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ABSTRACT
Although recent advances in theory indicate that burstiness in the
service time process can be handled effectively by queueingmod-
els (e.g., MAP queueing networks [2]), there is a lack of under-
standing and of practical results on how to perform model param-
eterization, especially when this model parameterizationmust be
derived from limited coarse measurements as is often encountered
in practice. We propose a new modeling methodology based on
the index of dispersion of the service process at a server, which is
inferred by observing the number of completions within the con-
catenated busy periods of that server. The index of dispersion to-
gether with other measurements that reflect the “estimated"mean
and the 95th percentile of service times are used to derive a MAP
process that captures well burstiness and variability of the true ser-
vice process, despite inevitable inaccuracies that resultfrom inex-
act measurements. Detailed experimentation on a TPC-W testbed
where all measurements are obtained via a commercially available
tool, the HP (Mercury) Diagnostics, shows that the proposedtech-
nique offers a simple yet powerful solution to the difficult problem
of inferring accurate descriptors of the service time process from
coarse measurements. Experimental and model prediction results
are in excellent agreement and argue strongly for the effectiveness
of the proposed methodology under bursty or simply variablework-
loads.

1. INTRODUCTION
Analytical performance models are fundamental in capacityplan-

ning to predict the performance of applications under different work-
load intensities [12, 18]. For example, Web applications running
on multi-tier architectures are evaluated using closed queueing net-
works where cycling requests represent active user sessions [19]; a
simple parameterization of these queueing models in terms of mean
service demands of incoming requests is then sufficient to predict
server utilizations and mean end-to-end response times using Mean
Value Analysis (MVA) [16]. However, can we really use queueing
models based only on mean service times to predict performance if
the workloads are bursty or highly-variable? The answer is often
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negative: burstiness and high-variability can criticallydegrade per-
formance to an extent that cannot be captured using mean service
times only [13, 2]. Therefore, describing burstiness in performance
models of contemporary systems and finding measurement and pa-
rameterization techniques that remain simple and practical to use
are important open challenges.

In most cases, measurement data provides the “response time”
process, i.e., the service times plus waiting/queueing times in a
server. Traditional models instead require as input the mean ser-
vice times only. As response times at low utilization levelsimply
very little queueing, their mean values are often used as an approxi-
mation of mean service times. Yet, it is challenging to extract more
accurate descriptors of the service times process from suchcoarse
measurements.

Consider a typical situation: we have obtained a trace from a
live Web server using a non-invasive measurement granularity of
a few seconds and we wish to describe service time variability us-
ing the collected data. Unfortunately, if the measurement granular-
ity is coarse, then the real distribution of service times isdifferent
from the one observed in the trace. For instance, a large request
that appears in a sequence of hundreds of small requests may not
be immediately visible from the trace if the server is sampled too
coarsely. Under these conditions, only mean service times can be
computed reliably, while other descriptors such as servicevariabil-
ity or correlations are hidden behind the “measurement granularity
wall” and without such indexes it is impossible to characterize ef-
fectively burstiness and variability in performance models.

In this paper, we present a new approach to integrate workload
burstiness in performance models, which relies on server busy pe-
riods (they are immediately obtained from server utilization mea-
surements across time) and measurements of request completions
within the busy periods. All measurements are collected with coarse
granularity. After giving quantitative examples of the importance
of integrating burstiness in performance models, we analyze a real
three-tier architecture subject to TPC-W workloads with different
burstiness profiles. We show that burstiness in the service pro-
cess can be inferred effectively from these traces using theindex
of dispersion[5, 9] for counts of completed requests, a measure of
burstiness frequently used in the analysis of time series and network
traffic. The index of dispersion jointly captures service variability
and burstiness in a single number and can also be related to the
well-known Hurst parameter used in the analysis of long-range de-
pendence [1]. Furthermore, the index of dispersion can be inferred
reliably also if the length of the trace is short. Using the index of
dispersion, we show that the accuracy of the model prediction can
be increased by up to30% compared to standard queueing models
parameterized only with mean service demands [15]. Exploiting
basic properties of bursty processes, we are also able to include in
the analysis the95th percentile of service times, which is widely
used in computer performance engineering to quantify the peak-to-



mean ratio of service demands. Therefore, our performance models
are specified by only three parameters for each server: mean,index
of dispersion, and95th percentile of service demands, making a
strong case of being practical, easy, yet surprisingly accurate. To
the best of our knowledge, this paper makes a first strong casein
the use of a new practical modeling paradigm for capacity planning
that encompasses workload burstiness.

The rest of the paper is organized as follows. In Section 2, we
introduce service burstiness using illustrative examplesand present
the methodology for the measurement of the index of dispersion
to parameterize the model. In Section 3, we discuss the multi-
tier architecture and the TPC-W workloads used in experiments.
The proposed modeling paradigm to integrate burstiness in perfor-
mance models is presented in Section 4. Section 4 also shows the
experimental results that validate the accuracy of the methodology
in comparison with standard mean-value based capacity planning.
Finally, Section 5 draws conclusions.

2. BURSTINESS IN PERFORMANCE MOD-
ELS: DO WE REALLY NEED IT?

In this section, we show some examples of the importance of
burstiness in performance models. In order to gain intuition on the
fundamental features of burstiness, let us first consider Figure 1.
Each figure represents a sample of20, 000 service times generated
from the same hyperexponential distribution with meanµ−1 = 1
and squared coefficient-of-variationSCV = 3. The only differ-
ence is that we have shaped correlations to impose to each trace
a unique burstiness profile. In such a way, in Figure 1(b)-(d), the
large service times progressively aggregate in bursts, while in Fig-
ure 1(a) they appear in random points of the trace. In particular,
Figure 1(d) shows the extreme behavior where all large requests are
condensed into a single large burst. In the rest of the paper,we use
the term “burstiness” to indicate traces that are not just “variable”
as the samples in Figure 1(a), but that also present aggregation in
“bursty periods” as in Figure 1(b)-(d).

What is the performance implication on systems of the different
burstiness profiles in Figure 1(a)-(d)? Assuming that the request
inter-arrival times to the server follow an exponential distribution
with meanλ−1 = 2, a simulation analysis of theM/G/1 queue1

(50% utilization) provides the response times shown in Table 1.
Irrespectively of the identical properties of the service time distri-
bution, burstiness clearly has paramount importance for queueing
prediction, both in terms of mean and tail of response times.For
instance, the mean response time for the trace in Figure 1(d)is ap-
proximately40 times slower than with the service times in Figure
1(a) and the95th percentile of the response times is even80 times
longer. In general, the performance degradation is monotonically
increasing with the observed burstiness; therefore it is important to
distinguish the different behaviors in Figure 1(a)-(d) with a quanti-
tative index. The index of dispersion discussed in the next section
is instrumental to capture the difference in the burstinessprofiles.

2.1 Characterization of Burstiness
We use theindex of dispersionI for counts to characterize the

burstiness of service times [5, 9]. This is a standard burstiness index
used in networking [9], which we here apply to the characterization
of workload burstiness in multi-tier applications. To the best of our
knowledge, the index of dispersion has not been previously applied
to multi-tier application modeling. The index of dispersion has a

1We remark that workload burstiness rules out independence of ser-
vice time samples, thus the classic Pollaczek-Khinchin formula for
theM/G/1 does not apply and the performance isnot only deter-
mined by mean and squared coefficient-of-variation.

broad applicability and wide popularity in stochastic analysis and
engineering.

The index of dispersion of a service process is a measure de-
fined on the squared-coefficient of variationSCV and on the lag-k
autocorrelationsρk, k ≥ 1, of the service times as follows:

I = SCV

(

1 + 2

∞
∑

k=1

ρk

)

. (1)

The joint presence ofSCV and autocorrelations inI is sufficient to
discriminate traces like those in Figure 1(a)-(d): e.g., for the trace
in Figure 1(a) the correlations are statistically negligible, since the
probability of a service time being small or large is statistically un-
related to its position in the trace. However, for the trace in Figure
1(d) consecutive samples tend to assume similar values, therefore
the sum of autocorrelation in Eq. (1) is much greater in Figure 1(d).
The last column of Table 1 reports the values ofI for the four exam-
ple traces, the values strongly indicate thatI is able to discriminate
between the different burstiness levels in Figure 1(a)-(d)and is re-
lated directly to the response time results, which is largely expected
since autocorrelations severely impact queueing performance [8].

Note that since in the exponential caseI = 1, the index of dis-
persion may be interpreted qualitatively as the ratio of theobserved
service burstiness with respect to a Poisson process; therefore, val-
ues ofI of the order of hundreds or more indicate a clear departure
from the exponentiality assumptions and, unless the realSCV is
anomalously high, they are indicators of burstiness. Although the
mathematical definition ofI in Eq.(1) is simple, this formulation
is not practical for estimation because of the infinite summation
involved and the sensitivity to noise. In the next subsection, we de-
scribe a simple alternative way for estimatingI that is also able to
overcome the limitations imposed by the measurement granularity
wall. We also remark that, if the measurements show long-range
dependence, then the index of dispersion value can grow arbitrarily
large and other measurements should be used to quantify temporal
dependence [11]. In our experiments with TPC-W, we have found
that the index of dispersion was very effective to characterize work-
load burstiness and the value ofI was always converging to a finite
value.

2.2 Measuring the Index of Dispersion
The index of dispersion enjoys a simple measurement approach

which makes it very practical for estimation. Instead of Eq.(1), we
have an alternative definition of the index of dispersion fora service
process as follows. LetNt be the number of requests completed in
a time window oft seconds, where thet seconds are countedig-
noring the server’s idle time (that is, by conditioning on the period
where the system is busy,Nt is a property of the service process
which is independent of queueing or arrival characteristics). Then
as shown in [5], the index of dispersionI is the limit:

I = lim
t→+∞

V ar(Nt)

E[Nt]
, (2)

whereV ar(Nt) is the variance of the number of completed re-
quests andE[Nt] is the mean service rate during busy periods.
Since the value ofI depends on the number of completed requests
in an asymptotically large observation period, an approximation of
this index can be always computed also if the measurements are
obtained with coarse granularity. For example, suppose that the
sampling resolution isT = 60 seconds, and assume to approxi-
matet → +∞ as t ≈ 2 hours, thenNt is computed by sum-
ming the number of completed requests in120 consecutive sam-
ples. Throughout the paper, we have used the pseudo-code in Fig-
ure 2 to estimateI directly from Eq.(2). The pseudo-code is a
straight-forward evaluation ofV ar(Nt)/E[Nt] for different values

2
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Figure 1: Four workload traces drawn from an identical hyper-exponential distribution (mean µ−1 = 1, SCV = 3), but with
different burstiness profiles. Given the identical variability, trace (d) represents the case of maximum burstiness where all large
service times appear consecutively in a large burst. The index of dispersionI , introduced in this paper for the characterization of
workloads in multi-tier architectures and reported on top of each figure, is able to capture the significantly different burstiness of the
four workloads. As the name suggest, asI grows the dispersion of the bursty periods increases up to the limit case in Figure (d).

of t, which finally estimatesI as the limit (2). Intuitively, the algo-
rithm in Figure 2, calculatesI of the service process by observing
the completions of jobs in concatenated busy period samples. Be-
cause of this concatenation, queueing is masked out, and theindex
of dispersion of job completions serves as a good approximation of
the index of dispersion of the service process.

Response Time[ms] Index of Dispersion
Workload mean 95th percentile I

Figure 1(a) 3.02 14.42 3.0
Figure 1(b) 11.00 83.35 22.3
Figure 1(c) 26.69 252.18 92.6
Figure 1(d) 120.49 1132.40 488.7

Table 1: Response time of theM/G/1 queue for the service
times traces shown in Figure 1. The server utilization is50%.

Input
T , the sampling resolution (e.g., 60 seconds)
K, total number of samples, assumeK > 100
Uk, utilization in thekth period,1 ≤ k ≤ K
nk, number of completed requests in thekth period,1 ≤ k ≤ K
tol, convergence tolerance (e.g.,0.20)
Estimation of the Index of DispersionI

1. get the busy time in thekth periodBk := Uk · T , 1 ≤ k ≤ K
2. initialize t = T andY (0) = 0
3. do

a. for eachAk = (Bk , Bk+1, . . . , Bk+j),
∑j

i=0
Bk+i ≈ t,

aa. computeNk
t =

∑j
i=0

nk+i.
b. if the set of valuesNk

t has less than100 elements.
bb. The trace is too short. Stop and collect new measures.

c. Y (t) = V ar(Nk
t )/E[Nk

t ]
d. increaset by T
until |1 − (Y (t)/Y (t − T ))| ≤ tol, i.e., the values ofY (t) converge

5. return the last computed value ofY (t) as estimate ofI.

Figure 2: Estimation of I from utilization samples.

2.3 Model Parameterization
In this section, we use the measurement of burstiness for thepa-

rameterization of a two-phase Markovian Arrival Process (MAP(2)),
a class of Markov-modulated process, see [17] for an excellent in-
troduction. A MAP(2) can be seen as a Markov chain that jumps
between two states and the active state determines the current rate
of service. The advantage of MAP(2)s compared to other models
is that we can easily fit traces with variability and/or burstiness and
the resulting queueing models are computationally tractable [14,
2]. In particular, a MAP(2) is uniquely specified by four parame-

ters: mean,SCV , skewness, and lag-1 autocorrelation coefficient
ρ1 of the service times; we point to [6, 3] for fitting formulas.

Here, we impose the four values of the MAP(2) parameters as
follows. After estimating the mean service time and the index of
dispersionI , we also estimate the95th percentile of the service
times. We distinguish two cases: if the trace has high dispersion
(e.g.,I >> 100), then during a sample intervalT all requests are
highly correlated, which implies that the95th percentile of the mea-
sured busy times (theBk values in Figure 2) is approximately equal
to the real95th percentile of the service times2. Conversely, ifI is
small (e.g.,I < 100), then the assumption of using the same95th
percentile observed in the measured busy times can be inaccurate.
Nevertheless, we observe that we can still take this simplification,
because under low-burstiness conditions the queueing performance
is dominated by the mean and theSCV of the distribution, e.g, we
are in the same assumptions of the Pollaczek-Khinchin formula for
theM/G/1 queue, and thus we do not expect a biased estimate of
the95th percentile to affect accuracy significantly. In practice, we
have found this empirical rule to be highly satisfactory forsystem
modeling. Therefore, in all cases we estimate the95th percentile
of the service times equal to the measured95th percentile of all
measured busy periodBk values defined in Figure 2.

Given the mean, the index of dispersion, and the95th percentile
of service times, we search the best combination of the MAP(2)
moments and lag-1 autocorrelation that matches these parameters,
see [10] for MAP(2) expressions ofI and percentiles. In particular,
we first try to match the index of dispersion and select a subset of
MAP(2)s that have less than±20% relative error on the index of
dispersion estimate3. Then, we select a MAP(2) from this subset
such that the MAP has the95th percentile of service times closest to
the measured value. The search is not computationally challenging
given the reduced state space of a MAP(2), usually a couple of
minutes are sufficient to obtain the best MAP(2) for each server.

3. EXPERIMENTAL ENVIRONMENT
Today, a multi-tier architecture has become an industry standard

for implementing scalable client-server enterprise applications. In
our experiments, we use a testbed of a multi-tier e-commercesite
that is built according to the TPC-W specifications.

TPC-W is a widely used e-commerce benchmark that simulates
the operation of an online bookstore [7]. Typically, this multi-tier
application uses a three-tier architecture paradigm, which consists
of a web server, an application server, and a back-end database.

2This is true becauseall very large requests are likely to appear
together in a few bursty periods and this significantly reduces the
bias in the estimation of the tail of the service time distribution.
3If I > 1, then arbitrarily small error on the index of dispersion
can be achieved by proper choice of the MAP(2)’s SCV andρ1.
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Figure 3: Illustrating a) system overall throughput, b) average CPU utilization of the front server, and c) average CPU utilization of
the database server for three TPC-W transaction mixes. The mean think time Z is set to 0.5 seconds.
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Figure 4: The CPU utilization of the front server and the database server across time with 1 sec granularity for (a) the browsing mix,
(b) the shopping mix and (c) the ordering mix under 100 EBs.

A client communicates with such a web service via a web inter-
face, where the unit of activity at the client-side corresponds to a
download of a web page. In general, a web page is composed of
an HTML file and several embedded objects such as images. In a
production environment, it is common that a web server and appli-
cation server reside on the same hardware, and shared resources are
used by the application and web servers to generate main HTML
files as well as to retrieve page embedded objects. We opt to put
both the Web server and the application server on the same machine
called the front server. Since the HTTP protocol does not provide
any means to delimit the beginning or the end of a web page, it
is very difficult to accurately measure the aggregate resources con-
sumed due to web page processing at the server side. There is no
practical way to effectively measure the service times forall page
objects, although accurate CPU consumption estimates are required
for building an effective application provisioning model.To ad-
dress this problem, we define aclient transactionas a combination
of all the processing activities at the server side to deliver an entire
web page requested by a client, i.e., generate the main HTML file
as well as retrieve embedded objects and perform related database
queries.

Typically, a continuous period of time during which a clientac-
cesses a Web service is referred to as aUser Sessionwhich con-
sists of a sequence of consecutive individual transaction requests.
The number of concurrent sessions (i.e., customers or emulated
browsers (EBs)) is kept constant throughout the experiment. There
are 14 different transactions defined by TPC-W. In general, these
transactions can be roughly classified of “Browsing” or “Ordering”
type. TPC-W defines three standard transaction mixes based on
the weight of each type (i.e., browsing or ordering) in the particu-
lar transaction mix: (1) thebrowsing mixwith 95% browsing and
5% ordering; (2) theshopping mixwith 80% browsing and20%
ordering; and (3) theordering mixwith 50% browsing and50%
ordering.

For transaction monitoring we have used the HP (Mercury) Diag-
nostics [20] tool which offers a monitoring solution for J2EE appli-
cations. Using Diagnostics we collect performance and diagnostic
data from applications without the need for application source code

modification or recompilation. We use Diagnostics tool to measure
the number of completed requestsnk in thekth period.We also use
thesar command to obtain the utilizations of two servers across
time with granularity of one second.

3.1 Bottleneck Switch in TPC-W
For each transaction mix, we run a set of experiments with dif-

ferent numbers of EBs ranging from 25 to 150. Each experiment
runs for 3 hours, where the first 5 minutes and the last 5 minutes
are considered as warm-up and cool-down periods and thus omit-
ted in the analysis. User think times are exponentially distributed
with meanZ = 0.5 seconds. Figure 3 presents the overall system
throughput, the mean system utilization at the front serverand the
mean system utilization at the database server as a functionof EBs.
Figure 3(a) shows that the system becomes overloaded when the
number of EBs reaches 75, 100, and 150 under the browsing mix,
the shopping mix and the ordering mix, respectively. The system
throughput then remains asymptotically flat with higher EBs. This
is due to the “closed loop” aspect of the system, i.e., the fixed num-
ber of EBs (customers), that is effectively an upper bound onthe
number of jobs that circulate in the system at all times.

The results from Figures 3(b) and 3(c) show that under the shop-
ping and ordering mixes, the front server is a bottleneck, where the
CPU utilizations are almost 100% at the front tier but only 20-40%
at the database tier. For the browsing mix, we see that the CPU
utilization of the front server increases very slowly as thenumber
of EBs increases beyond 75, which is consistent with the veryslow
growth of throughput. For example, when the front server is already
100% utilized under the shopping and the ordering mixes, thefront
server for the browsing mix is just around 80%. Meanwhile, for the
browsing mix, the CPU utilization of the database server increases
quickly as the number of EBs increases. When the number of EBs
is beyond 100, it becomes not obvious which server is responsi-
ble for the bottleneck: the average CPU utilizations of two servers
are about the same, differing by 10%. In presence of burstiness in
the service times, this may suggest that a phenomenon ofbottle-
neck switchingoccurs between the front and the database servers
across time [13]. That is, a server may become the bottleneck

4



µ2

MAPDB

DB Server

µ1

MAPFS

Front Server

Clients

Z
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while processing consecutively large requests, while being lightly
loaded during the other periods. In general, additional investiga-
tion to determine the existence of bottleneck switching is required
when the utilizations are so close or the workloads are knownto be
highly-variable.

To better understand bottleneck switching, we present CPU uti-
lizations of the front and database servers across time for the brows-
ing mix, as well as the shopping and the ordering mixes, with 100
EBs in Figure 4. A bottleneck switch occurs when the database
server utilization becomes larger than the front server utilization,
as clearly visible in Figure 4(a). As shown in Figures 4(b) and
4(c), the phenomenon of bottleneck switching cannot be easily ob-
served for the shopping and the ordering mixes, although these two
workloads have also high variability. In contrast, there isa contin-
uousand obvious switching of bottlenecks between the front and
database servers over time for the browsing mix in Figure 4(a).
This bottleneck switching is a characteristic effect of burstiness
in the service times. This unstable behavior is extremely hard to
model. Later, in Section 4.2, we will show that browsing mix ex-
hibits a significantly higher index of dispersion for both the front
and database server compared to shopping and ordering mixes. In
the next section, we present a solution that takes into account the
index of dispersion and enables more accurate modeling of system
with bursty workloads.

4. MODEL
We model the multi-tier architecture using a simple queueing

network composed by two queues and a delay center, see Figure5.
The two queues model the front server and the database server, re-
spectively. The delay center is instead representative of the average
user think timeZ between receiving a Web page and the follow-
ing page download request. The two queues have the first-come
first-serve scheduling discipline and are placed in series since the
processing at the front server completes almost immediately after
database replies are received4.

In the proposed closed model, the arrival process to the Web
server is modeled by the delay which correctly abstracts thebehav-
ior of the TPC-W benchmark. In fact, in TPC-W a new request
is generated from a customer to the system with exponentially-
distributed inter-arrival time, which is equivalent to impose an exponentially-
distributed service time to the delay server in Figure 5.

The fundamental step of the proposed modeling methodology is
the definition of the service time processes at the two servers. As
discussed in Section 2, given the mean, the index of dispersion, and
the 95th percentile of service times, we obtain the best MAP(2)
for each server with a search over the set of feasible MAP(2) pa-
rameters. We have noticed that for a small MAP(2), a complete
search can be completed in a couple of minutes using MATLAB,

4Indeed, processor sharing would be a better model of the real
system scheduling. This would also avoid database responses to
wait in line at the front-server. However, only small single-queue
processor-sharing models for bursty workloads exist in thelitera-
ture because of the state-space explosion problem; therefore, we
resort to first-come first-served scheduling with two queuesin se-
ries to avoid overestimation of queueing at the front server.

therefore the fitting of the MAP(2) service process is not subject
to high computational costs. Indeed, if larger MAPs are consid-
ered to fit the service processes, more efficient fitting techniques
should be used, but resorting to large MAPs introduces the difficult
issue of deriving higher-order properties of the inter-arrival times
from measurement (e.g., higher-order moments of the correlations
[4]), which cannot be easily addressed if the correlations between
service time samples are significantly altered by the measurement
window granularity. This extension is left for future work.

Finally, we parameterize the model in Figure 5 as a MAP queue-
ing network [2] with the service processes that are fitted by two
MAP(2)s, denoted as MAPFS and MAPDB, respectively. We then
solve the model with MATLAB using an exact numerical evalua-
tion of the underlying Markov chain5. In particular, the Markov
chain solution gives the probabilities of the different queueing net-
work states, which we aggregate to compute mean utilizationand
throughput. Other performance indexes such as mean queue-lengths
and mean response times can be also computed easily.

4.1 Discussions on Measurement Granularity
According to TPC-W specification, 7 seconds is the default mean

user think time. To evaluate the TPC-W testbed in heavy-loadcon-
ditions whenZ = 7 s, we need to set the number of EBs as high
as 1200. To the best of our knowledge, no existing numerical ap-
proach can solve the model for exact solutions when the system
has such a high population. One optional way is to use the approx-
imation presented in [2]. Here, we obtain the exact solutions by
reducing the user think time, e.g.,Z = 0.5 s, such that the sys-
tem becomes overloaded when the number of EBs is around 100
- 150. The minimum and default size of the monitoring window
is set to 5 seconds in the Diagnostics tool. As the user think time
becomes smaller (i.e., 0.5 seconds), more requests are completed
in a monitoring window. For example, for the browsing mix, when
Z is set to 0.5 s and the number of EBs is 50, there are 465 re-
quests completed every 5 seconds on the average. The information
of these jobs areall aggregated in one monitoring window. This
indicates that smallerZ is equivalent to coarser measurement gran-
ularity. Therefore, asZ decreases, more information on variability
and burstiness is hidden behind the measurement granularity wall.
Unfortunately, if the measurement granularity is coarse, then the
values ofY (t) in Figure 2 cannot converge to a stabilized number,
see Step3 in Figure 2. Therefore, a finer measurement granularity
is critical for modeling systems with workload burtiness.

There are two approaches to improve the coarse measurement
granularity: (1) decreasing the size of the monitoring windows in
the tool; and (2) running experiments with the increased user think
time Z. The minimum granularity used by Diagnostics for report-
ing the measured metrics is 5 seconds. Therefore, we alternatively
gather the information from the experiments which have a large
user think time (e.g., 7 seconds) to estimateI for the front and the
database servers, and then obtain the 2-phase MAPFS and MAPDB
fitting the service processes at the front server and the backend
database server, respectively. Now, for the browsing mix with Z
of 7 seconds and 50 EBs, only17 requests are completed in ev-
ery 5 second on the average. Note that the real service processes
at the front and the database serves are independent on the user
think time. This allows us to plug the estimated MAP(2)s intothe
model shown in Figure 5 to predict the performance metrics for the
systems with small user think times, and essentially deal with the
measurement granularity problem.

Figure 6 compares the analytic results with the experimental mea-

5MATLAB scripts for the solution of MAP queueing network mod-
els like the one consider here will be made available athttp:
//www.cs.wm.edu/MAPQN/.
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Figure 6: Comparing the results for the model which fits MAPs
with different Z = 0.5s and 7s.

surements of the real system for the browsing mix. In all experi-
ments, we set the mean user think time to 0.5 seconds and vary the
system loads with different EBs. To evaluate the effect of the mea-
surement granularity on the analytic model, we estimate twosets
of MAP(2)s by using the measured traces from the experiments
with 50 EBs and two different levels of measurement granularity,
i.e., the user think timeZ = 0.5 s, and7 s, respectively. AsZ
increases, we are getting a finer granularity monitoring data. The
analytic results from the classic MVA method are plotted as acom-
parison baseline. Furthermore, the corresponding relative predic-
tion error, which is the ratio of the absolute difference between the
analytic result and the measured result over the measured result, is
shown on each bar. Figure 6 shows that precision increases non-
negligibly when a finer granularity of monitoring data is used. As
the system becomes heavily loaded, the model with finer granular-
ity (i.e., Z as high as 7 seconds) dramatically reduces the relative
prediction error to 2.4%, while MVA yields a significant error of
36%. In summary, results show that the new model produces supe-
rior results.

4.2 Validation
Now, we turn to validate the accuracy of our analytic model

for resource usage evaluation through a detailed performance case
study in the TPC-W testbed. Figure 7 compares the analytic re-
sults with the experimental measurements of the real systemfor
(a) the browsing mix, i.e., a bursty workload with significant bot-
tleneck switching, (b) the shopping mix having burstiness at the
database server, but negligible bottleneck switching, and(c) the
ordering mix with negligible burstiness and bottleneck switching.
The values of the index of dispersion for the front and the database
service processes are also shown in the figure. Throughout all ex-
periments, the mean user think timeZ is set to 0.5 seconds. The
behavior of the response time can be derived from throughputus-
ing Little’s Law. Because throughput values immediately provide
also the mean response times, we only present here the accuracy of
throughput estimates.

Burstiness and bottleneck switching are crucial for the accuracy
of forecasting system performance. Figure 7(a) gives evidence
that the classic capacity planning models, such as MVA, do not
work well for bursty workloads that impose bottleneck switching,

as their prediction accuracy dramatically decreases as thesystem
load increases. In contrast, our analytic model based on theindex
of dispersion achieves substantial gains in the predictionaccuracy,
as the index of dispersion enables the model to effectively capture
bothburstiness and variability. The results of the proposed analytic
model match closely the experimental results for the browsing mix.

The shopping mix presents an interesting case: the MVA model
performs well in presence of burstiness because this is a special
case where it is not influential in terms of system performance.
In fact, regardless of the variation of the workload at the database
server, the front server remains the major source of congestion for
the system and therefore the model accuracy is high irrespectively
of burstiness modeling. This stresses the fact that our modeling
methodology provides the largest improvements when the system
exhibits complex bottleneck switching phenomena that cannot be
modeled, even as approximations, with MVA models. We also re-
mark that if the front server would have been less loaded relatively
to the database server, then the behavior of the shopping mixwould
have been probably similar to the browsing mix.

In the ordering mix, the feature of workload burstiness is almost
negligible and the phenomenon of bottleneck switching between
the front and the database servers cannot be easily observed, see
Section 3.1. For this case, MVA yields prediction errors up to 5%.
Yet, as shown in Figure 7(b) and 7(c), our analytic model further
improves MVA’s prediction accuracy. This happens because of the
index of dispersion that is able to capture detailed information on
the service characteristics that is not available to the MVAmodel.

All results shown in Figure 7 validate the analytic model based
on index of dispersion: its performance results are in excellent
agreement with the experimental values in the systemswith and
without the feature of workload burstiness.

5. CONCLUSIONS
In this work, we have presented a solution to the difficult prob-

lem of model parametrization by inferring essential process infor-
mation from coarse measurements in real systems. After giving
quantitative examples of the importance of integrating burstiness in
performance models and pointed out its role relatively to the bottle-
neck switch phenomenon, we show that the coarse measurements
can still be used to parameterize queueing models that effectively
capture burstiness and variability of the true process. Theparam-
eterized queueing model can thus be used to closely predict per-
formance in systems even in the very difficult case where there is
persistent bottleneck switch among the various servers. Detailed
experimentation on a multi-tiered system using the TPC-W bench-
mark validates that the proposed technique offers a robust solution
to predicting performance of systems subject to burstinessand bot-
tleneck switching conditions.

The proposed approach is based on measurements that can be
routinely obtained from the existing commercial monitoring tools.
The resulting parameterized models are practical and robust for a
variety of capacity planning and performance modeling tasks in
production environments.
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