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ABSTRACT

Although recent advances in theory indicate that burssineshe
service time process can be handled effectively by queumsiogy
els (e.g., MAP queueing networks [2]), there is a lack of unde
standing and of practical results on how to perform modehpar
eterization, especially when this model parameterizatwst be
derived from limited coarse measurements as is often ememth
in practice. We propose a new modeling methodology based o
the index of dispersion of the service process at a servechwh
inferred by observing the number of completions within tba-c
catenated busy periods of that server. The index of dispets-
gether with other measurements that reflect the “estimatesiin
and the 95th percentile of service times are used to derivédB M
process that captures well burstiness and variability etthe ser-
vice process, despite inevitable inaccuracies that résuit inex-
act measurements. Detailed experimentation on a TPC-\vetst
where all measurements are obtained via a commercialljeiei
tool, the HP (Mercury) Diagnostics, shows that the propdset-
nique offers a simple yet powerful solution to the difficuloplem
of inferring accurate descriptors of the service time psscieom
coarse measurements. Experimental and model predictiurttise
are in excellent agreement and argue strongly for the éffetwss
of the proposed methodology under bursty or simply variallik-
loads.

1. INTRODUCTION

Analytical performance models are fundamental in capatity-
ning to predict the performance of applications under fféwork-
load intensities [12, 18]. For example, Web applicationsniog
on multi-tier architectures are evaluated using closedeing net-
works where cycling requests represent active user sesfiéh a
simple parameterization of these queueing models in tefmean
service demands of incoming requests is then sufficientedigr
server utilizations and mean end-to-end response timeg) Mgan
Value Analysis (MVA) [16]. However, can we really use quaggi
models based only on mean service times to predict perfarenién
the workloads are bursty or highly-variable? The answeiffteno
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negative: burstiness and high-variability can criticalggrade per-
formance to an extent that cannot be captured using meaiteserv
times only [13, 2]. Therefore, describing burstiness irfgrenance
models of contemporary systems and finding measurementzaand p
rameterization techniques that remain simple and prddticase
are important open challenges.

In most cases, measurement data provides the “responsk time

n Process, i.e., the service times plus waiting/queueinggiin a

server. Traditional models instead require as input thennsea-
vice times only. As response times at low utilization levietply
very little queueing, their mean values are often used appiroai-
mation of mean service times. Yet, it is challenging to ecttraore
accurate descriptors of the service times process from costse
measurements.

Consider a typical situation: we have obtained a trace from a
live Web server using a non-invasive measurement gratylafi
a few seconds and we wish to describe service time variglbidit
ing the collected data. Unfortunately, if the measuremesmgjar-
ity is coarse, then the real distribution of service timedifferent
from the one observed in the trace. For instance, a largeeséqu
that appears in a sequence of hundreds of small requestsahay n
be immediately visible from the trace if the server is samt®
coarsely. Under these conditions, only mean service tiraase
computed reliably, while other descriptors such as semacibil-
ity or correlations are hidden behind the “measurementujaaity
wall” and without such indexes it is impossible to charazeef-
fectively burstiness and variability in performance madel

In this paper, we present a new approach to integrate watkloa
burstiness in performance models, which relies on servey pe-
riods (they are immediately obtained from server utiliaatmea-
surements across time) and measurements of request camgplet
within the busy periods. All measurements are collected edarse
granularity. After giving quantitative examples of the ionfance
of integrating burstiness in performance models, we aeatyreal
three-tier architecture subject to TPC-W workloads witfiedent
burstiness profiles. We show that burstiness in the service p
cess can be inferred effectively from these traces usingnidex
of dispersion5, 9] for counts of completed requests, a measure of
burstiness frequently used in the analysis of time seridsiatwork
traffic. The index of dispersion jointly captures serviceiadaility
and burstiness in a single number and can also be relatec to th
well-known Hurst parameter used in the analysis of longyeatte-
pendence [1]. Furthermore, the index of dispersion can fieered
reliably also if the length of the trace is short. Using theex of
dispersion, we show that the accuracy of the model predictzm
be increased by up 0% compared to standard queueing models
parameterized only with mean service demands [15]. BExptpit
basic properties of bursty processes, we are also ableltamm
the analysis th@5th percentile of service times, which is widely
used in computer performance engineering to quantify ta&-e-



mean ratio of service demands. Therefore, our performanckeis
are specified by only three parameters for each server: rimehex,

of dispersion, and5th percentile of service demands, making a
strong case of being practical, easy, yet surprisingly i@&teu To
the best of our knowledge, this paper makes a first stronginase
the use of a new practical modeling paradigm for capacitymtey
that encompasses workload burstiness.

The rest of the paper is organized as follows. In Section 2, we
introduce service burstiness using illustrative examatebspresent
the methodology for the measurement of the index of dispersi
to parameterize the model. In Section 3, we discuss the multi
tier architecture and the TPC-W workloads used in experimen
The proposed modeling paradigm to integrate burstinessriiop
mance models is presented in Section 4. Section 4 also shaews t
experimental results that validate the accuracy of the atketiogy
in comparison with standard mean-value based capacityipign
Finally, Section 5 draws conclusions.

2. BURSTINESS IN PERFORMANCE MOD-

ELS: DO WE REALLY NEED IT?

In this section, we show some examples of the importance of
burstiness in performance models. In order to gain intaitio the
fundamental features of burstiness, let us first considgurei 1.
Each figure represents a sample26f000 service times generated
from the same hyperexponential distribution with meart = 1
and squared coefficient-of-variatid®C'V' = 3. The only differ-
ence is that we have shaped correlations to impose to eamh tra
a unique burstiness profile. In such a way, in Figure 1(b){wH
large service times progressively aggregate in burstdevimiFig-
ure 1(a) they appear in random points of the trace. In pdaticu
Figure 1(d) shows the extreme behavior where all large =q@e
condensed into a single large burst. In the rest of the pageuse
the term “burstiness” to indicate traces that are not juatiable”
as the samples in Figure 1(a), but that also present aggredat
“bursty periods” as in Figure 1(b)-(d).

What is the performance implication on systems of the diffier
burstiness profiles in Figure 1(a)-(d)? Assuming that tlypiest
inter-arrival times to the server follow an exponentialtdligition
with mean\~! = 2, a simulation analysis of th&//G /1 queué
(50% utilization) provides the response times shown in Table 1.
Irrespectively of the identical properties of the servioeet distri-
bution, burstiness clearly has paramount importance feueing
prediction, both in terms of mean and tail of response tinkas.
instance, the mean response time for the trace in Figuraslég)-
proximately40 times slower than with the service times in Figure
1(a) and theé5th percentile of the response times is egértimes
longer. In general, the performance degradation is moinzty
increasing with the observed burstiness; therefore it [girrant to
distinguish the different behaviors in Figure 1(a)-(d)watquanti-
tative index. The index of dispersion discussed in the nestien
is instrumental to capture the difference in the burstipeséiles.

2.1 Characterization of Burstiness

We use thdndex of dispersionf for counts to characterize the
burstiness of service times [5, 9]. This is a standard st index
used in networking [9], which we here apply to the charaztgidn
of workload burstiness in multi-tier applications. To thesbof our
knowledge, the index of dispersion has not been previoystlied
to multi-tier application modeling. The index of dispersibas a

"We remark that workload burstiness rules out independefsero
vice time samples, thus the classic Pollaczek-Khinchimfda for
the M /G/1 does not apply and the performancenct only deter-
mined by mean and squared coefficient-of-variation.

broad applicability and wide popularity in stochastic gsa and
engineering.

The index of dispersion of a service process is a measure de-
fined on the squared-coefficient of variati6a'V and on the lade
autocorrelationgy, k£ > 1, of the service times as follows:

I=8CV <1+22Pk)~

k=1

@)

The joint presence #C'V and autocorrelations ihis sufficient to
discriminate traces like those in Figure 1(a)-(d): e.gr the trace
in Figure 1(a) the correlations are statistically negligjlsince the
probability of a service time being small or large is stataity un-
related to its position in the trace. However, for the trac€igure
1(d) consecutive samples tend to assume similar valueftine
the sum of autocorrelation in Eq. (1) is much greater in Fedi(d).
The last column of Table 1 reports the valueg &dr the four exam-
ple traces, the values strongly indicate thét able to discriminate
between the different burstiness levels in Figure 1(a)a(d) is re-
lated directly to the response time results, which is largepected
since autocorrelations severely impact queueing perfocen§s].

Note that since in the exponential cake= 1, the index of dis-
persion may be interpreted qualitatively as the ratio ofotheerved
service burstiness with respect to a Poisson processfohergal-
ues ofT of the order of hundreds or more indicate a clear departure
from the exponentiality assumptions and, unless the $€&V is
anomalously high, they are indicators of burstiness. Algiothe
mathematical definition of in Eq.(1) is simple, this formulation
is not practical for estimation because of the infinite surtiona
involved and the sensitivity to noise. In the next subsectice de-
scribe a simple alternative way for estimatihghat is also able to
overcome the limitations imposed by the measurement gaatyl
wall. We also remark that, if the measurements show longean
dependence, then the index of dispersion value can growvaaibyi
large and other measurements should be used to quantifyptamp
dependence [11]. In our experiments with TPC-W, we havedoun
that the index of dispersion was very effective to charataerork-
load burstiness and the valuelbivas always converging to a finite
value.

2.2 Measuring the Index of Dispersion

The index of dispersion enjoys a simple measurement approac
which makes it very practical for estimation. Instead of(Ey.we
have an alternative definition of the index of dispersiorefeervice
process as follows. L&V be the number of requests completed in
a time window oft seconds, where thieseconds are counted-
noring the server’s idle time (that is, by conditioning on the pério
where the system is busWy:; is a property of the service process
which is independent of queueing or arrival charactes}tid@hen
as shown in [5], the index of dispersidris the limit:

lim Var(Ng)
t—too  E[N¢] '

where Var(N) is the variance of the number of completed re-
quests andE'[ V] is the mean service rate during busy periods.
Since the value of depends on the number of completed requests
in an asymptotically large observation period, an apprasiom of

this index can be always computed also if the measuremeats ar
obtained with coarse granularity. For example, supposetkiga
sampling resolution i§" = 60 seconds, and assume to approxi-
matet — +oo ast ~ 2 hours, thenN; is computed by sum-
ming the number of completed requestslzd consecutive sam-
ples. Throughout the paper, we have used the pseudo-codg-in F
ure 2 to estimatd directly from Eq.(2). The pseudo-code is a
straight-forward evaluation af ar (N, ) / E[N] for different values

I= @)
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Figure 1: Four workload traces drawn from an identical hyper-exponential distribution (mean x~* = 1, SCV = 3), but with

different burstiness profiles. Given the identical variablity, trace (d) represents the case of maximum burstiness wére all large
service times appear consecutively in a large burst. The irek of dispersionI, introduced in this paper for the characterization of
workloads in multi-tier architectures and reported on top of each figure, is able to capture the significantly different lurstiness of the
four workloads. As the name suggest, ag grows the dispersion of the bursty periods increases up to #limit case in Figure (d).

of ¢, which finally estimateg as the limit (2). Intuitively, the algo-
rithm in Figure 2, calculates of the service process by observing
the completions of jobs in concatenated busy period samples
cause of this concatenation, queueing is masked out, ariddbe
of dispersion of job completions serves as a good approiomaf
the index of dispersion of the service process.

Response Timens] Index of Dispersion
Workload | mean 95th percentile 1
Figure 1(a)| 3.02 14.42 3.0
Figure 1(b)| 11.00 83.35 22.3
Figure 1(c)| 26.69 252.18 92.6
Figure 1(d) | 120.49 1132.40 488.7

Table 1: Response time of theM//G/1 queue for the service
times traces shown in Figure 1. The server utilization i$0%.

Input
T, the sampling resolution (e.g., 60 seconds)
K, total number of samples, assufie> 100
Uy, utilization in thekth period,1 < k < K
n, humber of completed requests in thih period,1 < k < K
tol, convergence tolerance (e.0.20)
Estimation of the Index of DispersionI
get the busy time in theth periodBy := U, - T, 1 <k < K
initializet = T'andY (0) = 0
do
a. foreachAy = (B]€7 Bk«_‘fly . ,Bk+]’), ZZ:O Bk+i =~ t,
aa. computeVy: =37 mpq;.
b. if the set of valuesV} has less than00 elements.
bb. The trace is too short. Stop and collect new measures.
c. Y(t) = Var(NF)/E[NF]
d. increase by T’
until |[1 — (Y(¢)/Y (t —T))| < tol, i.e., the values oY (¢) converge
5. return the last computed value ¥{t¢) as estimate of .

wh e

Figure 2: Estimation of I from utilization samples.

2.3 Model Parameterization

In this section, we use the measurement of burstiness fgathe
rameterization of a two-phase Markovian Arrival ProcesaiNR)),
a class of Markov-modulated process, see [17] for an exusle
troduction. A MAR2) can be seen as a Markov chain that jumps
between two states and the active state determines thentate
of service. The advantage of MA®)s compared to other models
is that we can easily fit traces with variability and/or bumsss and
the resulting queueing models are computationally trédetfibl,
2]. In particular, a MAR2) is uniquely specified by four parame-

ters: meanSCV, skewness, and lag-autocorrelation coefficient
p1 of the service times; we point to [6, 3] for fitting formulas.

Here, we impose the four values of the M@P parameters as
follows. After estimating the mean service time and the xnde
dispersionI, we also estimate th@5th percentile of the service
times. We distinguish two cases: if the trace has high disper
(e.g.,I >> 100), then during a sample interval all requests are
highly correlated, which implies that ti9&th percentile of the mea-
sured busy times (thBy, values in Figure 2) is approximately equal
to the real95th percentile of the service timesConversely, ifl is
small (e.g.,] < 100), then the assumption of using the sadb¢h
percentile observed in the measured busy times can be irzdecu
Nevertheless, we observe that we can still take this sirgtifin,
because under low-burstiness conditions the queueingrpeahce
is dominated by the mean and tB€'V of the distribution, e.g, we
are in the same assumptions of the Pollaczek-Khinchin ftariou
the M /G/1 queue, and thus we do not expect a biased estimate of
the 95th percentile to affect accuracy significantly. In practice
have found this empirical rule to be highly satisfactory $gstem
modeling. Therefore, in all cases we estimate 35t percentile
of the service times equal to the measu@éth percentile of all
measured busy periall;, values defined in Figure 2.

Given the mean, the index of dispersion, anddbth percentile
of service times, we search the best combination of the 2AP
moments and lad-autocorrelation that matches these parameters,
see [10] for MAR2) expressions of and percentiles. In particular,
we first try to match the index of dispersion and select a gutfse
MAP(2)s that have less thatt20% relative error on the index of
dispersion estimafe Then, we select a MAP(2) from this subset
such that the MAP has tt#sth percentile of service times closest to
the measured value. The search is not computationallyestgifig
given the reduced state space of a MAR usually a couple of
minutes are sufficient to obtain the best M&Ipfor each server.

3. EXPERIMENTAL ENVIRONMENT

Today, a multi-tier architecture has become an industnydsted
for implementing scalable client-server enterprise agions. In
our experiments, we use a testbed of a multi-tier e-commstee
that is built according to the TPC-W specifications.

TPC-W is a widely used e-commerce benchmark that simulates
the operation of an online bookstore [7]. Typically, thisltitier
application uses a three-tier architecture paradigm, hvbansists
of a web server, an application server, and a back-end dagaba

2This is true becausell very large requests are likely to appear
together in a few bursty periods and this significantly reduthe
bias in the estimation of the tail of the service time disttibn.

3If 1 > 1, then arbitrarily small error on the index of dispersion
can be achieved by proper choice of the MRPs SCV andp.
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Figure 3: lllustrating a) system overall throughput, b) average CPU utilization of the front server, and c) average CPU tilization of
the database server for three TPC-W transaction mixes. The man think time Z is set to 0.5 seconds.
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Figure 4: The CPU utilization of the front server and the database server across time with 1 sec granularity for (a) the braysing mix,
(b) the shopping mix and (c) the ordering mix under 100 EBs.

A client communicates with such a web service via a web inter- modification or recompilation. We use Diagnostics tool t@swee
face, where the unit of activity at the client-side corregfmoto a
download of a web page. In general, a web page is composed ofthe sar command to obtain the utilizations of two servers across
an HTML file and several embedded objects such as images. In atime with granularity of one second.

production environment, it is common that a web server aipdi-ap
cation server reside on the same hardware, and sharedcesaue

used by the application and web servers to generate main HTML
files as well as to retrieve page embedded objects. We opttto pu

both the Web server and the application server on the samigimeac
called the front server. Since the HTTP protocol does notigeo

sumed due to web page processing at the server side. Theve is n

practical way to effectively measure the service timesalbpage
objects, although accurate CPU consumption estimatesauéed
for building an effective application provisioning modeTo ad-
dress this problem, we definechent transactioras a combination
of all the processing activities at the server side to deliver éineen
web page requested by a client, i.e., generate the main HTIIL fi
as well as retrieve embedded objects and perform relatedbatse

queries.

Typically, a continuous period of time during which a clieat
cesses a Web service is referred to ddsar Sessiomvhich con-
sists of a sequence of consecutive individual transactqoests.

The number of concurrent sessions (i.e., customers or éadula

browsers (EBS)) is kept constant throughout the experinldrgre
are 14 different transactions defined by TPC-W. In genehalse
transactions can be roughly classified of “Browsing” or “énidg”
type. TPC-W defines three standard transaction mixes based o
the weight of each type (i.e., browsing or ordering) in theipa-
lar transaction mix: (1) therowsing mixwith 95% browsing and
5% ordering; (2) theshopping mixwith 80% browsing and20%
ordering; and (3) therdering mixwith 50% browsing and50%

ordering.

For transaction monitoring we have used the HP (Mercuryybia

nostics [20] tool which offers a monitoring solution for 2Bppli-
cations. Using Diagnostics we collect performance andraiatic
data from applications without the need for applicationreewcode

the number of completed requestsin the kth period.We also use

3.1 Bottleneck Switch in TPC-W

For each transaction mix, we run a set of experiments with dif
ferent numbers of EBs ranging from 25 to 150. Each experiment
runs for 3 hours, where the first 5 minutes and the last 5 msnute

L o . are considered as warm-up and cool-down periods and thus omi
any means to delimit the beginning or the end of a web page, it 1o iy the analysis. User think times are exponentiallyritisted
is very difficult to accurately measure the aggregate ressucon-

with meanZ = 0.5 seconds. Figure 3 presents the overall system
throughput, the mean system utilization at the front seavet the
mean system utilization at the database server as a furaftieBs.
Figure 3(a) shows that the system becomes overloaded whken th
number of EBs reaches 75, 100, and 150 under the browsing mix,
the shopping mix and the ordering mix, respectively. Theesys
throughput then remains asymptotically flat with higher EBRis

is due to the “closed loop” aspect of the system, i.e., thelfixen-

ber of EBs (customers), that is effectively an upper boundhen
number of jobs that circulate in the system at all times.

The results from Figures 3(b) and 3(c) show that under thp-sho
ping and ordering mixes, the front server is a bottlenecler@lthe
CPU utilizations are almost 100% at the front tier but only42%%6
at the database tier. For the browsing mix, we see that the CPU
utilization of the front server increases very slowly as tinenber
of EBs increases beyond 75, which is consistent with the sieny
growth of throughput. For example, when the front servelreaaly
100% utilized under the shopping and the ordering mixesfrtmes
server for the browsing mix is just around 80%. Meanwhile tte
browsing mix, the CPU utilization of the database serverdases
quickly as the number of EBs increases. When the number of EBs
is beyond 100, it becomes not obvious which server is respons
ble for the bottleneck: the average CPU utilizations of tenvers
are about the same, differing by 10%. In presence of bussiime
the service times, this may suggest that a phenomendiotte-
neck switchingoccurs between the front and the database servers
across time [13]. That is, a server may become the bottleneck
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Figure 5: The model for TPC-W.

while processing consecutively large requests, whiledéghtly
loaded during the other periods. In general, additionatstiga-
tion to determine the existence of bottleneck switchingiguired
when the utilizations are so close or the workloads are kriovine
highly-variable.

To better understand bottleneck switching, we present CiRU u
lizations of the front and database servers across timaédsriows-
ing mix, as well as the shopping and the ordering mixes, wath 1
EBs in Figure 4. A bottleneck switch occurs when the database
server utilization becomes larger than the front servdization,
as clearly visible in Figure 4(a). As shown in Figures 4(bjl an
4(c), the phenomenon of bottleneck switching cannot bdyealsi
served for the shopping and the ordering mixes, althougéetheo
workloads have also high variability. In contrast, thera isontin-
uousand obvious switching of bottlenecks between the front and
database servers over time for the browsing mix in Figure. 4(a
This bottleneck switching is a characteristic effect of dhmess
in the service times. This unstable behavior is extremety ba
model. Later, in Section 4.2, we will show that browsing nmix e
hibits a significantly higher index of dispersion for botle thiont
and database server compared to shopping and ordering. niixes
the next section, we present a solution that takes into atdbe
index of dispersion and enables more accurate modelingstéisy
with bursty workloads.

4. MODEL

We model the multi-tier architecture using a simple quegiein
network composed by two queues and a delay center, see Figure
The two queues model the front server and the database ,server
spectively. The delay center is instead representativieecdverage
user think timeZ between receiving a Web page and the follow-
ing page download request. The two queues have the first-come
first-serve scheduling discipline and are placed in sefiezghe
processing at the front server completes almost immegliafedr
database replies are receifed

In the proposed closed model, the arrival process to the Web
server is modeled by the delay which correctly abstractbéhav-
ior of the TPC-W benchmark. In fact, in TPC-W a new request
is generated from a customer to the system with exponepntiall
distributed inter-arrival time, which is equivalent to ioge an exponenti
distributed service time to the delay server in Figure 5.

The fundamental step of the proposed modeling methodobgy i
the definition of the service time processes at the two servks
discussed in Section 2, given the mean, the index of digperand
the 95th percentile of service times, we obtain the best MZP
for each server with a search over the set of feasible {2APRa-
rameters. We have noticed that for a small MAR a complete
search can be completed in a couple of minutes using MATLAB

“Indeed, processor sharing would be a better model of the real
system scheduling. This would also avoid database respdnse
wait in line at the front-server. However, only small singieeue
processor-sharing models for bursty workloads exist inliteea-

ture because of the state-space explosion problem; thmeref@
resort to first-come first-served scheduling with two quenese-

ries to avoid overestimation of queueing at the front server

therefore the fitting of the MAR2) service process is not subject
to high computational costs. Indeed, if larger MAPs are ibns
ered to fit the service processes, more efficient fitting tieglas
should be used, but resorting to large MAPs introduces fifiewlt
issue of deriving higher-order properties of the inteivatrtimes
from measurement (e.g., higher-order moments of the ativek
[4]), which cannot be easily addressed if the correlaticetsvben
service time samples are significantly altered by the measemt
window granularity. This extension is left for future work.

Finally, we parameterize the model in Figure 5 as a MAP queue-
ing network [2] with the service processes that are fittedviy t
MAP(2)s, denoted as MAPFS and MAPDB, respectively. We then
solve the model with MATLAB using an exact numerical evalua-
tion of the underlying Markov chatn In particular, the Markov
chain solution gives the probabilities of the different aeiag net-
work states, which we aggregate to compute mean utilizatiah
throughput. Other performance indexes such as mean qaagtb
and mean response times can be also computed easily.

4.1 Discussions on Measurement Granularity

According to TPC-W specification, 7 seconds is the defauirme
user think time. To evaluate the TPC-W testbed in heavy-taad
ditions whenZ = 7 s, we need to set the number of EBs as high
as 1200. To the best of our knowledge, no existing numerijgal a
proach can solve the model for exact solutions when the rsyste
has such a high population. One optional way is to use theoappr
imation presented in [2]. Here, we obtain the exact solgtiop
reducing the user think time, e.gZ, = 0.5 s, such that the sys-
tem becomes overloaded when the number of EBs is around 100
- 150. The minimum and default size of the monitoring window
is set to 5 seconds in the Diagnostics tool. As the user thimé t
becomes smaller (i.e., 0.5 seconds), more requests ardetechp
in a monitoring window. For example, for the browsing mix,emh
Z is set to 0.5 s and the number of EBs is 50, there are 465 re-
quests completed every 5 seconds on the average. The infonma
of these jobs arall aggregated in one monitoring window. This
indicates that smalleX is equivalent to coarser measurement gran-
ularity. Therefore, a¥ decreases, more information on variability
and burstiness is hidden behind the measurement graguhait
Unfortunately, if the measurement granularity is coarkentthe
values ofY'(t) in Figure 2 cannot converge to a stabilized number,
see Stef8 in Figure 2. Therefore, a finer measurement granularity
is critical for modeling systems with workload burtiness.

There are two approaches to improve the coarse measurement
granularity: (1) decreasing the size of the monitoring wind in
the tool; and (2) running experiments with the increased thsek
time Z. The minimum granularity used by Diagnostics for report-
ing the measured metrics is 5 seconds. Therefore, we ditatya
gﬁther the information from the experiments which have gelar

¥t think time (e.g., 7 seconds) to estimafer the front and the
database servers, and then obtain the 2-phase MAPFS and BIAPD
fitting the service processes at the front server and theelaick
database server, respectively. Now, for the browsing mik i
of 7 seconds and 50 EBs, only requests are completed in ev-
ery 5 second on the average. Note that the real service pexes
at the front and the database serves are independent onéhe us
think time. This allows us to plug the estimated MAP(2)s itite
model shown in Figure 5 to predict the performance metricthfe
systems with small user think times, and essentially deti thie
measurement granularity problem.

Figure 6 compares the analytic results with the experiniemta-

SMATLAB scripts for the solution of MAP queueing network mod-
els like the one consider here will be made availablétat p:
[/ ww. cs. wm edu/ MAPQY .



(a) Browsing Mix — I_front=40 & |_db=308

(b) Shopping Mix — |_front=2 & |_db=286

(c) Ordering Mix — |_front=3 & |_db=98
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Figure 6: Comparing the results for the model which fits MAPs
with different Z = 0.5s and 7s.

surements of the real system for the browsing mix. In all expe
ments, we set the mean user think time to 0.5 seconds andh&ry t
system loads with different EBs. To evaluate the effect efrtiea-
surement granularity on the analytic model, we estimatedets

as their prediction accuracy dramatically decreases asyttem

load increases. In contrast, our analytic model based omtiex

of dispersion achieves substantial gains in the predicamuracy,

as the index of dispersion enables the model to effectivapire

bothburstiness and variability. The results of the proposediytina

model match closely the experimental results for the bnogvaiix.
The shopping mix presents an interesting case: the MVA model

performs well in presence of burstiness because this is cadpe

case where it is not influential in terms of system perforreanc

In fact, regardless of the variation of the workload at thiabase

server, the front server remains the major source of corgefsr

the system and therefore the model accuracy is high irréspbc

of burstiness modeling. This stresses the fact that our hmode

methodology provides the largest improvements when thesys

exhibits complex bottleneck switching phenomena that cabe

modeled, even as approximations, with MVA models. We also re

mark that if the front server would have been less loadedivels

to the database server, then the behavior of the shoppinwaitd

of MAP(2)s by using the measured traces from the experiments have been probably similar to the browsing mix.

with 50 EBs and two different levels of measurement graiitylar
i.e., the user think tim& = 0.5 s, and7 s, respectively. AsZ
increases, we are getting a finer granularity monitoring.ddihe
analytic results from the classic MVA method are plotted asra-
parison baseline. Furthermore, the corresponding relgiedic-
tion error, which is the ratio of the absolute differencensstn the
analytic result and the measured result over the measusad, ris
shown on each bar. Figure 6 shows that precision increases no
negligibly when a finer granularity of monitoring data is dsé\s

the system becomes heavily loaded, the model with finer ¢gaanu

In the ordering mix, the feature of workload burstiness st
negligible and the phenomenon of bottleneck switching betw
the front and the database servers cannot be easily obseeed
Section 3.1. For this case, MVA yields prediction errors ap%.
Yet, as shown in Figure 7(b) and 7(c), our analytic modelhiert
improves MVA's prediction accuracy. This happens becatiskeo
index of dispersion that is able to capture detailed infaromaon
the service characteristics that is not available to the Nwédel.

All results shown in Figure 7 validate the analytic modeldshs
on index of dispersion: its performance results are in éswel

ity (i.e., Z as high as 7 seconds) dramatically reduces the relative agreement with the experimental values in the systaiitis and

prediction error to 2.4%, while MVA yields a significant errof
36%. In summary, results show that the new model produces sup
rior results.

4.2 Validation

Now, we turn to validate the accuracy of our analytic model
for resource usage evaluation through a detailed perfarenease
study in the TPC-W testbed. Figure 7 compares the analytic re
sults with the experimental measurements of the real syftem
(a) the browsing mix, i.e., a bursty workload with signifitot-
tleneck switching, (b) the shopping mix having burstinestha
database server, but negligible bottleneck switching, @pdhe
ordering mix with negligible burstiness and bottlenecktshing.
The values of the index of dispersion for the front and thalbase
service processes are also shown in the figure. Throughloat-al
periments, the mean user think tiffeis set to 0.5 seconds. The
behavior of the response time can be derived from throughput
ing Little’s Law. Because throughput values immediatelgvile
also the mean response times, we only present here the egaifra
throughput estimates.

Burstiness and bottleneck switching are crucial for theuemzy
of forecasting system performance. Figure 7(a) gives eviele
that the classic capacity planning models, such as MVA, do no
work well for bursty workloads that impose bottleneck swita,

withoutthe feature of workload burstiness.

5. CONCLUSIONS

In this work, we have presented a solution to the difficultpro
lem of model parametrization by inferring essential predesor-
mation from coarse measurements in real systems. Aftengivi
quantitative examples of the importance of integratingtness in
performance models and pointed out its role relatively eotbttle-
neck switch phenomenon, we show that the coarse measugement
can still be used to parameterize queueing models thattietigc
capture burstiness and variability of the true process. gdram-
eterized queueing model can thus be used to closely preeiiet p
formance in systems even in the very difficult case whereetier
persistent bottleneck switch among the various servergailbd
experimentation on a multi-tiered system using the TPC-Wthe
mark validates that the proposed technique offers a rololistien
to predicting performance of systems subject to burstiaadsot-
tleneck switching conditions.

The proposed approach is based on measurements that can be
routinely obtained from the existing commercial monitgriools.
The resulting parameterized models are practical and tdbus
variety of capacity planning and performance modeling gask
production environments.
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