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Abstract 1 Introduction

As most computer systems are expected to remain operaNowadays, computer systems are rarely taken off-line for
tional 24 hours a day, 7 days a week, they must completemaintenance. Even simple workstations, are in operation
maintenance work while in operation. This work is in ad- 24 hours a day, 7 days a week. Consequently, most sys-
dition to the regular tasks of the system and its purpose tems schedule necessary maintenance that intends to asses:
is to improve system reliability and availability. Nonethe system status and predict/avoid reliability and availgbil
less, additional work in the system, although labeled as jssues as background tasks [1, 2, 12, 17]. Very often, back-
best effort or low priority, still affects the performancé o ground activity is also associated with approaches that aim
foreground tasks, especially if background/foregroundwo  at enhancing system performance [4, 21, 3].

is non-preemptive. In this paper, we propose an analytic S
model to evaluate the performance trade-offs of the amountﬁgroil:%?tebr?ﬁ;ir?olwsr aﬁg’r'l? 'ti;:tf'g?el tfoiﬁztivrgrﬁp.e;a
of background work that a storage system can sustain. The, " P Y g : 1€

proposed model results in a quasi-birth-death (QBD) pro- g}e ggrmkc:eg,ﬁ?tift:gcteh; rsgséf::ﬂlésee;.s'n;zetgeg(;;?ér't 1'15
cess that is analytically tractable. Detailed experimenta P untimp y '9 u

tion using a variety of workloads shows that under depen- derstand the trade-offs between minimizing the foreground

dent arrivals both foreground and background performance EZ(rszS r?;i%etadsle(gsrgg?:\:tns a;cejmmrz)l(igsaliiltngai:/(a)lirg%i?iuon of
strongly depends on system load. In contrast, if arrivals of g Y Y, tyd

foreground jobs are independent, performance sensitivity performance are improved in the long-run and without com-

to load is reduced. The model identifies dependence in the\F;\;O.miSinq .the-short-term perfgrmance of foregroqr!d vyork.
arrivals of foreground jobs as an important characteristic hile facilitating and supporting background activity in a

that controls the decision of how much background load the system is a general concept [20], its applicability differs

system can accept to maintain high availability and perfor- among systems, I.e., dlstnbu_ted_and clustered systears, st
mance gains. age systems, and communication systems. Consequently,

efforts for utilizing idle time to improve reliability or pe
Keywords: Foreground/background jobs; storage systems; formance are often system specific and are either based on
idle periods; Markov Modulated Poisson Process, QBD.  prototyping and measurements [3, 1, 4, 21] or analytic mod-
els[2, 12,13, 15].

In this paper, we propose an analytic model that ad-
dresses performance trade-offs between foreground and
background work at the disk drive level of a storage system.
There are numerous cases where storage systems and disk
drives deal with background johs One widely accepted
background task is data integrity check or media scrubbing

*This work was partially supported by the National Sciencerféa- in disk drives [17]. Disk scrubbing is a periodic checking
tion under grants CCR-0098278, ACI-0090221, and ITR-08R8and by
Seagate Research. 1The terms “task” and “job” are used interchangeably.




of disk media to detect unaccessible sectors. If a sector2 Related Work
is not accessible then it is reported up to the file system for

data recovery and it is remapped elsewhere on the disk. An-

other background activity in disk drives is the RAID rebuild
process [19, 12], which happens when one disk in a RAID
array fails and its data is reconstructed in a spare dislgusin
the data in the remaining disks of the array. Other exam-
ples of background activities include flushing of write-bac
caches, prefetching, and replication [19].

Multiple sources [4, 3, 16] indicate that computer sys-
tem resources operate under bursty arrivals and while they
have periods of high utilization, they may also have long
stretches of idleness. For example, in average disk drives
are only 20% utilized [16]. Given that a system operates in
low utilization, a myriad of approaches have been proposed
Background tasks in a storage system may be periodic suchyiming at utilizing idle time to improve performance [4, 3],
as disk scrubbing, or may span over a long period of time, faylt tolerance [1], and reliability [17]. The goal is to zh
such as the RAID rebuild. Yet there are tasks where theu|e performance/a\/a"abinwenhancing activities asmw
background jobs have the same service demands as the forgyity and minimize their impact on user performance [3].
ground ones. For example, disk WRITE verification incurs
one extra READ to detect any disk WRITE error. This pro-
cess, known as READ-after-WRITE, degrades disk perfor-
mance substantially and is not feasible if running in fore-
ground, but is attractive as a low priority background activ
ity. Nevertheless, its successful completion is tightlaied

to the reliability and consistency of the data.

The motivation of our work stems from storage systems,
where traditionally a variety of tasks, mostly aiming at en-
hancing data reliability, are treated as background activ-
ity [2]. Storage system background functions that address
reliability, availability, and consistency typically ihde

data reconstruction [12], data replication [13], disk &eru
bing [17], and WRITE verification [2]. Background jobs

In this paper, we propose a model, which consists of an infi- may also address storage performance issues including data
nite Markov chain with repetitive structure that Captuhlst rep“ca_tion in a cluster to improve throughput or data reor-
disk or storage system behavior under the background acganization to minimize disk arm movement [4, 21].

tivity whose service demands are similar to the foreground

activity. It differs from similar models proposed for stgea o leted onlv when there i f 4 activi
systems [2] because it allows for bursty and autocorrelated'¢© 'S cOmMp Et? only when there is no oregroun actlv_lty
in the system, i.e., at the end of a busy period. Vacation

arrivals, which are the case in storage systems [16]. The so- dels h b d for th | ‘
lution of the proposed model is tractable and can be solvedM0dels have been proposed for the general performance

using the well-known matrix-geometric method [10]. The analysis of systems where foreground/background jobs co-

model establishes that the relative performance of fore—eXiSt _[20’ 15, 15, 22, 23], TO_ the_ best of our knowledge_,
ground and background jobs is similar for either indepen- vacation models that are applied in storage systems or disk

dent or dependent arrivals. However, the saturation underdlr'v,eS gave been consu?jerled only in [Z]H Howev_er ':he mod-
dependent arrivals is very fast (for small changes in fore- elsin [2] attempt tc_; model a system whose arrival process
ground workload), which actually effects more completion is strictly exponential and the background task resultsifro

rate of background jobs rather than the latency of the fore_sequential scann_ing ofthe data on a disk or partof it. In this
ground ones. For example, the non-preemptive backgroun(Paper' we exp_I|C|tIy model the performanc_e effects_ of de-
jobs delay in the worst case only 20% of all foreground pendence (be it short range or long range) in the arrival pro-
jobs, with most delays remain below 5%. However, un- cess of background/foreground jobs on the disk, which has
der highly correlated arrivals and medium load the com- begn q§tected in [7, 16, 5]. We examine the effects of both
pletion of background tasks is minimal (close to zero), a variability and dependence in the arnvals. We further as-
non-desirable outcome when background activity intends SUMe€ that background and foreground jobs are drawn from

to enhance long-term reliability, such as the case of WRITE the same dlstr|b_uj[|_on because we are mte_r_estgd in the set of
verification. background activities such as WRITE verification that have

. . . _ the same service demands as the user requests.
This paper is organized as follows. Section 2 presents re-

lated work. Section 3 gives an overview of storage systems

under background jobs. The proposed model is presented in

Section 4. Performance evaluation results that are derived3 Storage System
using the analytic model are presented in Section 5. Con-

clusions and directions for future work are given in Sec-

tion 6.

Because background activity has often low priority, its ser

In this section, we first identify the salient charactecsbf
10 workloads and we give an overview of the operation of
the system with foreground and background tasks.
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Figure 1. ACF of inter-arrival times of three
traces, the respective mean (in ms) and CV
of the inter-arrival and service times.

where ;1 is the mean and? is the common variance of
{X,}. The argument is called the lag and denotes the
time separation between the occurrenEgand X, .. The
values ofpx (k) may range from-1to 1. lfx (k) = 0, then
there is no autocorrelation at ldg If px (k) = 0 for all

k > 0 then the series is independent, i,e., uncorrelated. In . o
most cases ACF approaches zeré awreases. The ACF's workload service times. Because all storage systems in Fig-

decay rate distinguishes processes as short-range dependeure 1 consist of similar hardware, the service process is sim
(SRD) or long-range dependent (LRD) ilar across all traces and it actually has low variabilitg, i

] ) ) CV values are less than 1.
Figure 1 presents the autocorrelation function (ACF) of the i i )
We propose models of the arrival and service processes in

inter-arrival times of three traces that have been colteicte o
three different systems, each supporting an e-mail server@ Storage system that reflect the characteristics of the var-

a software development server, and user accounts servefoUs races illustrated in Figure 1. We model the service
respectively. These traces consist of a few hundred thou_process via an exponential distribution with mean service

sands entries each and are measured over a 12 to 24 hOLﬂme of ,6 ms. For the arr_ival process, we use a two;lstate
period. As expected, for different applications the depen- Markovian Modulated Poisson Process (MMPP) [8, 11].

dence structure of the arrivals is different and it is a resul VMPPs are processes whose events are guided by the tran-

of multiple factors including the architecture of the stgea sitions of an underlying fini_te absorbing continuous time
system, the file system running on top of the storage sys_Markov chain and are described by two square matilizgs

tem, and the 1/O path hierarchy together with the resourceanlej with d|menS|ons. equal to the number o_f_tran5|ent
managing policies at all levels of the I/O path. Nonetheless states in the. Markov chaiDo captur.eslt.he .transmons be- )
independently of all these factors, all measurements showfVeen trans_lent _states_ and the var|ab|I|ty in the stocbasti
that arrivals at the storage system exhibit some amount ofPf0¢€ss whiléD; is a diagonal matrix that captures the de-
autocorrelation. The table in Figure 1 shows the mean angP€ndence structure.
coefficient of variation (CV) for the inter-arrival times@n  Let m, be the stationary probability vector of the under-
the service times of all requests in the trace. The threegrac lying Markov chain for an MMPP, i.ezryyes(D1 + Dg) =
represent systems under different loads. Specifically, the0, e = 1, where0 ande are vectors of zeros and ones
“User Accounts” trace comes from a lightly loaded system of the appropriate dimension. A variety of performance
(only 2% utilized), while the “E-mail” and “Software De- measures are computed usiing,s» , Do, andDy, such as
velopment” traces come from systems with modest utiliza- the mean arrival rate, the squared coefficient of variation,
tions also (“E-mail’ is 8% utilized and “Software Develop- and the lagk of its autocorrelation function ACF [14]:
ment” 6% utilized). These cases of underutilized systems
naturally indicate that an opportunity exists for scheayli A = muweeD1e, (1)
low priority jobs in the system and treating them as back- > _ . S
ground work. Additionally, the low utilization levels in¢h ~MMPP can capture various ACF levels and inter-arrival tinias-
abilities. Additionally, by using a 2-state MMPP for the igal process
above measurement traces allow to assume that the Meayq exponential service times, the resulting queuing sys@n be ana-
sured job response times are a close approximation of thayzed with matrix-analytic methods [10].




E[X?] 0.5

e (2) © ' E-Mail —
(B[X])? 041 User Accounts ]
= 2)\7‘(’MMPP(—D0)716 — 1, 6 0.3 : :
_ E[(Xo - EIX])(Xi — E[X])] <02 -
At = Var(X] © 0.1 -
- )\WMMPP((_DO)ilDl)k(_Do)ile -1 0 C | } | I =
2Amwywee(—Do) "te — 1 ’ 0 200 401(3ag (6130 800 1000
whereX, and X}, denote two inter-event timdslags apart. V1 v l lo

We parameterize our MMPP models, using a simple mo- E-mail | 0.31e-5| 0.69e-6| 0.09 | 0.35e-3
ment matching approach that follows from the Egs.(1), (2), Soft. Dev. | 0.90e-6| 0.19e-5| 0.10e-3| 0.35e-1
and (3). The twa x 2 matrices of the MMPP model), User Accs,| 0.36e-4| 0.13e-5| 0.10e-1] 0.49e-3

and D, have four parameters, i.eu;, va, 11, andls as Figure 2. ACF of our 2-state MMPP models for
shown in Eq. (4). : : )
the interarrival times of the three traces and

D, - |:_(ll+'U1) v } their parameterization.
o () —(l2 +w2) |’

- h 0
o= o] @

Our moment matching technique has one degree of free_WRITEs and they need to be verified once they are serviced
dom. We decide to séf as the free parameter and adjust it by the disk. Background tasks are served in a “best-effort

to let the analytic model have the same mean response tim nanner. a baquroupq Jo.b will get ser\_/ed only it tlhere N
as the real system. We parameterize three different MMPPS(,E.O foreground job waiting in the queue, -€., dur_|ng |_dle pe-
to model separatenly the three different arrival proces$es o riods, Cor?s_equ_ently, background tasks will ordinarilydiav
our traces. The MMPPs are labeled as “E-mail”, “User Ac- longer waiting times than foreground tasks.

counts”, and “Software Development” and are used as inputNeither foreground nor background tasks are preemptive,
to the analytic model that we develop here. We stress thatwhich is consistent with the nature of work in disk drives,
these MMPP models do not represent an exact fitting of thewhere the service process consist of three distinct opera-
traces in Figure 1, they only match the first two moments tions, i.e., seek to the correct disk track, position to thie c

of the trace and provide a range of different ACF functions. rect sector, and transfer data. The “seek” portion of the
Workload fitting such that the ACF is matched exactly, is Service time accounts in average for 50% of the service
outside the scope of this paper. In Figure 2, we show thetime and is a non-preemptive operation [9, 18]. Because
ACF of the three MMPPs used here and their full parame- of the non-preemptive nature of seeks, background activity
terization. inevitably impacts foreground work performance: if a back-
ground task starts service, then this precludes the existen
of any foreground task in the system, but if a foreground job
arrives during the service of a background job, it will have
to wait in the queue and on the average experience longer
We model a simple storage system with one service centerdelay than the delay it would have experienced if the system
where foreground jobs are served in a first-come first-servewas not serving background tasks. To minimize this effect,
(FCFS) fashion. We assume that the amount of availablebackground tasks do not start service immediately after the
buffer space islwayslarge enough to store all data asso- end of a foreground busy period, but after the system has
ciated with waiting foreground tasks in the queue. There- beenidle for some pre-specified period of time, which we
fore, the above system is approximated by an infinite-buffer refer to as “idle wait”.

queue.

3.2 Background Tasks in Storage Systems

Background jobs, similarly to the foreground ones, require
Foreground jobs consists of user arrivaidy. Upon com- buffer space. Because the buffer is reserved for foreground
pletion, a foreground job may either leave the system with jobs, background buffer is limited. As a result, some of
probability (1 — p), or generate a new background job with background tasks will be dropped because the buffer is full.
probability p, i.e., background tasks are only a portion of A practical setting in a disk drive would be to allocate 0.5-
foreground tasks and have service demands with the sam@&MB of buffer space for background activity, which cor-
stochastic characteristics as the foreground jobs. Think o responds to approximately 50 background jobs of average
WRITE verification; only a portion of all user requests are size. Throughoutthe paper, we assume a buffer that stores a



@ set of statess() defined as

foreground job SV = {(z,y) and (xla y) |

. ;(Szlﬁrflg;gl\?gcr?)undjobs 0<z<j 0<y<j z+y=j} (5
4 f d jobs _ . .

V2T OTeRrouna o Let the maximum buffer size of the background jobsXbe

. Until there areX tasks in the system, the Markov chain
background job has a tree-like structure. Beyond that point, the backgioun
x*: # background jobs buffer could be full and the levels of the Markov chain
.. y: # foreground jobs form a repetitive pattern. The form of the chain is that of
@ a Quasi-Birth-Death process (QBD) which can be solved

.. idle waiting state using matrix-analytic methods [10].
x: # background jobs

4.1 Modeling Dependence in the Arrival
Figure 3. The Markov chain of the queue- Process

ing system with infinite buffer size for fore-
ground tasks and a buffer size of 2 for back-

ground tasks Here, we enhance the simple Markov chain model to cap-

ture arrival streams with high variability and various de-
grees of dependence in their inter-arrival structure uaing
2-state Markov Modulated Poisson Process (MMPP). Each
maximum of 50 background jobs. We also examined buffer state in the Markov chain of Figure 3 is now replaced by
sizes for up to 250 background jobs. Results are qualita-a set of sub-states, and scalarg: anda are replaced by
tively same as those with buffer size 50 and are omitted duematricesF, B, andW, respectively. An additional matrix

to lack of space. Lo is used to describe transitions within a set of sub-states.
Assume thaiD((JA) and D&A) describe anA-state MMPP.

ThenLg, F, B, andW are A x A matrices computed by
4 TheMarkov Chain the following equations.

F=D B=I,xpu W=I4xa, Ly=(D{)®),
In this section, we describe a Markov chain that models (6)
the queueing system with foreground/background activity whereI , is anA4 x A unit matrix and(DéA))(*) is equal
as described in the previous section. To simplify the defi- toD

" o (()A) except that diagonal elements are all 0. Therefore,
nition of the state space as well as transitions among statesWe

. S . LI construct a new Markov chain and its corresponding in-
we first assume exponential inter-arrival and service timesg .o i generato® by replacing each state in Figure 3

vyith mean rates\ and p, respectively. .Later, in Subsec- with a set ofA sub-states and ug® B, W, andLg to de-
_tlon 4.1, we show how the exponential inter-arrival process scribe its state transitions. The resulting Markov chain is
is replaced by the 2-stage MMPP process. The MarkovaISO a QBD process

chain of the foreground/background activity is depicted in
Figure 3. Because foreground jobs use an infinite buffer andFigure 4(A) illustrates the transitions between the sualtest
the background jobs use only a finite one, the Markov chain corresponding to statés., y), (z,y + 1) and(z + 1, y) in

is infinite in one dimension only. For presentation sim- Figure 3. If we do not draw the detailed state transitions,
plicity, Figure 3 shows the instance where the backgroundPut simply substitute\, . andc in Figure 3 with matrices
buffer can store up to 2 background jobs only. F, B andW, and addL to describe the local state transi-

. ) L tions, we obtain the matrix-based transitions in Figure)4(B
The state space is defined by a 2-tufley), wherez indi- According to Eq. (6)F, B, W, andLo of a system with
cates the number of background tasks in the system (wait—t

) X : e wo-state MMPP arrivals are computed as follows:

ing or in service) ang indicates the number of foreground

tasks in the system (waiting or in service). There are two F— { L 0 } B— { w0 }

sets of 2-tuples in Figure 3z, ) and(2’, y). Stateqx, y) 0 Iy |’ 0 p |’

indicate that a foreground job is being served. Stétég) a 0 0 v

show that a background job is being served. The “idle wait” W= 0 a |’ Lo = ve 0 |’ @)
is represented by statés, 0), wherez > 0 means that the
paCkgrou.nd jobs Walt for a time period, WhICh IS equnen- distributed in our model. However, a similar method and kaker prod-
tially d!St”b_Uted with meeﬂ/a, before startmg._We define  cts can be used to generate the auxiliary matitd8, W, andLo when
levels in this Markov chain such that levetonsists of the  use a MMPP (or MAP) for the service and idle waiting processes

SNote that the service time and the idle waiting time are erptially



wherewy, va, l1, andls are the parameters of the 2-state using an iterative numerical algorithm [10]. By computing

MMPP model in Eq. (4). One can easily show the equiv- #[% andz(X*1 asin[10] one can easily generate the entire

alence of state transitions in Figure 4(A) and Figure 4(B). infinite stationary probability vector for the QBD. Thanks

The infinitesimal generat@) of this new Markov chain can  to the geometric relationship in Eq. (8), several metrigs ca

. be computed in closed form formulas.

) (6 y+D) ® y)/_\(’i’ ¥+ Lete(” be a column vector of 0’s with appropriate dimen-

o> Q Q sion except thé2i - A + 1)th_lto the(2i- A+ A)th elements
? L that are equal to 1, and let’) be another column vector of

" LOC 3 ! 0's except thé(2i —1)- A+1)" to the((2i —1)- A+ A)th
elements that are equal to 1, for 0. Note that all the ele-

ments ofe(®”) are equal to 0. Botk(? ande(?) are of size
A, whereA is the order of the arrival MMPP process. The
(" average queue length of the foreground jQSE N g, the
o , completion rate (or admission rate) of the background jobs

,Y) (x+1 ,y) . e
Comppg, and the percentage of foreground jobs waiting
behind background jobd ait Pr can be calculated as fol-
lows.

X i—1

QLENrc = ZZ ) (]l HTT (Jlj)))

®)
X
. . . . + (X+1— DT _R)2(e® 4 ) ,
Figure 4. Changes in the Markov chain of Fig- ; ( ) e )
ure 3 when the arrival process is a 2-state A D (] _ R~ 1)
MMPP. Compge = 1-— ,
1-— Z 71'(0 ne— XTI -R)e®
be obtained from Figure 3. For each levedorresponding N =0 N
to the (i + 1) column in Figure 3, the stationary state — (X+1) L1
probabilities are given by the following vectors: Z Z ’To it Z“ (I-R)"e
. =2 j=1
Wait P, =
7O = O A0 x® wrre X ,
@ T-1 T T Teok L= S+ il e
for0<i< X, prd ’
Q) _ () () ) ) )
i = [7"( ) Tri—1y T(i-1y T (X i-x) T (X X)]
fori > X.
() @ i .
T (i) OF T, 1S @ row vector of sized that corre- 5 performance Evaluation Results
sponds to a set of sub-states under the MMPP arrival
process. ThengQ = 0 andwe = 1 wherew =
(@, 7@ o (X)) X+ L), Here we use the analytic model to analyze the performance

of a storage system that serves foreground and background
dobs as described in the previous section. The model is
parameterized using the E-mail and Software Development
traces (see Figure 1). This parameterization results in the
MMPPs of Figure 2 which have different mean, CV, and
dependence structure, and we consider representative.

We solve the QBD using the matrix geometric solution [10].
The state space is partitioned into boundary states an
repetitive states. Boundary states in the QBD of Figure 3
are the union of all levelsfor 0 < i < X. We user[®

to denote the stationary probability vector of these states
e, = (£ 7O ... 7(X)) Each level fori > X
represents a repetitive set of states. Key to the matrix geo-\We evaluate the general performance of the system as a
metric solution is that a geometric relation holds among the function of system load. Foreground load is a function of
stationary probabilities of the repetitive states, i.e., the mean of the arrival process in the system (i.e., the mean

. . 4 . . .
. (3) _ (X+1) qi—1 The User Account trace performs qualitatively the samea&tmail
Vi>X, = R (8) trace because of its strong ACF structure. Results are pottesl here
. . . . . due to lack of space.
Here the matri® is a squared matrix of dimension equal 5In this section we use interchangeably the terms “load” ariiliZa-

to the cardinality of repetitive levels, and can be computed tion”.




of the MMPPs in Figure 2) while backgroundload is a func- & (a) E-mail - High ACF 2 (b) Software Dev. - Low ACF
tion of p, i.e., the probability that a foreground generates aE ok T LT T E T e ]
background job upon its completion. We scale the mean of 8 15 & 15F 1
the two MMPPs in Figure 2 to obtain different foreground & 5| & 9f ]
utilizations. We also scale the value pbetween 0.1 and _g R (5)* AT
0.9 to obtain different background loads. The mean “idle £ 4_6 8 10 12 14 16 18 208 ~0 5 10 15 20 25 30 35
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wait” time for a background job before starting service dur-
ing an idle period is equal to the mean service time, unless
otherwise stated. The background buffer size is 50.

=0—— p=0.1—% p=03—% p=06-——=- p=09—— ‘

Figure 6. Portion of foreground jobs delayed
by a background job for the Email (a) and

5.1 Performance of foreground jobs Software Dev. (b) traces as a function of fore-
ground load.

First, we report on the performance of foreground jobs.

Figure 5 presents the average queue length of foregroun .
jobs, which sharply increases as a function of foreground%'2 Performance of background jobs
load. This increase is nearly insensitive to differgnal-

ues, showing that foreground load determines overall sys-\we measure the performance of background jobs by the
tem performance. Note that for long-range dependent ar-portion of background tasks that complete. This metric
rivals (“E-mail” MMPP) the saturation is reached much s directly related to reliability (or long term performanc
faster than for arrivals with short-range dependence ¢-Sof penefits) of background activity. Results are given in Fig-
ware Development” MMPP). We will return to the ques- yre 7, which shows that as load increases, the completion
tion of how intensity in the dependence structure of the ar- rate decreases to zero, independent of load or dependence
rival process affects system performance later in this sec-structure. For arrivals with a strong dependence structure
tion. Figure 6 shows the percentage of foreground jobs that(j e , of “E-mail"), this point comes sooner than for artiva

with weak dependence structure, (i.e., the “Software Devel

1000 (a) E-mail — High ACF 10Oo(b) Software Dev. — Low ACF opment”), see the range of the x-axis in Figure 7. Note that
T T T T T T T F T T T T T T =)

100 b 12 10k ! the completion rate of the background activity relates & th
10 £ 3

e D‘/i//
0.1 F El

10 F 3 probability of the background buffer being full, which sup-
001 1 1 1 1

0: : ports the observation that the strong dependence structure
1k in arrivals increases the queue length of background jobs,

Fg QLEN
Fg QLEN

| | | 001 C 1 1 1 | | | |
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Foreground utilization (%) Foreground utilization (%) as illustrated in Figure 8. Figure 8 shows the average queue
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are delayed because of background jobs. As background

load increases, the portion of foreground jobs that are de- Figure 7. Completion rate for background

layed increases, but as foreground load increases the por- jobs for the Email (a) and Software Dev. (b)

tion of foreground jobs that are delayed decreases. In the traces as a function of foreground load.

worst case scenario that we present here, i.ep fer0.9,

only 20% of foreground jobs are delayed, which shows that

most foreground jobs maintain their expected performance.length of background jobs. Consistent with results in Fig-
The most interesting point in Figure 6 is that when the (to- ure 7, Figure 8 shows a similar qualitative behavior across
tal) load increases beyond a certain point then the portionthe two workloads. Quantitatively, the average queue kengt
of foreground jobs that are affected decreases dramaticall of the long-range dependent workload is smaller than that
which is explained by background jobs performance in the of the short-range dependent workload because more back-
next subsection. ground jobs are dropped.
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g ¢ 3 qr Given the long-term benefits of background activity, main-
oo ; o 8 taining a small “idle wait” period, close to the average ser-
0 3 L it vice time, is beneficial for sustaining foreground job perfo
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Foreground utilization (%) Foreground utilization (%) mance and high background completion rate.
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5.3 Effect of “idle wait” duration . .
Figure 10. Completion rate for background

jobs in the workloads Email (a) and Software
An important design issue in a storage system that serves Dev. (b) as a function of idle wait (in multiples
foreground and background jobs is the length of the “idle  of service time).
wait” period, i.e., the time that the system operates in non-
work-conserving mode. The shorter the duration of “idle
wait”, the higher is the performance degradation of fore-

ground jobs. 5.4 The impact of dependence in the ar-
In Figure 9, we show how the length of “idle wait” affects rival process
the average queue length of foreground jobs under differ-

ent background loads. These experiments are conducteg), s subsection, we analyze the effect that the arrival pr
for the parameterization Qf the ac_tual traces given in Fig- ~ass has on a system with background jobs. Using only
ure 2. Increase in “idle wait” does improve foreground per- ¢ «g_majl” workload parameterizatiohwe examine the
formance, because it reduces the number of foreground jobgyerformance effects of Poisson arrivals, of an Interrupted
delayed by servicing background jobs. However improve- poisson process (IPP) (a process with high variability but

(a) E-mail — High ACF (b) Software Dev. — Low ACF no correlation [6]) and of two MMPP processes with low
0.11

038 O and high dependence structure. All these processes have the
4 o3k 16 o1l i same mean and CV as the measured in the arrival process
3 032 120,095 ¥ | w . . .
o JiL 4 g.{)-o 0o % 3 of “E-mail” trace, with the only exception of the Poisson
a0 0. N HHHH—+ + + + + + + . . .
K026 - i 1 #0085 F y arrival process that maintains the same mean only. Results
0.24 0.08

| | Il Il Il Il Il Il Il .
0.5 & t_1.5 _ t2 %5 3 0 5Id110 t15 20 25 3‘? 35 40 show that the dependence structure of the arrival process
___Cc He enyy ¢ time Thiensity determines the sensitivity of system performance toward
p=01—+— p=03 - p=06 = p=09 —=— ‘ .
load changes, that is, the stronger the dependence s&uctur
the higher the sensitivity toward system load.

Figure 9. Foreground jobs average queue
length for the Email (a) and Software Dev. (b)
traces as a function of idle wait (in multiples
of service time).

Figure 11 shows the average queue length for foreground
jobs under two different loads of background jobs, ize.,

equal to 0.3, and 0.9. There is a dramatic queue length in-
crease under autocorrelated arrivals, that is orders of mag
nitude higher than the queue length increase with exponen-

siderable drop in background completion rate, as shown inthe strong correlated arrivals the foreground queue length
Figure 10. For example in the case of “E-mail” parameter- réaches 100. Such queue length is reached only under 95%
ization under an “idle wait” of twice the service time and foreground utilization for the Poisson arrivals. For compa

p = 0.6, the completion rate of background jobs drops by ative purposes, we plot the res_ults t_Jsing diffe_rent scqies 0
half of service time, but the foreground performance gains 6Qualitatively similar results can be obtained using thesotivo work-

are as low as 6.5% (the average foreground queue lengthsads and are omitted due to lack of space.




results in Figure 5, high foreground load rather than back- 2' () E-mail p= 0.3 £ (b) E-mail p =0.9
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Figure 13. Portion of foreground jobs delayed
by a background job for the “E-mail” work-

load as a function of foreground load in the
Figure 11. Average queue length for fore- system.

ground jobs for the “E-mail” workload as a
function of foreground load in the system.

[ HighACF —— LowACF —— IIP —*— Expo —&— |

Figure 12, we show completion rates for background jobs o mance in the long-term. This sensitivity toward system
as a function of foreground load. There are cases WheNgpanges, in particular for the background completion rate,
under_ high foreground load, there is negrly a 100% differ- is significantly higher for correlated than for independent
ence in performance between exponential and correlated arz jya1s, which indicates that workload burstiness is an im

rivals. The system simply saturates faster under corietlate portant factor that should determine the amount of back-
arrivals and does not have the capacity to serve backgroun%round work in the system

tasks. Therefore, under correlated arrivals light backgdo
load should be sustained to ensure acceptable background
completion rates. Finally, Figure 13 shows the percentage

(b) E=mail p = 0.9 6 Conclusionsand Future Work

o (a) E-mail p=0.3 ®
S10F EFemgmobobo 1 S0k I ]
& sof 4 8 sof 1
3 60 4 B 60 E
g aof 1 E wf 1
=] L | =} L 4 . .
2 23 L L o 22 LN In this paper, we presented an analytic model for the eval-
m m B . . .
% Foreground utilization (%) ® Foreground utilization (%) uation of disk drives or storage systems with background
[ HighACF —— LowACF — P —= Expo —=— | jobs. Because of the non-preemptive nature of work (i.e.,
seeks) in disks, background work inevitably affects perfor
Figure 12. Completion rate of background mance of foreground work. The proposed model allows to
jobs for the “E-mail” workload as a function evaluate the trade-offs between foreground and background
of foreground load in the system. activities. Our model incorporates most important charac-

teristics in storage systems workloads, including buestn

and dependence in the arrival process. The model results
of foreground jobs delayed by background jobs as a func-in a Markov chain of a QBD form that is solved using the
tion of foreground load. Interestingly, the figure showd tha matrix-geometric method.

lth € WgrSt mpac:fog foregro;m(;j #obs IS C%nta't?_eﬂlw'thm a Experiments show that system behavior can be qualitatively
Imited range which Is reached faster under highly Corre- ;o independent or correlated arrivals, albeitdd

lated grrlvals .than mdep_endent arrivals. !n a dynamically ferent utilization levels. This sensitivity to the systeti+ u
changing gnwronment with c_orrelated arrn{als, the system lization levels strongly depends on the dependence steictu
regulates |ts_elf faster to sust_am foreground job perforcea in the arrival process. Although foreground performance
than under independent arrivals. is sustained at acceptable levels, the background comple-
To summarize, the results of this section indicate that, in- tion rate suffers when background load is high under corre-
dependent of workload characteristics, the non-preemptiv lated arrivals. Our results suggest that the amount of back-
background jobs minimally impact performance of fore- ground work is paramount for reliability and performance
ground jobs. However sustained foreground performancegains, and must be a function of the degree of dependence
under worst case scenarios is a result of low backgroundor burstiness in the arrival process. Currently, we are work
completion rates, which suggests that background loading on model extensions that capture more than one job pri-
must be kept modest to benefit system reliability or per- ority level, i.e., different classes of background jobs.
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