
Power-aware Resource Allocation in High-end Systems via
Online Simulation ∗

Barry Lawson
Department of Math and Computer Science

University of Richmond
Richmond, VA 23173, USA

blawson@richmond.edu

Evgenia Smirni
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795, USA

esmirni@cs.wm.edu

Abstract

Traditionally, scheduling in high-end parallel systems focuses
on how to minimize the average job waiting time and on how
to maximize the overall system utilization. Despite the devel-
opment of scheduling strategies that aim at maximizing sys-
tem utilization, parallel supercomputing traces that span long
time periods indicate that such systems are mostly underuti-
lized. Much of the time there is simply not enough load to
keep the system fully utilized, although time periods do exist
where system utilization levels peak at nearly 95%. In this pa-
per, we propose a new family of scheduling policies that aims
at minimizing power consumption and cooling costs by selec-
tively choosing to power down (or put in “sleep” mode) parts
of the system during periods of low load. Our goal is the de-
velopment of a scheduling mechanism that adaptively adjusts
the number of processors to the offered load while meeting
predefined service-level agreements (SLAs). This scheduling
mechanism uses online simulation, i.e., lightweight simulation
modules that can execute while the system and its scheduler
are in operation, and can guide resource provisioning in par-
allel systems. Detailed experimentation using traces from the
Parallel Workloads Archive indicates that the proposed online
mechanism is a viable alternative to conserve energy while
meeting performance-based SLAs.

Keywords

Power-aware scheduling, resource allocation, performance
evaluation, parallel workload characterization, online simula-
tion

∗This work was partially supported by the National Science
Foundation under grants ITR-0428330, CCR-0098278, and
ACI-0090221.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers, or to redistribute
to lists requires prior specific permission and/or a fee.
ICS ’05, June 20-22, Boston, MA, USA.
Copyright c©2005, ACM 1-59593-167-8/06/2005. . . $5.00

1 Introduction

Scheduling policies in today’s high-end distributed memory
systems aim at maximizing the system utilization and usu-
ally operate using variations of the basic FCFS discipline.
Industrial-strength schedulers that are widely accepted by
the supercomputing community, including the Maui sched-
uler [13], PBS [15], and IBM LoadLeveler [7], operate us-
ing variations of FCFS, allow for more than a single wait-
ing queue, and provide a variety of configuration parameters.
Together, these allow the system administrator to customize
the scheduling policy according to the site’s needs. Backfill-
ing [5, 8, 14] is often found in the core of these schedulers and
is used as a more efficient way to execute waiting jobs in the
queue.

With backfilling, the scheduler does not always execute the
waiting jobs in the queue in simple FCFS order. Depending
on the job width (i.e., the requested number of processors by
the job), certain jobs are allowed to surpass others in the queue
if their execution does not delay certain previously submitted
jobs. The goal of backfilling is to decrease system fragmen-
tation and increase system utilization [14, 18] by using oth-
erwise idle processors for immediate execution. Various ver-
sions of backfilling have been proposed [9, 14, 16, 20], sharing
the goal of maximizing system utilization given a fixed num-
ber of processors and an incoming stream of jobs.

Despite all these efforts to maximize system utilization, work-
load traces from the Parallel Workloads Archive [6] indicate
that there are significant time periods during which the work-
load is insufficient to keep the system well utilized. This ob-
servation, when combined with the growing trend in the de-
velopment of techniques for power management [2], motivates
the work presented here. If the system cannot be fully utilized
then powering down parts of it would yield significant gains in
the costs for electricity consumption and cooling.

Several recent research efforts have focused on resource allo-
cation in hosting centers, with an emphasis on power man-
agement. These efforts aim at scheduling various compet-
ing applications in order to minimize the center’s operating
costs [1, 2, 3, 4, 17]. These works span from the area of ca-
pacity planning and QoS provisioning, to different application
classes using feedback based techniques that use dynamic load
monitoring [17, 19], to techniques for optimizing power con-

sumption in a clustered environment by powering off parts of
the system or having it operate using dynamic voltage scaling
with a slower speed [3, 17], to techniques for providing nego-
tiated service level agreements [1] (SLAs).

Here, we consider a similar problem but in the context of par-
allel scheduling in a distributed memory large-scale cluster of
multiprocessors. In this context, we integrate the concept of
scheduling and power management by proposing a supplement
to the well established EASY backfilling policy [14]. We pro-
pose a scheduler that continuously monitors load in the sys-
tem and selectively puts certain nodes in “sleep” mode, i.e.,
makes them unavailable for execution, after estimating the ef-
fect of fewer nodes on the projected job slowdown. Using
online simulation, a flexible and inexpensive way to simulate
the performance of scheduling policies when applied to jobs
that are waiting in the queue, the system adaptively selects the
minimum number of processors that are required to meet nego-
tiated service level agreements (SLAs). Detailed simulations
using workloads from the Parallel Workloads Archive indicate
that indeed this methodology is effective and can result in sig-
nificant savings in the number of “active” (thus power consum-
ing) processors during the system lifetime without significant
compromises on predefined SLAs.

We stress that our contribution is not specific to the EASY
scheduling policy; rather, it can be applied toanyscheduling
policy that the system uses. Our general methodology for on-
line simulation can be used with any scheduler, in systems that
support multiple levels of SLAs in the form of different classes
of service, and even in systems that may suffer from a forced
power outage due to overheating that is triggered by partial
cooling failures. Although interesting, these topics are outside
the scope of this paper and are subjects for future work.

This paper is organized as follows. Section 2 presents anal-
ysis of the utilization levels of select traces from the Parallel
Workloads Archive, motivating this work. Section 3 provides
a description of the online simulation mechanism, the power-
aware scheduling policies, and a detailed description of the
performance results. Conclusions and future work are sum-
marized in Section 4.

2 Motivation

In this section we present the workload characteristics of four
workload traces from the Parallel Workloads Archive [6] that
motivate this work. More specifically, we use the following
workload logs:

• CTC: log containing 77 222 jobs executed on a 512-node
IBM SP2 at the Cornell Theory Center from June 1996
through May 1997;

• KTH : log containing 28 490 jobs executed on a 100-
node IBM SP2 at the Swedish Royal Institute of Tech-
nology from September 1996 through August 1997;

• SCDC-SP2: log containing 59 725 jobs executed on a
128-node IBM SP2 at the San Diego Supercomputer
Center from April 1998 through April 2000;

• Blue Horizon: log containing 243 314 jobs executed on
a 144-node with 8 processors per node IBM SP at the San
Diego Supercomputer Center from April 2000 through
January 2003.

From the traces, for each job we extract the arrival time of
the job (i.e., submission time), the job width (i.e., number of
processors requested), the estimated duration of the job, the
actual duration of the job, and the job completion time.

As a first step, to examine workload variability across the four
logs, we concentrate on changes in job arrival intensity and
demands. The first column of graphs in Figure 1 illustrates the
time evolution of the arrival process in two of the four logs
by presenting the total number of arriving jobs per week. We
observe significant variability in the job arrival intensity across
workloads but also across time within each workload. The
arrival rate of jobs in the CTC and KTH workloads changes
at most by a factor of three from week to week, while in the
SDSC-SP2 and Blue Horizon logs we observe changes of as
much as a factor of seven.

The second column of Figure 1 illustrates the time evolution
of the service process. The service requirement of each job
in a parallel system has a two dimensional property given by
the job execution time and the job width. Here, in an effort to
collapse both dimensions into a single one, we calculate each
job’s demand, defined as the product of the service time1 mul-
tiplied by the number of processors. Again, there is a signifi-
cant variation not only across workloads but also across time,
with the SDSC-SP2 and Blue Horizon workloads showing sig-
nificantly higher demands than CTC and KTH.

Given such workload variations across time, we next examine
the system utilization from week to week. The third column
of Figure 1 illustrates the system utilization across time and
reflects the native scheduling strategies of the four machines.2

Observe that CTC’s utilization reaches merely a high of 60%,
while during most of the time it operates at 50% utilization.
KTH is a higher utilized system, as its utilization reaches up
to 80% during some weeks. SDSC-SP2 and Blue Horizon are
the most utilized systems, with utilizations that reach in some
weeks almost their full capacities, but there are several weeks,
especially for Blue Horizon, in which the system operates in
low utilization.

In summary, analysis such as that depicted in Figure 1 shows
significant variability of workload intensities and demands, re-
sulting in systems that are almost never equally utilized across
time. In the following section, we elaborate on scheduling
policies that aim at power savings by leveraging periods of
low system utilization, as driven by the observations above.

1For simplicity of presentation, instead of presenting de-
mand using the actual execution time of the job in seconds
(which results unavoidably in very high numbers), we prefer
to scale execution time to the fraction of the day.

2The utilization graphs were computed using for each job
the actual duration and completion times as determined via the
trace.

II. Blue Horizon

 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
 0

 500

 1000

 1500

 2000

 2500

A
rr

iv
al

 R
at

e

I. CTC

D
em

an
d

WeekWeek Week

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

U
til

iz
at

io
n

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

D
em

an
d

Week

A
rr

iv
al

 R
at

e

 0 20 40 60 80 100 120 140

 1

Week

 0

 0.2

 0.4

 0.6

 0.8

 140 120 100 80 60 40 20 0 140
Week

U
til

iz
at

io
n

 0

 1.8
 1.6
 1.4
 1.2

 1
 0.8
 0.6
 0.4
 0.2

 2

Figure 1. Total number of arriving jobs per week (first column), average demand per week (second column), and system
utilization under the EASY scheduling policy (third column) for the CTC and Blue Horizon workloads. All graphs are
presented as a function of time (weeks).

3 Power-aware Policies and Experimental
Results

In this section, we provide a description of the power-aware
scheduling policies, including an online simulation mecha-
nism, and also provide detailed results and analysis from our
simulation experiments. Our goal is to provide a set of policies
that can choose to reduce the number of active processors in
the system in order to lower associated costs, but without dra-
matically impacting job performance on those systems. Fur-
thermore, systems are sure to experience transient periods of
alternating high and low utilization. Therefore, the policies
must also be able to adapt appropriately to fluctuating work-
load conditions.

3.1 Experimental Methodology

In this work, we consider high-performance batch scheduling
systems in which jobs run to completion (i.e., no preemp-
tion). Job scheduling is performed using the EASY sched-
uler [14], one of the most basic backfilling algorithms. Back-
filling requires users to provide an estimate of the job execu-
tion time [14], which allows certain jobs to surpass others in
the queue and begin execution provided that their execution
does not delay certain previously submitted jobs. This allows
for a tighter packing of the jobs in the system and increases
system utilization. The effectiveness of backfilling depends on
the accuracy of user estimates, as it is the estimates that allow
jobs to surpass other jobs in the queue and create meaningful
schedules. If the actual job execution is higher than its esti-
mate, then the job is killed. Prior studies have shown that user

estimates are notoriously inaccurate [10, 12, 14]. Nonetheless,
even in the presence of inaccurate estimates, backfilling re-
duces system fragmentation, increases system utilization, and
improves performance. For all experiments that we show in
this paper, unless otherwise clearly stated, we use the actual
execution times as the (exact) user estimates.

To generate the results presented in subsequent sections, our
simulation experiments are driven using the four workload
traces from the Parallel Workloads Archive described in Sec-
tion 2. In our simulations we use the arrival time of the
job (i.e., the submission time), the number of processors re-
quested, the estimated execution time of the job, and the actual
execution time of the job. We do not use the job completion
times from the traces in the remainder of this paper because
these numbers are associated with the scheduling policies used
on the corresponding systems.

In the results below, we consideraggregateperformance mea-
sures, i.e., average statistics computed for an entire simulation
run, giving a single quantifiable measure for the entire work-
load (e.g., average slowdown for all jobs). As expressed in
Section 2, the workload arrival and demand patterns vary sig-
nificantly across time. Consequently, we also considertran-
sientperformance measures, i.e., per-week snapshot statistics
that are plotted versus experiment time to illustrate how a cer-
tain policy reacts to these variabilities in the workload.

Because we are interested in reducing the number of ac-
tive processors to reduce power and cooling costs but with-
out severely impacting job performance, there are two critical

measures of interest to consider here. From the job perspec-
tive, the performance measure of interest is each job’s bounded
slowdown [14] defined by

s= 1+
d

max{10,ν}

whered andν are respectively the queuing delay time and the
actual service time of the job.3 From the system perspective,
utilization provides a measure of the goodness of the power-
aware policy, and can be used to understand the balance be-
tween job performance and power savings. If the utilization
is very high (which can result from lowering the number of
active processors too much), job performance will suffer as a
consequence; if utilization is very low (which can result from
more active processors than needed), job performance will im-
prove, but supporting system costs will rise. For a system
with a fluctuating number of active processors, the utilization
is computed as the ratio

x̄ =
∑ j D j

∑i(ti+1− ti) ·Ni

whereD j is the demand (number of required processors times
execution time) for a completed jobj, Ni is the number of
active processors during theith time interval [ti , ti+1], and
changes in the number of active processors occur at distinct
pointsti .

3.2 Two-Level Policy

In this section, we describe the first, and simplest, of two gen-
eral power-aware scheduling policies. In the two-level policy,
the system is permitted to fluctuate back and forth between the
maximum number of processorsU and a system-specific min-
imum number of processorsL. Initially, the system starts with
U active processors. The decisions of when to lower and when
to raise the number of active processors are defined as follows.

• Assume that the number of active processors isU . If
at any point in time the number of currently executing
processors is less than or equal toL, and if the maximum
number of processors needed by any single job currently
in the queue is less than or equal toL, the system reduces
the number of active processors toL.

• Assume that the number of active processors isL. If a job
arrives to the system requesting more thanL processors
for execution, the system increases the number of active
processors toU .

With respect to the EASY backfilling scheduler, raising or
lowering the number of active processors potentially entails
corresponding rescheduling. That is, if a job is scheduled to
begin execution but is not currently executing, raising or lower
the number of active processors may (but is not guaranteed to)
cause the job to be scheduled for execution at a time differ-
ent than its originally scheduled time. If the number of active
processors is being raised fromL to U , there are no negative

3The maximizing function in the denominator reduces the
otherwise dramatic impact that very small jobs can have on the
slowdown statistic. The 10 second execution time parameter
is standard in the literature [14].

consequences from the job perspective—raising the number of
active processors can only improve the scheduled time of ex-
ecution. However, if the number of active processors is being
lowered fromU to L, then scheduled times for execution must
be reevaluated (since those times were scheduled with respect
to a larger pool of available processors). Though not always,
in some cases this causes the scheduled execution time of a
job to be delayed. Given our goal to reduce power costs, we
believe this delay is appropriate provided that, in general, the
delays for jobs are not exorbitant.

For a given system, the choice of the parameterU is obvious—
simply the maximum number of processors in the system. The
choice of the parameterL is less obvious, yet provides the sys-
tem administrator with some flexibility in tuning system per-
formance. For the results to follow, we selectedL as follows.
Let x̄ be the system utilization achieved using all processors
for a complete simulation run. Then let ˆx be a “stepped” value
greater than ¯x (e.g., if x̄ = 0.75, let x̂ = 0.80; if x̄ = 0.82, let
x̂= 0.85). Then defineL according toL' dU · x̂e. The motiva-
tion for definingx̂ as a “stepped” value as described is to pro-
vide the system with some flexibility for scheduling in terms
of available processors. Our selections of ˆx andL for each of
the four workloads are given in Table 1.

Table 1. Choices of the two-level policy parametersU and
L for the experiments to follow.

Workload U x̂ L

CTC 512 0.60 308
KTH 100 0.75 75
SDSC-SP2 128 0.85 110
Blue Horizon 1152 0.80 922

In a practical setting, the system administrator will not have
the luxury, as we do, of knowing a priori the system utilization
in the presence of all processors. Nonetheless,L need not be
static for perpetuity, but can instead be periodically adjusted up
or down by the system administrator to appropriately address
perceived system performance. If utilization is not known a
priori, the scheduler could alternatively monitor past system
utilization, using the past to predict the future (e.g., using a
predefined time window or exponentially discounted history).

For each of the four workloads, Figure 2 compares the aggre-
gate bounded slowdown and system utilization for a simula-
tion run with all processors for the duration versus a simula-
tion run using the two-level policy withU andL as given in
Table 1. Also provided is the overall proportion of processor
savings, i.e., the proportion of processors that the system was
able to have in the inactive state.

As depicted, using the two-level approach the proportion of
processor savings is approximately 10% or more, with cor-
responding system utilizations of 80% or more for each of
the workloads. Notice that, when using the two-level policy,
the aggregate slowdown degrades by a factor of approximately
two (no more than two and a half) for all but the CTC work-
load. Therefore, using this simple policy we can expect signif-
icant savings in processor power and cooling costs provided
that an approximate factor of two-fold increase in slowdown
is permissible. We argue that this is a reasonable price to pay

��

��

 100

 120

 140

 160

 180

 200

Blue

 0

 20

 40

 60

 80

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

 0

 0.2

 0.4

 0.6

 0.8

 1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

All processors � �
� �
� �
� �
� �
� �

Two−level policy Online simulation

s
lo

w
d

o
w

n

u
ti
liz

a
ti
o

n

p
ro

c
e

s
s
o

r
s
a

v
in

g
s

(a) (b) (c)

KTH CTC KTHCTC SDSC Blue KTHCTC SDSC Blue SDSC

Figure 2. (a) Aggregate slowdown and (b) aggregate utilization for a full-processor simulation run, a two-level policy run,
and an online simulation policy run; (c) proportion of processors maintained in an inactive state.

 25 30 35 40 45
 0

 100

 200

 300

 400

 500

 600

 0 5 10

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

 15 20 25 30

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

 35 40 45
 0

 50

 100

 150

 200

 250

 300

s
lo

w
d
o
w

n

s
lo

w
d
o
w

n

weekweek

CTC KTH

s
lo

w
d
o
w

n

s
lo

w
d
o
w

n

week week

SDSC−SP2 Blue Horizon

 350

 400

 0 5 10 15 20

Figure 3. Slowdown as a function of time for each of the four workloads. For solid lines, the two-level policy is used; for
dashed lines, the maximum number of processors is always present.

in the context of our goals.

Special note should be made of the CTC workload: in its
original form, the system is very under-utilized at only 55%.
Accordingly, job slowdowns are essentially negligible. Slow-
down will clearly increase as utilization increases, so making a
factor comparison of slowdown in the CTC case is not mean-
ingful. Notice that using the two-level policy, the processor
savings are dramatic and the corresponding utilization is near
90%, yet the aggregate slowdown is comparable to that ob-
tained in the other systems when usingall processors.

Figure 3 depicts transient slowdown versus wallclock time,
providing insight into the ability of the system to respond to
workload fluctuations across time. The solid line represents
the average job slowdown for all jobs that complete in the cor-
responding week under the two-level policy; the dashed line

represents the same metric using all possible processors.

Generally speaking, the area under the curve corresponding
to the two-level policy is greater, resulting in increased job
slowdown at the gain of reducing the number of active pro-
cessors. Notice, however, that there are weeks in which the
two-level policy outperforms the maximum-processor policy
(e.g., week 120 for Blue Horizon). With the CTC workload
aside, the two curves for a given workload are generally sim-
ilar, with the exception of notable increases in slowdown at
the tails of the KTH and SDSC-SP2 workloads. These in-
creases are consistent with the workload analysis provided in
Section 2—KTH experiences a significant increase in the ar-
rival rate, while for SDSC-SP2 the demand increases dramati-
cally with time. These figures provide further evidence that, in
fact, the variability in workload demands causes striking dif-
ferences in performance across time.

 0.6

 0.8

 1

 0 5 10 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

 25 30 35

weekweek

u
ti
li
z
a
ti
o
n

u
ti
li
z
a
ti
o
n

CTC KTH

week week

u
ti
li
z
a
ti
o
n

u
ti
li
z
a
ti
o
n
i

SDSC−SP2

 40

Blue Horizon

 45 20 25 30 35 40 45
 0

 0.2

 0.4

Figure 4. Utilization as a function of time for each of the four workloads. For solid lines, the two-level policy is used; for
dashed lines, the maximum number of processors is always present.

It should be noted that the two-level policy in no direct way
reacts to any measure of perceived system performance. The
number of active processors is increased or decreased based
solely on the processor requirements of incoming jobs, and
not the system utilization or job slowdown. This observation,
along with the transient increase in slowdown evident at the
tails for KTH and SDSC-SP2 in Figure 3, provides sufficient
motivation to consider additional power-aware policies that are
more capable of adapting to transient workload conditions and
responding to measures of system performance. Such policies
are considered in the next section.

Figure 4 depicts transient utilization versus wallclock time.
The solid line represents use of the two-level policy and the
dashed line represents the policy when the maximum number
of processors is always available. These figures are consistent
with the overall increase in system utilization. Furthermore,
notice the variability of utilization across time, especially for
the Blue Horizon results. Note that a few very low utiliza-
tion peaks exist even using the two-level policy. Referring
to Figure 1, these peaks correspond to times when demand
is high but the corresponding arrival rate is low, or to times
when demand is low but the corresponding arrival rate is high.
Moreover, the variability across time motivates more adaptive
power-aware policies, presented in the next section.

3.3 Online Simulation Policy

As the results in the previous section show, the two-level pol-
icy is suitable for reducing power and cooling costs while
keeping the system at a high level of utilization at the cost of a
reasonable increase in job slowdown. However, the two-level
policy, while relatively simple, does not always adapt well in
the presence of fluctuating workload conditions. Furthermore,

the two-level policy reacts based solely on the processor de-
mands of jobs without taking into account any quantified mea-
sure of system performance. These issues motivate the devel-
opment of an additional set of power-aware policies.

Online simulation has been previously shown an effective
technique in scheduling for high-end systems [11], although
in a context different than the current one. In the previous
context, online simulation permits the scheduler to adjust its
parameters (specifically, the number of queues) to best match
the workload conditions. In the current power-aware context,
online simulation can be used instead to predict the number
of processors that can effectively be powered down without
severely impacting job scheduling performance.

In the online simulation policy (OLS), the system executes
several lightweight simulation modules online in an attempt
to predict the best parameters for the future. More specifi-
cally, eachk units of time, the system executes multiple online
simulations. The initial state of each online simulation is the
current state of the actual system, except that each simulation
assumes a system with a different numberl of active proces-
sors, wherel is betweenL andU (L is subject to the same
minimum-processor requirements as in the two-level policy).
Each online simulation then simulates the scheduling and ex-
ecution of those jobs (both executing and queued) currently
in the actual system but in the presence of onlyl processors,
and computes the average job slowdown experienced by those
jobs. These online simulations are sufficiently lightweight for
practical purposes—they execute very quickly and give mean-
ingful feedback nearly instantaneously.

To choose the winner from among the online simulations, the
system requires an a priori service level agreement (SLA). In

 40 60 80 100

 30 35 40 45
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45
 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140
 0

 100

 200

s
lo

w
d
o
w

n

s
lo

w
d
o
w

n

week week

SDSC−SP2 Blue Horizon

s
lo

w
d
o
w

n

s
lo

w
d
o
w

n

weekweek

CTC

 300

KTH

 400

 500

 600

 0 20

Figure 5. Slowdown as a function of time for each of the four workloads. For solid lines, the OLS policy is used; for dashed
lines, the maximum number of processors is always present.

this context, the SLA is a predefined thresholdS in terms of
acceptable slowdown. The system chooses the online simu-
lation with the lowest number of active processorsl whose
computed average slowdown for the existing jobs in the sys-
tem is less than or equal toS. If such a simulation is found,
the system proceeds to reduce the number of active proces-
sors tol , similar to that described for the two-level policy. If
the system is unable to find any online simulation withl < U
processors such that the SLA is met, the system increases (if
necessary) the number of active processors toU . The corre-
sponding rescheduling that applies to the two-level policy also
applies here (see Section 3.2).

In summary, this policy aims at reducing the amount of power
and cooling needed by the system by reducing the number of
active processors. The policy reacts to transient workload con-
ditions by evaluating different scheduling parameters on-the-
fly, in an attempt to best address the transient nature of the
workload present at that instant in time. Below, we expound
on specific implementations of this general policy, providing
detailed performance results.

3.3.1 OLS with Power-Aware Adjustment

For the OLS policy with power-aware adjustment, we permit
the number of active processors to increase or decrease in any
nonnegative increment (subject to scheduling constraints such
as the maximum number of processors needed by any job in
the system). More specifically, given SLAS, the results to
follow were generated using the following implementation.

• Define the lower boundL for the number of processors to
simulate to be the maximum of{the maximum number
of processors needed by any single job in the queue, the

number of currently executing processors}.

• Perform an online simulation withl = L processors.

• If the computed average slowdown for jobs in the queue
is less than or equal toS, then l becomes the number
of active processors in the system; otherwise, definel =
d(l +U)/2e, and repeat the online simulation process.

• No further simulations are performed wheneverl = U .

• Furthermore, if any job arrives requesting more than the
currently available processors (but no more thanU), then
the number of processors is increased to meet the proces-
sor requirement of that job.

Again, the potential rescheduling for queued jobs necessary
for the two-level policy applies. Also note that because these
online simulations execute very quickly, the corresponding
overhead is negligible.

Figure 2 also depicts the aggregate slowdown and utilization
for OLS with S = 200 (the OLS slowdown threshold) ver-
sus the maximum-processor and two-level policies, and de-
picts the proportion of processor savings achieved using OLS.
When compared with the aggregate performance of the two-
level policy, the OLS policy generally decreases the overall
slowdown at the expense of a slight decrease in utilization.
There is a slight increase in the slowdown for CTC, but note
the significant decrease in slowdown for SDSC-SP2. The mes-
sage here is clear: by attempting to address job performance on
the fly, the system is not as able to blindly focus on increasing
system utilization as in the two-level approach. Nevertheless,
by permitting the system to adapt the number of processors in
a variable manner, the payoff is still commendable with pro-
cessor savings (not including CTC’s dramatic savings) around
10% while maintaining reasonable increases in slowdown that

 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

 0 20 40 60 80 100 120 140 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 0

 20

 40

 60

 80

 100

 120

 0

 200

 400

 600

 800

 1000

 0

 100

 200

 300

 400

 500

weekweek

CTC KTH

week week

SDSC−SP2 Blue Horizon

p
ro

c
e
s
s
o
rs

p
ro

c
e
s
s
o
rs

p
ro

c
e
s
s
o
rs

p
ro

c
e
s
s
o
rs

Figure 6. Number of active processors as a function of time for each of the four workloads using the OLS policy with
power-aware adjustment.

are clearly within the target SLA4.

More interestingly, in Figure 5 note how in the transient con-
text the OLS reacts according to the varying workload. Com-
pared with the corresponding two-level policy figures in Fig-
ure 3, the OLS policy adjusts for the heavy tail phenomena
in KTH and SDSC-SP2 transient slowdown by reducing the
magnitude of the tail, spreading the slowdown more evenly
across the entire length of the simulation. (Note that the verti-
cal scales for KTH and SDSC-SP2 in Figure 5 are smaller than
in Figure 3.) Because the online simulations occur only at the
beginning of each week, the number of opportunities to re-
duce active processors is fewer than with the two-level policy,
yet the OLS policy performs quite well. More frequent on-
line simulations are likely to result in even higher utilization,
at the expense of the overhead of more frequently decreasing
and increasing the number of active processors.

Figure 6 shows the change in the number of active processors
across time using the OLS policy with power-aware adjust-
ment. Although there are a few periods of frequent activity,
generally the relative frequency of changes in the number of
active processors is reasonable. Furthermore, the CTC figure
provides meaningful insight here. The CTC workload with the
maximum-processor policy yields only about 55% utilization.
The CTC figure in Figure 6 tends to track just above 55% of
the maximum number of processors, providing sufficient room
for reasonable scheduling while maintaining a much higher
utilization. A similar analogy can be made for the three other
more highly utilized systems, though not as visually obvious.
To address the periods of frequent activity, one potential mea-

4We experimented with different slowdown thresholds and
results are qualitatively the same as with those presented here.

sure for a more practical implementation would be to avoid
dramatic drops in the number of active processors (e.g., near
weeks 40 and 70 for SDSC-SP2 and near weeks 40, 90, and
100 for Blue Horizon). As shown, these dramatic drops tend
to persist for a very short time, so the system would main-
tain a similar overall utilization, but with much less processor
up/down activity, if these drops were avoided.

Figure 7 depicts the proportion of jobs per week that violate
the SLA, i.e., that have a slowdown greater thanS. The solid
lines represent results using the OLS policy while the dashed
lines represent results obtained using the maximum-processor
policy. This figure provides strong evidence that the OLS pol-
icy is performing as intended. Note that, except for the other-
wise highly under-utilized CTC workload, the solid lines track
the dashed lines rather well. The performance loss in slow-
down that results from the OLS policy, in comparison with the
maximum-processor policy, is acceptable, especially given the
processor savings that result.

3.3.2 Sensitivity Analysis

Figure 8 provides insight into the sensitivity of the OLS pol-
icy with respect to the frequency of online simulations, and
correspondingly the number of adjustments in number of ac-
tive processors. This is motivated by an effort to minimize
the number of wake/sleep cycles in order to minimize hard-
ware failures due to thermal stresses and/or electrical surges.
Consistent with intuition, there is generally a slight decrease
in the slowdown, utilization, and processor savings as online
simulations become less frequent (i.e., fewer opportunities to
reduce the number of active processors). Nonetheless, the re-
sults for all three frequencies are comparable, suggesting that
the policy can perform well even when the number of active

 0.4

 0.6

 0.8

 1

 0 5 10 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

 20 25 30 35 40 45

 0.2

 0.4

 0.6

 0

 0

 0.2

 0.4

 0.6

weekweek

CTC

SDSC−SP2 Blue Horizon

KTH

week

P
ro

p
o
rt

io
n
 S

L
A

 v
io

la
ti
o
n
s

P
ro

p
o
rt

io
n
 S

L
A

 v
io

la
ti
o
n
s

P
ro

p
o
rt

io
n
 S

L
A

 v
io

la
ti
o
n
s

P
ro

p
o
rt

io
n
 S

L
A

 v
io

la
ti
o
n
s

 0.8

week

 1

 0 20 40 60 80 100

 0.8

 1

 0 5 10 15 20 25 30 35 40 45
 0

 0.2

Figure 7. Proportion of jobs violating the SLA per week as a function of time. For solid lines, the OLS policy is used; for
dashed lines, the maximum number of processors is always present.

processor reductions should be restrained.

Finally, to examine the policy sensitivity to inexact user es-
timates, we investigated the performance of the OLS policy
when only inexact user runtime estimates are used for schedul-
ing. Although omitted here for brevity, the results obtained
using inexact runtime estimates are qualitatively similar to the
results based on actual runtimes presented earlier in this paper,
demonstrating that the policy is robust even in the presence of
inexact estimates.

4 Conclusions and Future Work

We presented the effectiveness of a family of scheduling poli-
cies that aims at minimizing the power consumption of high-
end distributed memory systems while maintaining certain
user-negotiated SLAs. Using traces from the Parallel Work-
loads Archive and detailed simulations of the EASY schedul-
ing policy, we showed that it is not necessary to operate the
system at full capacity at all times, reducing operating costs
while still meeting SLAs. We demonstrated that it is possible
to adjust the number of processors in the system that operate in
“sleep” mode in an adaptive way in order to meet severe fluc-
tuations in the workload arrival patterns and service demands.
One of the presented policies is based on online execution
of lightweight simulation modules, which prove effective in
modeling scheduling micro-scenarios that use different num-
bers of processors. This online simulation approach empha-
sizes speed (allowing for low-overhead, on-the-fly decisions
of the number of active processors while the actual system is
still in operation) in addition to accuracy (allowing the system
to adapt appropriately in response to the transient nature of the
workload).

We stress that our contribution is not specific to the EASY
scheduling policy but instead can be applied toany schedul-
ing policy that the system uses. In the future, we intend to
examine variations of the proposed OLS policy that consider
how to better deal with inexact user estimates, reduce the av-
erage job response time and improve system performance and
individual job slowdown by using a multiple-queue backfill-
ing strategy [10], support multiple levels of SLAs in the form
of different classes of service, and even consider the policy in
systems that may suffer from a forced power outage due to
overheating that is triggered by partial cooling failures. For
the case of partial cooling failure, a more graceful approach
would be to monitor the temperature and as it approaches a
critical level begin selectively deactivating nodes that are idle.
We are currently working with the system administrator of our
local parallel cluster to quantify the savings in energy con-
sumption that can occur when we power down or put to sleep
parts of the system. This will allow us to enhance our online
simulation modules with accurate estimates of the power con-
sumption itself.

5 Acknowledgments

We thank Dimitrios Nikolopoulos for useful conversations that
helped shape this topic. We also thank Tom Crockett for his
feedback in earlier versions of this work. We thank Dror Fei-
telson for the availability of workload traces via the Parallel
Workloads Archive. We also thank Dan Dwyer and Steve
Hotovy for providing the CTC workload; Lars Malinowsky
for the KTH workload; Victor Hazlewood for the SDSC-SP2
workload; and Travis Earheart and Nancy Wilkins-Diehr for
the SDSC Blue Horizon workload.

�
�
�
�

��

� � �
� � �
� � �
� � �

OLS every 3 weeks

Blue

OLS each week OLS every 2 weeks

� �
� �
� �
� �

�
�
�
�

� �
� �
� �
� �
� �
� �
� �

	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0

 0.2

 0.4

 0.6

 0.8

 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �

�
�

� �
� �
� �

�
�
�

� �
� �
� �

� �
� �
� �

CTC KTH Blue

(c)

SDSC

sl
ow

do
w

n

ut
ili

za
tio

n

pr
oc

es
so

r
sa

vi
ng

s

(a) (b)

KTHCTC KTH SDSC Blue CTC SDSC

Figure 8. (a) Aggregate slowdown, (b) aggregate utilization, and (c) proportion of processor savings (relative to the
maximum-processor policy) for OLS using power-aware adjustment with decreasing frequency of online simulation.

6 References

[1] J. Chase, D. Anderson, P. Thankar, and A. Vahdat. Man-
aging energy and server resources in hosting centers. In
Proceedings of the 18th Symposium on Operating Sys-
tems Principles SOSP’01. ACM, 2001.

[2] J. Chase and R. P. Doyle. Energy management for server
clusters. InProceedings of the 8th Workshop on Hot Top-
ics in Operating Systems. ACM, 2001.

[3] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-
efficient server clusters. InProceedings of the Second
Workshop on Power Aware Computing Systems, pages
179–196, 2002.

[4] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy
conservation policies for web servers. InProceedings of
USENIX Symposium on Internet Technologies and Sys-
tems, USITS’03, 2003.

[5] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel job scheduling — a status report. InJob Schedul-
ing Strategies for Parallel Processing (JSSPP 2004),
pages 1–16. Springer-Verlag, 2004. LNCS vol. 3277.

[6] Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/.

[7] IBM LoadLeveler.
http://publib.boulder.ibm.com/clresctr/windows/
public/llbooks.html.

[8] D. Jackson, Q. Snell, and M. Clement. Core algorithms
of the Maui scheduler. InJob Scheduling Strategies
for Parallel Processing (JSSPP 2001), pages 87–102.
Springer-Verlag, 2001. LNCS vol. 2221.

[9] P. Keleher, D. Zotkin, and D. Perkovic. Attacking the
bottlenecks in backfilling schedulers.Cluster Comput-
ing: The Journal of Networks, Software Tools and Appli-
cations, 3(4):245–254, 2000.

[10] B. Lawson and E. Smirni. Multiple-queue backfilling
scheduling with priorities and reservations for parallel
systems. InJob Scheduling Strategies for Parallel Pro-
cessing: (JSSPP 2002), pages 72–87. Springer Verlag,
2002. LNCS vol. 2537.

[11] B. Lawson and E. Smirni. Self-adaptive scheduler pa-
rameterization via online simulation. InProceedings of
the 19th International Parallel and Distributed Process-
ing Symposium (IPDPS 2005), Denver, CO, April 2005.

[12] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely.
Are user runtime estimates inherently inaccurate? InJob
Scheduling Strategies for Parallel Processing (JSSPP
2004), pages 253–263. Springer-Verlag, 2004. LNCS
vol. 3277.

[13] Maui Scheduler Open Cluster Software.
http://mauischeduler.sourceforge.net/.

[14] A. Mualem and D. G. Feitelson. Utilization, predictabil-
ity, workloads, and user runtime estimates in scheduling
the IBM SP2 with backfilling. IEEE Transactions on
Parallel and Distributed Systems, 12(6):529–543, June
2001.

[15] Portable Batch System.http://www.openpbs.org/.

[16] D. Perkovic and P. Keleher. Randomization, speculation,
and adaptation in batch schedulers. InProceedings of
Supercomputing 2000 (SC2000), November 2000.

[17] V. Sharma, A. Thomas, T. F. Abdelzaher, K. Skadron,
and Z. Lu. Power-aware QoS management in web
servers. InProceedings of the Real-Time Systems Sym-
posium, RTTS’03, pages 63–73, 2003.

[18] D. Talby and D. Feitelson. Supporting priorities and
improving utilization of the IBM SP2 scheduler using
slack-based backfilling. InProceedings of the 13th In-
ternational Parallel Processing Symposium, pages 513–
517, April 1999.

[19] B. Urgaonkar and P. Shenoy. Brief announcement: Cat-
aclysm: handling extreme overloads in internet services.
In Proceedings of the 23rd ACM symposium on Princi-
ples of Distributed Computing (PODC ’04), pages 390–
390. ACM Press, 2004.

[20] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubrama-
niam. An integrated approach to parallel scheduling us-
ing gang-scheduling, backfilling, and migration.IEEE
Trans. Parallel Distrib. Syst., 14(3):236–247, 2003.

