are not accessible.
Disk sector errors, often related to localized media failures,
are more frequent than entire disk failures and are known as
“latent sector errors” because they are detected only when
the affected area on the disk is accessed and not when they
truly occur [20, 3].

Data loss [3, 11] due to latent sector errors is addressed
by supporting multiple redundancy levels in RAID arrays,
e.g., RAID 6 [14] protects from two failures while RAIDs
1 through 5 protect from one failure only. In general, there
are two prevalent strategies for protecting data from latent
sector errors: first detect them and second recover lost data
using the inherent redundancy of the storage system. Disk
scrubbing is an error detection technique that aims at de-
tecting latent sector errors via background media scan and
before the affected data is accessed by the user or before
any other disk failure [19]. Intra-disk data redundancy is
used as an error recovery technique by adding parity for sets
(segments) of sectors within the same disk [4, 11] which is
effective in multiple- and single-disk storage systems.

However, scrubbing could cause delays to the fore-
ground work because disk operations such as seeks are not
preemptive. Multiple redundancy levels and intra-disk par-
ity do impose additional work in the storage system when
data is modified (i.e., during WRITE operations) because
the parity need to be updated. Consecutively, both scrub-
bing and intra-disk parity updates can operate as system
background processes, because if the execution of this addi-
tional work competes with regular user traffic, it may cause



additional undesired delays.
In this paper, we evaluate the impact that the idle time

management policies have on performance of the above
background activities and consecutively on data reliabil-
ity, when they are constraint by the degradation on fore-
ground performance. Such idle time management is in the
same spirit as the techniques proposed in [15], where idle
times stochastic characteristics (i.e., variability and bursti-
ness) guide background work scheduling. Detailed trace-
driven simulation indicates that detection and recovery from
latent disk errors can be effective even when the system im-
poses a strict limitation on performance degradation of user
traffic (i.e., maximum set at 7%).

First, the performance of the proposed scrubbing and
intra-disk parity updates are evaluated individually. The
simulation results show that for background activities with
infinite amount of work such as scrubbing, scheduling
should follow idle times characteristics, especially variabil-
ity and burstiness. For background activities with finite
amount of work such as the parity updates, a general rule of
thumb is that using the tail of the idle times rather than the
body yields faster completion times and shorter response
time tails. The background activities dramatically improve
system’s reliability by improving its mean time to data loss.
Second, we present how the concurrent use of both scrub-
bing and intra-disk parity can result in significant reliability
improvement which is higher than the linear combination of
their individual improvements.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes background material on
modeling of mean time to data lost in storage system. Sec-
tion 4 describes how to effectively schedule work during
idle times in disk drives by taking advantage of the stochas-
tic characteristics of the empirical distribution of disk idle
times. Section 5 presents the disk level traces used in our
evaluation. Analysis of scrubbing utilizing idle times is
presented in Section 6. Section 7 analyzes background-
based intra-disk parity updates. In Section 8, we evaluate
performance and data reliability consequences if scrubbing
and dle parity updates are simultaneously enabled as back-
ground jobs. Conclusions are given in Section 9.

2 Related Work

The metric of interest when it comes to storage
system reliability is not the traditional Mean-Time-To-
Failure (MTTF) anymore but Mean-Time-To-Data-Loss
(MTTDL) [3]. Data loss commonly is caused by detec-
tion of latent sector errors during the time that a storage
system has reduced redundancy because of a previous disk
failure [20].

The straightforward approach to improving data reliabil-
ity is to add multiple redundancy levels in a storage sys-

tem as in RAID 6 [14]. Nevertheless, system features such
as scrubbing [19] and intra-disk parity [4, 11] are shown
critical for detecting and recovering from latent sector er-
rors. Such features are preventive in nature but unavoid-
ably introduce more work in the storage system and in in-
dividual disks. To avoid penalizing regular user traffic,
any additional work to enhance reliability is completed as
a background process, i.e., during disk or storage system
idle times, especially given that disks are often underuti-
lized [8, 18].

While a myriad of approaches have been proposed to
best utilize idle times in order to enhance system per-
formance, reliability, and consistency by exploiting it lo-
cally (i.e., within the same system) [10, 1, 2], or remotely
(i.e., busy systems may offload part of their work in idle
ones) [12, 13], a number of studies have focused solely
on how to better manage idle times for scheduling back-
ground activities [6, 15]. Methods to adaptively determine
how to best exploit disk idle times to schedule long, high-
penalty background jobs such as powering or spinning-
down disks can be found in [5, 9]. On the analytic side, sev-
eral models have been developed for systems where fore-
ground/background jobs coexist [23], including vacation
models [16, 22] and queueing models of cycle stealing [21].

In this paper, we use the concept on managing idle times
proposed in [15], where decision on when to start schedul-
ing a background job is determined by the empirical distri-
bution of the previously monitored idle times. While [15]
focuses on the general concept of how to utilize idle times
such that the effect on foreground performance is contained,
here we focus on customizing these general techniques for
the specific case of scheduling scrubbing and intra-disk par-
ity updates as background activities that enhance system re-
liability. We further study how to best utilize idle times to
meet the different needs of continuous (i.e., infinite) activ-
ity such as scrubbing versus a finite one that depends on
the specific workload such as intra-disk parity updates and
show dramatic improvements in the mean time to data loss
in systems where both features are enabled.

3 Background - MTTDL Estimation

Latent sector errors rather than total disk failures cause
loss of data but not necessary result in storage system fail-
ure. Consequently, an important reliability metric for stor-
age systems is the Mean-Time-To-Data-Loss (MTTDL).
Approximate models for the MTTDL as a function of vari-
ous system parameters are given in [3]. Here, we calculate
MTTDL of systems with scrubbing and intra-disk data re-
dundancy using the same models as in [3]. For details on
the models, we direct the interested reader in [3]. Here, we
only provide a quick overview as follows. The model de-
fines MTTDL in terms of the following parameters:

2



MV ML MRV
120,000 hrs 84,972 hrs 1.4 hrs� ���������	����
��	���
��
 ��
�


1.41 1 0

Table 1. Parameters used for MTTDL estima-
tion.

���
,
���

: mean interarrival time of visible and latent
disk errors, respectively,

�����
,
�����

: mean recovery time from visible and
latent errors, respectively,

�����
: mean detection time of latent sector errors,

�
: errors temporal locality parameter,

���	�
, errors spatial locality parameters, where consec-

utive errors � and � are either visible (i.e., type
�

) or
latent (i.e., type

�
).

If no scrubbing is initiated, then MTTDL is given by the
following equation:

�
� �!�"����#

�
�$�
�
�����
���&%('

�)
��
�

�����
��� *+���,'

�
��� (1)

If scrubbing is performed then the above equation accounts
for the average time it takes to detect the error via scrubbing
(i.e., MDL) and recover from it (i.e., MRL) as follows:

�
� �!�"��� #

� �-�
��� %
�����
����% '

� 
��
�-�
�����
����% ' (2)

�
�.
 ' �/��
�
�-� * ����� ' ���������%

where k is defined in [3] as
�10 ���324���

. The parame-
ter values for Equations (1) and (2) used in [3] and in the
following sections of our paper are given in Table 1.

4 Scheduling Background Activities

Using disk idle times as a separate resource to com-
plete background activities with minimum obstruction to
foreground jobs has been the focus of scheduling policies
for foreground/background jobs [15, 6]. Idle waiting [6]
(i.e., delaying scheduling background jobs during idle in-
tervals) is an effective mechanism to reduce the effect that
non-preemptive background jobs have in foreground per-
formance. An algorithmic approach to estimate how long
to idle wait based on the variability of observed idle peri-
ods in the system is proposed in [15] and extensive experi-
mentation shows that the efficiency of idle waiting increases

as variability of the empirical distribution of idle times in-
creases.

Idle waiting combined with an estimation of the number
of background jobs to be served within an idle interval al-
lows meeting foreground performance requirements while
serving as many background jobs as possible. Accurate es-
timation of the amount of background work to be served
proves also critical to the effectiveness of scheduling idle
times for background activities [15]. The statistical charac-
teristics of idle times can assist in defining how long to idle
wait before scheduling background jobs as follows:

body-based: If the variability of idle times is low, then idle
waiting for a short period (appropriately defined by the
idle time distribution) and scheduling of a few back-
ground jobs in most idle intervals results in using the
body rather than the tail of the idle times empirical dis-
tribution.

tail-based: If the variability of idle times is high, then idle
waiting for a long period (appropriately defined by
the idle time distribution) and scheduling many back-
ground jobs in a few idle intervals results in using the
tail rather than the body of the idle times empirical dis-
tribution.

tail+bursty: If burstiness exists in idle times, then it is
possible to obtain more accurate prediction about up-
coming idle intervals because long idle intervals are
“batched” together. After a long idle interval is ob-
served, then it is possible to predict with good accu-
racy if the next interval is also long, which then allows
for more effective scheduling of background activities.

Figure 1 presents the high level idea of the body-based
and tail-based idle time scheduling policies. In each plot
of the figure, a horizontal line represents a single idle inter-
val of a specific length. In every idle interval, the sched-
uler idle waits for a time period, whose length is defined
by idle times distribution. Once the idle-wait has elapsed
(marked with the first dotted vertical line), the estimated
background work is scheduled (marked bold in each hori-
zontal line). The estimated background work is either com-
pleted (marked with the second dotted vertical line) or pre-
empted by foreground jobs. Cases when background jobs
are preempted by foreground ones are the ones where the
horizontal line falls completely on the left of the second dot-
ted vertical line. Similarly, cases where the second dotted
vertical line in each plot intersects with a horizontal line in-
dicate that the estimated background work has completed
without affecting foreground jobs and the system returns to
idle.

Figure 1(a) shows that the goal of the body-based policy
is to use most of the idle periods in the system and schedule

3



tailidle waitidle
wait

body

start   endendstart   
(a) Body−based (b) Tail−based

Figure 1. Utilizing (a) the body and (b) the tail
of idle times.

only few background jobs in idle periods used. This pol-
icy works particularly well for cases with low variability in
idle times because all idle intervals are of similar length. In
contrast, for the tail-based and the tail+bursty-based poli-
cies, the length of the idle wait is much longer avoiding
utilization of most idle periods which results in delay for
only few foreground jobs. Because the tail-based policies
utilize only few long intervals, the total amount of back-
ground work scheduled during those long intervals is more
when compared to the background work scheduled under
the body-based policy. Tail-based policies are effective only
if the idle times are highly variable, which implies that very
long idle periods are expected to eventually occur. In the
following sections, we elaborate on how the above policies
for scheduling background tasks can be used in the context
of scrubbing and intra-disk parity updates to increase the
mean time to data loss (MTTDL).

5 Trace Characteristics and Simulation

All policies presented here are evaluated via trace driven
simulation. All simulations are driven by disk drive traces,
see [18] for a detailed description of the statistical charac-
teristics of the selected ones. We selected three disk traces
that were measured in a personal video recording device
(PVR), a software development server, and an e-mail server,
which we refer throughout the paper by T1, T2, T3, respec-
tively. Table 2 gives a summary of the overall characteristics
such as request mean interarrival time, request mean service
time, utilization, as well as the mean and the coefficient of
variation (CV) of idle intervals in the trace. Traces T1, T2,
T3, have 427K, 500K, and 362K entries, respectively. They
differ from each other in the characteristics of their idle in-
tervals. For trace T1, idle intervals have a C.V. close to one,
while traces T2 and T3 have higher variability with C.V.s as
high as 6.41 and 3.79, respectively. The time series of the
observed idle intervals for traces T1 and T2 are not bursty,
while the time series of idle intervals for trace T3 is bursty.

The focus of this paper is the evaluation of two back-
ground activities, namely scrubbing and parity updates re-

Tra Mean Mean Util Mean CV Bur
-ce Arrival Service (%) Idle Idle -sty

T1 62.85 10.68 17 91.98 0.98 No
T2 96.72 4.20 4.2 236.08 6.41 No
T3 252.29 5.59 2.2 760.84 3.79 Yes

Table 2. Overall characteristics of traces used
in our evaluation. The measurement unit is
ms.

lated to intra-disk data redundancy. Scrubbing is an infinite
background process because upon completion of one entire
disk scan, commonly a new one starts. The parity updates
depend on the WRITE user traffic and is considered finite
background feature. Table 3 gives the specific parameters
of scrubbing and intra-disk parity update used in our simu-
lations.

Scrubbing is abstracted as a long background job that is
preemptive at the level of a single disk request. Hence, it is
assumed that an entire scan of a 40GB disk, i.e., one com-
pleted scrubbing, requires 100,000 disk IOs each scanning
approximately 1000 sectors. Assuming disk capacities of
40GB might be conservative given that modern disk drives
reach capacities of up to 500GB. Nonetheless, the analysis
presented in this paper still holds for larger disks as well.
One single disk scan request as part of the scrubbing job is
assumed to take in average as much time as a READ disk re-
quest. In our simulation, this is drawn from an Exponential
distribution with mean 6.0 ms (similarly to the mean service
time of traces in Table 2). The time to serve 100,000 disk
IOs as part of a single scrubbing corresponds the average
scrubbing time.

Parity updates are abstracted as short background jobs.
To update the parity of a segment of sectors, the following
steps are taken. First the entire set of sectors should be read,
then the parity must be calculated, and finally the new parity
is written on the disk. Therefore, each parity update consists
of one READ (assumed to take in average 10 ms) and one
WRITE (assumed to take in average 5 ms), both exponen-
tially distributed. The preemption level of parity updates is
at the disk request level. If a parity update is preempted af-
ter the READ, then the system maintains no memory of the
work done and the update has to restart again during another
idle period. Parity updates are served in a FCFS fashion.

Scrubbing and intra-disk parity update processes are
scheduled using the three policies outlined in Section 4. All
three policies degrade the performance of user traffic up to
7% (this is a pre-set system parameter) by restricting the
amount of background jobs served. Their efficiency regard-
ing the performance of timely completion of background
tasks (i.e., scrubbing or parity updates) depends on the vari-
ability of idle times in traces T1, T2, and T3. The following

4



Scrubbing Intra-disk Parity Update
Trace Short BG Short BG Short BG Read BG Write BG Write

Number Mean Service Number Mean Service Mean Service Portion

T1 100,000 6.0 2 10.0 5.0 40 %
T2 100,000 6.0 2 10.0 5.0 1%; 10%; 50%; 90%
T3 100,000 6.0 2 10.0 5.0 50%

Table 3. Background activities characteristics. The unit of measurement is ms.

Tra Policy Completed Mean Scrubbing System
-ce Scrubbing Time (s) Util (%)

T1 body 6 3,617.8 33.1
tail 4 6,484.7 26.8

T2 body 4 11,519.6 9.7
tail 63 726.4 83.1

T3 tail 20 4,476.3 14.3
tail+ 94 972.9 62.6

bursty

Table 4. Scrubbing performance for traces
T1, T2, and T3 under body-based, tail-based,
and tail+bursty-based idle time managing
policies.

sections further elaborate on policy sensitivity with respect
to idle time variability.

6 Infinite Background Activities: Scrubbing

Background media scans can be abstracted as an infinite
background process that detects any possible media errors
on disk drives and thus prevents any data loss caused by
the latent sector errors. As a preventive feature, scrubbing
is completed in background and can be conducted by the
storage system or the disk drive itself. Based on the system
specifications described in Section 5, we evaluate the effec-
tiveness of scrubbing aiming at degrading performance of
user traffic by at most 7%.

Table 4 presents the number of completed media scans,
their average scrubbing time, and the overall system utiliza-
tion for the three traces of Table 2, when utilizing the body
and the tail, of idle times as explained in Section 4. Consis-
tently with results reported in [15], for lowly variable idle
times (i.e., trace T1) utilizing the body rather than the tail
of idle times results in faster scrubbing and better overall
system utilization. In particular, scrubbing under the body-
based policy is twice faster than under the tail-based pol-
icy (see first row of Table 4). For T2 that has highly vari-
able idle times, the tail-based rather than the body-based
policy yields faster scrubbing and better system utilization
(i.e., at least an order of magnitude difference, see second

T1 T2 T3
body tail body tail tail tail+bursty

4 3 3 5 4 5
� ����� � ����� � ����� � ����� � ����� � �����

Table 5. MTTDL improvement via scrubbing.

row of Table 4). Finally, if idle times are in addition bursty
(i.e., trace T3) then utilizing the tail of idle times and pre-
dicting long idle periods performs better than utilizing only
the tail of idle times. Utilizing burstiness to benefit scrub-
bing scheduling results in a five-fold improvement in mean
scrubbing time. The body-based policy is not evaluated for
T3 because the results of T2 establish that tail rather than
body of idle times should be utilized if idle times have high
CV.

In addition to the average performance presented in Ta-
ble 4, we also evaluate the distribution of scrubbing time.
The distribution is built with a sample space of completed
scrubbing as large as 500 by replaying the traces several
times. Figure 2 shows the cumulative distribution function
(CDF) of scrubbing time for traces T1, T2, and T3. For
all three traces, the best performing scheduling policy for
scrubbing identified in Table 4 achieves the shortest scrub-
bing distribution tail. However, the differences between
the scrubbing scheduling policies are more drastic when it
comes to the distributions than the average values. For ex-
ample, for trace T1 (see Figure 2(a)), almost 100% of scrub-
bings have scrubbing times less than 3831.9 seconds under
the body-based policy while a twice as large scrubbing time
is achieved only for 1.4% of scrubbings under the tail-based
policy. Similarly for trace T2 (see Figure 2(b)), the tail
of scrubbing time under the tail-based policy is about 7.5
times shorter than under the body-based policy. Exploit-
ing burstiness with the tail+bursty-based policy, as shown
in Figure 2(c), further reduces the tail of scrubbing time
distribution.

The goal of scrubbing as a preventive background fea-
ture is to improve the MTTDL. The average time of scrub-
bing, given in Table 4, allows for MTTDL calculation when
scrubbing is not running and when it is running, using Equa-
tions (1) and (2), respectively. The mean detection time
of sector errors (MDL) in Equation (2) is set to be equal

5



(b) T2: high CV(a) T1: low CV (c) T3: high CV & bursty

body−based
tail−based

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  5  10  15  20  25  30  35  40

cd
f 

(%
)

scrubbing time (1000s)

body−based
tail−based

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  1  2  3  4  5  6  7

cd
f 

(%
)

scrubbing time (1000s)

tail−based
tail+bursty−based

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  1  2  3  4  5  6  7  8  9  10

cd
f 

(%
)

scrubbing time (1000s)

Figure 2. CDF of scrubbing time distribution for traces (a) T1, (b) T2, and (c) T3.

to
����� � average scrubbing time. Moreover, compared to

detection times, the recovery times of latent sector errors
are insignificant (i.e., MRL � MDL). We thus assume
MRL # �

in Equation 2. Table 5 gives the improvements in
MTTDL when scrubbing is running over the case when it is
not running. The overall improvement of MTTDL because
of scrubbing is 4 orders of magnitude. The differences in
the MTTDL improvement between the scheduling policies
that are used to manage the idle times are between 20% and
40%.

7 Finite Background Activity: Intra-disk
Parity Update

Intra-disk data redundancy requires maintaining updated
parity that becomes dirty if the corresponding data is mod-
ified [4, 11]. This extra amount of work required to main-
tain updated parity consists of an extra READ and an ex-
tra WRITE for each user-issued WRITE. Completing this
work instantaneously upon completion of each user-issued
WRITE is called instantaneous parity (IP) update. Natu-
rally, IP causes degradation in user performance but pro-
vides the highest level of data reliability.

Here, we show that it is possible to complete the parity
updates as a background job scheduled in idle intervals in
a timely fashion while keeping user performance slowdown
less than a predefined target. In the experiments presented
here acceptable user slowdown is set to 7% only. Delays in
parity updates reduce the effect of intra-disk parity on data
reliability. We quantify how delayed intra-disk parity af-
fects data reliability for the three idle scheduling techniques
of Section 4.

We present results for traces T1 and T2. Traces T2 and
T3 yield similar results because both have high variability in
idle times and because for the finite work generated by par-
ity updates exploiting burstiness does not yield any further
improvement. The following three metrics are monitored:
(a) the ratio of completed parity updates to the total trace

Policy Completed Mean Update System
Ratio (%) Time (ms) Util (%)

body 38.6 180,629.0 24.7
tail 41.6 3,321.0 22.9

Table 6. Parity update performance for trace
T1 (low variability).

WRITE traffic, (b) the average time of parity updates which
is the time interval between the completion of a user-issued
WRITE operation and the update of the parity, and (c) the
overall (foreground + background) system utilization.

���	� 
���
������������������ �"!�#$��� 
&%'
��)(*�+%,�

Table 6 gives the parity update results under the body-
based and tail-based idle time scheduling policies. Trace
T1 has nearly 40% user WRITEs. Different from the be-
havior under infinite background activities (see Section 6),
the tail-based rather than the body-based idle time schedul-
ing performs best overall. Most importantly, the tail-based
policy updates parities almost by two orders of magnitude
faster than the body-based policy. Quick parity update times
are particularly desirable because the average parity update
time is the metric that affects data reliability. Note that sys-
tem utilization is higher under the body-based than under
the tail-based policy. Under the body-based policy, there
are more cases where a user request preempts a parity up-
date, which unfortunately results in wasted work. Under the
tail-based policy, only long idle intervals are used to update
the finite parities which results in only few of them being
preempted by user traffic.

Figure 3 shows the distribution of the parity update
times. While about -/. % of parity updates under the body-
based policy are faster than under the tail-based policy, the
tail of parity update times is longer than under the tail-based
policy, which dominates the average parity update time and

6



7272947
9721292
8142678

90% (450,000)1% (5,000) 10% (50,000) 50% (250,000)

   0

  50000

 100000

 150000

 200000

tail2tail1body−based

pa
ri

ty
 u

pd
at

e 
tim

e 
(m

s)

   0

   1

   2

   3

   4

   5

   6

   7

   8

tail2tail1body−based

sy
st

em
 u

til
iz

at
io

n 
(%

)

   0

  10

  20

  30

  40

  50

  60

  70

tail2tail1body−based

pa
ri

ty
 u

pd
at

e 
ra

tio
 (

%
)

Figure 4. Performance of parity updates for trace T2 (high variability) and four different user WRITE
traffic, i.e., 1%, 10%, 50% and 90% (numbers in parenthesis indicate the absolute number of user
WRITEs).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01  0.1  1  10  100  1000  10000

cd
f 

(%
)

parity update time (s)

body−based
tail−based

Figure 3. CDF of parity updates time for trace
T1 (low variability).

Trace Policy User Issued WRITEs
1 2 3 4 5

T1 body 0.65 0.16 0.04 0.10 0.01
tail 0.44 0.29 0.09 0.12 0.02

Table 7. Probabilities of user WRITES in trace
T1 (low variability) that find dirty parity.

causes a two orders of magnitude advantage for the average
tail-based performance.

Because parity updates are postponed in idle periods,
some user WRITEs may find dirty parity in their corre-
sponding parity segment. Updating parity when multiple
WRITEs have occurred in the parity segment is more prone
to errors than when only one WRITE has been completed.
Table 7 gives the probabilities that by the time a parity is
updated, the corresponding parity segment has been over-
written up to five times by the user. Although the metric de-
pends on parity update times, it also depends on the spatial
locality of the user WRITE workload. Trace T1 does have
this characteristic. Results in the table show that the major-
ity of parity updates (approximately 75%) for both policies
occur when the segment has been written at most twice.

����� 
���
������������������ �"!�#$��� 
&%'
��)(*�+%��

User issued WRITE traffic in T2 represents only 1% of
the total requests. To experiment with traces with more
WRITE traffic, we generate three additional traces that have
10%, 50%, and 90% WRITEs, respectively. These traces
are generated based on T2, by probabilistically selecting an
entry in the trace to be a READ or a WRITE.

Figure 4 presents parity update performance for trace T2
(and its variants) using the body-based and tail-based poli-
cies to schedule work in idle times. Figure 4 shows two
different performances for the tail-based policy (marked in
the plots as “tail1” and “tail2”). Although both tail-based
policies utilize the tail of the idle times, under “tail1” the
idle wait is (approximately 40%) shorter than under “tail2”.

Because T2 has highly variable idle times, the tail-based
policy outperforms the body-based one. For example, the
body-based policy performs at least two to three times
worse than the tail-based policy with respect to the total
number of completed parity updates and the average par-
ity update time. The differences in performance between
the body-based and the tail-based policies increase as the
amount of parity updates increases. Among the tail-based
policies, “tail2” achieves better update time while “tail1”
achieves better number of completed updates. Timely up-
dates are critical for MTTDL, we elaborate more on this
later in this section.

The overall system utilization in Figure 4 is not as high as
the 80% utilization level under scrubbing in Table 4 because
parity updates represent a finite amount of work. Similarly
to the results of trace T1, if the amount of parity updates
is small (cases with 1% and 10% WRITEs), then the body-
based policy utilizes the system more than the tail-based
policy because of the preempted updates. As the amount
of parity updates increases, the effect of this phenomenon
diminishes.

Figure 5 plots the CDFs of parity update times for all
four variants of trace T2. Consistently with results in Fig-

7



(b) 10% (50,000)(a) 1% (5,000) (d) 90% (450,000)(c) 50% (250,000)

body−based
tail−based

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01  0.1  1  10  100  1000 10000
parity update time (s)

cd
f 

(%
)

body−based
tail1
tail2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01  0.1  1  10  100 1000 1e+4 1e+5

cd
f 

(%
)

parity update time (s)

body−based
tail1
tail2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01  0.1  1  10  100 1000 1e+4 1e+5

cd
f 

(%
)

parity update time (s)

body−based
tail1
tail2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01  0.1  1  10  100 1000 1e+4 1e+5

cd
f 

(%
)

parity update time (s)

Figure 5. CDF of parity update time for trace T2 (high variability) and four different user WRITE traffic,
i.e., 1%, 10%, 50% and 90% (numbers in parenthesis indicate the absolute number of user WRITEs).

Trace Policy User Issued WRITEs
1 2 3 4 5

T2 body 0.98 0.02 N/A N/A N/A
(1%) tail 0.99 0.01 N/A N/A N/A
T2 body 0.75 0.17 0.05 0.01 0.01

(10%) tail 0.85 0.12 0.02 0.006 0.001
T2 body 0.53 0.22 0.10 0.05 0.03

(50%) tail 0.65 0.22 0.07 0.03 0.01
T2 body 0.46 0.21 0.11 0.06 0.04

(90%) tail 0.59 0.24 0.08 0.03 0.02

Table 8. Probabilities of user WRITES in trace
T2 (high variability) that find dirty parity.

ure 4, under the body-based policy the distribution has
longer tail than under the tail-based policy. The “tail2” vari-
ant has the shortest tail indicating that the best average per-
formance comes from the policy that results in a shorter tail
of update times. The “tail2” variant has also the longest idle
waiting, which indicates that it uses the smallest number of
idle intervals among all policies evaluated and has to wait
for the very long intervals to arrive. Nevertheless, it results
in the shortest average and distribution tail for update times.
As parity updates increase in number, the differences in the
distribution of update times between “tail1” and “tail2” de-
crease.

Table 8 presents the probabilities that by the time a par-
ity update occurs, up to five user WRITEs have modified
the parity segment for all four variants of trace T2. As the
portion of user WRITEs increases in the trace, the probabil-
ity of one user WRITE updates decreases. The body-based
policy results are consistently worse than the results under
the tail-based policies. In the best case (i.e., 1% WRITEs)
100% of parity updates happen when the parity segment has
been modified at most twice for both policies.

����� � % %���� � #�� ���/�	� � � ! # ����#��
� 
 ��� � �

The estimation of MTTDL for disks with intra disk re-
dundancy is based on Equation (1). Assuming that latent
sector errors are spatially and temporally correlated, the
improvement in the mean interarrival time of latent sec-
tor errors is

�*� 
 . � ��� % [4], or equivalently,
����� %�� 0

��� 
 . � ��� % * ������� � , where
������� �

represents the mean inter-
arrival time of latent errors if there is no intra-disk data re-
dundancy, and

����� %��
represents the mean interarrival time

of latent errors if there is intra-disk data redundancy.
If instantaneous parity (IP) is supported (i.e., parity up-

dates occur without delay), then MTTDL is calculated using
Equation (1) and

����� %��
is used in place of ML, i.e.,

� �!� ��� 0 � �!�"����� 
������ �
If parity updates are delayed, then Equation (1) is modified
as follows:

� �!�"��� # � * � �!�"��� � 
 ����� (3)

'! ��" �$# * � �!� ���%� 
 �&�'� �
where � represents the probability that the parity is dirty and� �!�"��� � 
 �����

is computed using Equation (1) and value������� �
is used for

���
. We assume that if the parity is dirty

then latent errors arrive in intervals of
��� ��� �

and that if
parity is updated, then errors arrive in intervals of

���(� %��
.

We approximate � as the portion of the disk with dirty parity
as follows:

� #
) �+*-,/.103254 * �%6/7$8:9<;�=>01?�@�2�ACBD4FE3G�4FHI2

JLK � K:M1N 9FOQP @�BDR (4)

0 � �>*-,/.103254 *TS$*-,/.103254 * �%6/7$8:9<;�=>01?�@�2�ACBD4FE3G�4FHI2
JLK � KUMVN 9FOWP @XB<R

�

where
� �Y*-,/.103254

is the average parity update time,SZ*�,[.101254
is the arrival rate of parity updates and�\6T7$8:9<;-=>0V?]@^2�ACBD4�E1G�4FH_2

is the number of sectors in each par-
ity segment. The performance of the policy to sched-
ule background processes during idle intervals determines� � *�,[.101254

and consequently affects the MTTDL.

8



Policy T1 T2
1% 10% 50% 90%

body 48.1 48.4 46.6 38.6 35.1
tail1 48.4 48.4 48.3 48.2 48.2
tail2 N/A N/A 48.4 48.3 48.3
IP 48.4 48.4 48.4 48.4 48.4

Table 9. MTTDL improvement via intra-disk
data redundancy.

Assuming that the disk capacity is 40GB, the relative
MTTDL improvement is estimated for parity updates for
trace T1 and the four variants of trace T2. Results are given
in Table 9. The improvement attributed to intra-disk par-
ity are only one order of magnitude – recall that those at-
tributed to scrubbing are as high as four orders of magni-
tude. The important result of Table 9 is that there is almost
no difference between the MTTDL improvement achieved
via instantaneous parity (IP) updates and the delayed par-
ity updates evaluated in this paper, which strongly argues in
favor of delayed intra-disk parity.

8 Multi-feature Case: Scrubbing and Intra-
disk Parity

Scrubbing and intra-disk parity can be used simultane-
ously to improve MTTDL. In this section, we evaluate per-
formance of these two features when running concurrently
in idle times, dubbed as “scrubbing+parity”. Because both
features run in background without any buffer requirement,
their queue capacity is assumed to be infinite. Recall that
scrubbing generates infinite work while parity updates re-
quire finite work. Here, we evaluate a scenario when parity
updates have higher priority than scrubbing. This means
that scrubbing is scheduled only if there is no parity update
waiting. As in previous sections, the performance degrada-
tion of user traffic is kept below the preset 7% threshold.

� �	� � � ��!�� �/������
&% 
��)( � %��

Initially, we present results for T2. As for this trace, both
scrubbing and parity updates individually perform better us-
ing the tail-based policy, Figures 6(a) and (b) give the aver-
age scrubbing and parity update times under this policy. For
comparison, in each plot the results of only disk scrubbing
and only intra-disk parity are also included. For the case of
scrubbing, all variants of trace T2 perform the same because
scrubbing is workload independent.

Although scrubbing has lower priority than intra-disk
parity update, enabling it concurrently with parity updates
does not affect its performance considerably (i.e., only 10%

(b) Intra−disk Parity

(a) Scrubbing

   0

  10000

  20000

  30000

  40000

  50000

  60000

  70000

  80000

  90000

pa
ri

ty
 u

pd
at

e 
tim

e 
(m

s)

parity update tail−based merged tail−based

   0

100000

200000

300000

400000

500000

600000

700000

800000

900000

merged tail−basedscrubbing tail−based

sr
ub

bi
ng

 ti
m

e 
(m

s)

50% (250,000) 90% (450,000)

1% (5,000) 10% (50,000)

Figure 6. Average (a) scrubbing and (b) parity
update times when running individually and
together.

in the worst case). Similarly, parity updates see minimal
change in their performance because they are processes of
higher priority than scrubbing. The only exception is the
case with the smallest amount of parity updates (i.e., 1%
user WRITEs). As discussed in Section 7, the effect of par-
ity updates in user traffic performance is almost zero for
this case and parity update times are the smallest. However,
adding the infinite scrubbing work degrades parity update
performance by as much as 3 times.

tail−basedtail−based tail−based

50% (250,000)
90% (450,000)

10% (50,000)
1% (5,000)

   0

  10

  20

  30

  40

  50

  60

  70

  80

  90

merged

sy
st

em
 u

til
iz

at
io

n 
(%

)

scrubbing parity update

Figure 7. Overall system utilization under
scrubbing and parity updates when they run
individually and together.

Figure 7 shows overall system utilization, which is dom-

9



inated by the work done for scrubbing. Because the work
related to parity updates is small, its completion barely adds
to the system utilization. It is scrubbing with its infinite
amount of work that keeps the system continuously utilized.

� ��� � � ��!�� �/������
&% 
��)( � %,�

Here we present results for trace T1 which is char-
acterized by idle periods with low variability. For this
trace, scrubbing performs better using the body-based pol-
icy while parity updates are done more efficiently using the
tail-based policy. Thus, in addition to the body-based and
the tail-based policies for the combined background work,
we also evaluate another scheduling policy which sched-
ules scrubbing work via the body-based policy and parity-
updates via the tail-based policy. This policy is dubbed
“body+tail-based” policy.

180629

188213

70985258

(a) Scrubbing

(b) Intra−disk Parity

   0

5000

10000

15000

20000

25000

30000

35000

40000

pa
ri

ty
 u

pd
at

e 
tim

e 
(m

s)

body−based tail−based body+tail−based

scrubbing
merged

   0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

sr
ub

bi
ng

 ti
m

e 
(m

s)

body−based tail−based body+tail−based

parity update
merged

Figure 8. Average time for (a) an entire scrub-
bing, (b) parity updates for trace T1 (low
variability). The body+tail policy schedules
scrubbing via the body-based policy and
parity-updates via the tail-based policy

Figure 8(a) presents the average time for a complete
scrubbing when run individually (and together) with par-
ity updates. If the body-based policy is used to schedule
both types of background jobs, performance degradation on
scrubbing is significant. With the body+tail-based variation,
each background activity (i.e., scrubbing or parity update)
is scheduled using the policy under which it performs best
when running individually. Parity updates, because they
have higher priority than scrubbing, are not penalized as

scrubbingmerged parity update

   0

   5

  10

  15

  20

  25

  30

  35

sy
st

em
 u

til
iz

at
io

n 
(%

)

body−based tail−based body+tail−based

Figure 9. Overall system utilization

Policy T1 T2
1% 10% 50% 90%

body 1.8 N/A N/A N/A N/A
� �����

tail 6.3 1.12 1.09 1.07 1.04
� ����� � ����� � ����� � ����� � �����

body+ 7.1 N/A N/A N/A N/A
tail � �����

Table 10. MTTDL improvement via scrubbing
and intra-disk parity.

much as scrubbing (see Figure 8(b)). Furthermore, parity
updates perform significantly better if they are scheduled
using the tail-based policy, independently of how scrubbing
is scheduled.

Figure 9 presents system utilization for trace T1. Re-
sults are in agreement with those shown in Figure 8, the
body+tail-based policy utilizes best the entire system pro-
viding room for both scrubbing and parity updates to per-
form similar to their best individual performance.

� ��� � % %���� � #�� ���/�	� � � ! # ����#��
� 
 ��� � �

We use Equation (3) to estimate the MTTDL improve-
ment when both scrubbing and intra-disk parity are en-
abled. Differently from the MTTDL estimation in Sec-
tion 7, the

� �"�"��� � 
 �����
and
� �!� ��� � 
 �&�'�

in Equa-
tion (3) are computed using Equation (2). The average time
for a complete disk scrubbing when it runs concurrently
with parity updates is used in Equation (2) to estimate both� �!�"��� � 
������

and
� �!�"��� � 
������

, i.e.,
������� � 0 �*� � �

average scrubbing time and
��� � %�� 0 �*� 
 . � ��� % * ��� ��� � .

Also assuming MRL # �
. The parameter � in Equation (3)

is estimated using Equation (4) and the average parity up-
date time when it runs concurrently with scrubbing. Results
are presented in Table 10. For trace T1 and four variants of
trace T2, the MTTDL improvement attributed to scrubbing
and intra-disk parity are as high as 7 and 8 orders of mag-
nitude, respectively. Consistently with the results shown

10



in Figure 8, the body+tail-based policy achieves better im-
provement in the MTTDL than both the body-based and the
tail-based policies.

9 Conclusions

In this paper, we evaluate the effects that idle time
scheduling policies have on the performance of background
activities when the former is constrained by the degradation
in user performance. The focus is on two data loss preven-
tion techniques, i.e., disk scrubbing and intra-disk data re-
dundancy. Scrubbing (representing infinite amount of back-
ground work) and parity-updates related to intra-disk redun-
dancy (representing finite amount of background work) are
evaluated here via trace-driven simulations.

Our evaluation shows that exploiting variability in the
length of idle periods allows meeting user performance re-
quirements and satisfactory background performance when
measured by the data reliability enhancement it provides.
This approach also allows to schedule both background
activities simultaneously and still meet user performance
targets. Each of the evaluated background features im-
proves data reliability by orders of magnitude. The en-
hancement on data reliability when both background activ-
ities are scheduled in the system is higher than the linear
combination of their individual benefits.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie. Lazy verification in fault-tolerant distributed storage
systems. In 24th IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 179–190. IEEE Press, October 2005.

[2] E. Bachmat and J. Schindler. Analysis of methods for scheduling low
priority disk drive tasks. In ACM Conference on Measurements and
Modeling of Computer Systems (SIGMETRICS), pages 55–65. ACM
Press, June 2002.

[3] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Ma-
niatis, T. J. Giuli, and P. Bungale. A fresh look at the reliability of
long-term digital storage. In Proceedings of European Systems Con-
ference (EuroSys), pages 221–234, April 2006.

[4] A. Dholakia, E. Eleftheriou, X. Y. Hu, I. Iliadis, J. Menon, and K. K.
Rao. Analysis of a new intra-disk redundancy scheme for high-
reliability RAID storage systems in the presence of unrecoverable
errors. Technical report, Technical Report RZ3652, IBM Reasearch,
2006.

[5] Fred Douglis, P. Krishnan, and Brian N. Bershad. Adaptive disk
spin-down policies for mobile computers. In Proceedings of the 2nd
USENIX Symposium on Mobile and Location-Independent Comput-
ing, pages 121–137, 1995.

[6] L. Eggert and J. D. Touch. Idletime scheduling with preemption in-
tervals. In Proceedings of the International Symposium on Operating
Systems Principles (SOSP), pages 249–262, Brighton, UK, October
2005.

[7] S. Ghemawat, H.Gobioff, and S. Leung. The Google file system. In
Proceedings of ACM Symposiom on Operating Systems Principles,
pages 29–43, 2003.

[8] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness
is not sloth. In Proceedings of the Winter’95 USENIX Conference,
pages 201–222, New Orleans, LA, January 1995.

[9] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and
Bruce Sherrod. Adaptive disk spin-down for mobile computers. Mo-
bile Networks and Applications, 5(4):285–297, 2000.

[10] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dynamic data
replication in free disk space for improving disk performance and
energy consumption. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles, pages 263–276,
New York, NY, USA, 2005. ACM Press.

[11] Gordon F. Hughes and Joseph F. Murray. Reliability and security
of RAID storage systems and D2D archives using SATA disk drives.
ACM Transactions on Storage, 1(1):95–107, 2005.

[12] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a
hunter of idle workstations. In the 8th International Conference on
Distributed Computing Systems (ICDCS), pages 104–111, 1988.

[13] Virginia Mary Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and
Shanyu Zhao. Cluster computing on the fly: P2P scheduling of idle
cycles in the internet. In the 3rd International Workshop on Peer-to-
Peer Systmes (IPTPS), pages 227–236, 2004.

[14] C. Lueth. RAID-DP: Network appliance implementation of RAID
double parity for data protection. Technical report, Technical Report
No. 3298, Network Appliance Inc, 2004.

[15] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel. Efficient uti-
lization of idle times. Technical report, Technical Report 2006-10-1,
Seagate Research, 2006.

[16] Z. Niu, T. Shu, and Y. Takahashi. A vacation queue with setup and
close-down times and batch markovian arrival processes. Perform.
Evaluation, 54(3):225–248, 2003.

[17] D. A. Patterson, G. Gibson, and R. Katz. A case for redundant ar-
rays of inexpensive disks (RAID). In Proceedings of the 1988 ACM
SIGMOD Conference, pages 109–116. ACM Press, 1988.

[18] A. Riska and E. Riedel. Disk drive level workload characterization.
In Proceedings of the USENIX Annual Technical Conference, pages
97–103, May 2006.

[19] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long, A. Hospodor,
and S. Ng. Disk scrubbing in large archival storage systems. In Pro-
ceedings of the INternational Symposium on Modeling and Simula-
tion of Computer and Communications Systems (MASCOTS), pages
409–418. IEEE Press, 2004.

[20] S. Shah and J. G. Elerath. Reliability analysis of disk drive failure
mechanism. In Proceedings of 2005 Annual Reliability and Main-
tainability Symposium, pages 226–231. IEEE, January 2005.

[21] H. Takagi. Queuing Analysis Volume 1: Vacations and Priority Sys-
tems. North-Holland, New York, 1991.

[22] E. Xu and A. S. Alfa. A vacation model for the non-saturated readers
and writers system with a threshold policy. Performance Evaluation,
50(4):233–244, 2002.

[23] Qi. Zhang, N. Mi, E. Smirni, A. Riska, and E. Riedel. Evaluating the
performability of systems with background jobs. In Proceedings of
the International Conference on Dependable Systems and Networks
(DSN), pages 495–504, 2006.

11


