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Abstract

High-end parallel systems present a tremendous re-
search challenge on how to best allocate their resources
to match dynamic workload characteristics and user
habits that are often unique to each system. Although
thoroughly investigated, job scheduling for production
systems remains an inexact science, requiring signifi-
cant experience and intuition from system administra-
tors to properly configure batch schedulers. State-of-the-
art schedulers provide many parameters for their config-
uration, but tuning these to optimize performance and to
appropriately respond to the continuously varying char-
acteristics of the workloads can be very difficult — the
effects of different parameters and their interactions are
often unintuitive.

In this paper, we introduce a new and general
methodology for automating the difficult process of job
scheduler parameterization. Our proposed methodol-
ogy is based on online simulations of a model of the ac-
tual system to provide on-the-fly suggestions to the
scheduler for automated parameter adjustment. De-
tailed performance comparisons via simulation using
actual supercomputing traces from the Parallel Work-
loads Archive indicate that this self-adaptive parameter-
ization via online simulation consistently outperforms
other workload-aware methods for scheduler pa-
rameterization. This methodology is unique, flexible,
and practical in that it requires noa priori knowl-
edge of the workload, it works well even in the presence
of poor user runtime estimates, and it can be used to ad-
dress any system statistic of interest.
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1. Introduction

Large-scale clusters of multiprocessors have
emerged as the dominant platform for high-end com-
puting, comprising almost 60% of the Top 500 list
(www.top500.org) as of June 2004. Traditional
scheduling policies for clusters and other high-end dis-
tributed memory systems consider scheduling a single
resource, i.e., CPU only, and focus on treating differ-
ently interactive versus batch jobs [1] with the goal
of maximizing system utilization. Industrial-strength
schedulers that are widely accepted by the supercom-
puting community, including the Maui scheduler [10],
PBS [12], and IBM LoadLeveler [4], offer a vari-
ety of configuration parameters that allow the system
administrator to customize the scheduling policy ac-
cording to the site’s needs. The effectiveness of the
scheduler is directly determined by the administra-
tor’s choices for the configuration parameters. How-
ever, tuning these parameters to optimize performance
is extremely challenging because it is difficult to pre-
dict the outcome based on the interaction of many
different changing parameters. Choosing appropri-
ate scheduling parameters in such complex environ-
ments requires not only awareness of the performance
effects of existing queuing in the system, but also re-
quires a keen understanding of the effects of transient
behavior in the workload. Static definition of schedul-
ing parameters is clearly insufficient to cope with
sudden changes in the workload intensities and de-
mands.



In the literature, scheduling policies based on back-
filling have been proposed as more efficient alterna-
tives to simple FCFS scheduling [11]. In backfilling,
users are expected to provide nearly accurate estimates
of the job execution times. Using these estimates, the
scheduler scans and reorders the waiting queue, allow-
ing certain short jobs to surpass long jobs in the queue
provided those short jobs do not delay certain previ-
ously submitted jobs. The goal of backfilling is to de-
crease system fragmentation and increase system uti-
lization [11, 14] by using otherwise idle processors for
immediate execution. Various versions of backfilling
have been proposed [6, 11, 13], including algorithms for
gang-scheduling [15], and backfilling can be found in
most contemporary cluster installation schedulers [2, 5].
For a recent survey of parallel job scheduling in gen-
eral, including backfilling in particular, we direct the in-
terested reader to [2].

The two important external parameters that affect
performance and scheduling decisions in a parallel sys-
tem are the arrival process and the service process. Vari-
ations in the intensities of arrivals and service require-
ments are responsible for the growth of waiting queues
to a certain point beyond the “knee of the curve”, i.e.,
the point where the individual response times of the jobs
increase dramatically and the system operates in satura-
tion. Dramatic changes in the resource demands are con-
sistent across actual workloads [7, 8], as evidenced by
very skewed run times within each workload, by signif-
icant variability in the average “width” of each job, i.e.,
the number of per-job requested processors, and by very
inconsistent job arrival rates across time.

Based on these observations, the authors in [7, 8]
proposed a multiple-queue backfilling scheduling pol-
icy for homogeneous systems that allows the sched-
uler to swiftly change certain configuration parameters
according to changes in the incoming workload. This
multiple-queue policy splits the system into multiple
partitions (the number of partitions is fixed), with one
queue per partition, andseparatesshort from long jobs
by assigning incoming jobs to different queues based
on user-provided job runtime estimates. Initially, proces-
sors are distributed evenly among the partitions, but as
time evolves, processors may move from one partition
to another so that processors currently idle in one parti-
tion may be used for immediate backfilling in another.
Hence, the system is able to adjust on-the-fly according
to changes in the incoming workload, and, in this man-
ner, the average job slowdown is reduced by diminish-
ing the likelihood that a short job is delayed behind a
long job.

However, the solution presented in [8] suffers from
two major drawbacks. First, the choice for the fixed
number of partitions is not obvious, and it must be de-
termineda priori . Even when given a number of parti-
tions, the selection of static criteria for assigning jobs to
partitions based on runtime estimates is also not obvious
and must be donea priori . The observed inconsisten-
cies across time for the arrival patterns and service de-
mands in workloads imply that sucha priori andstatic
selection of the number of partitions and partitioning cri-
teria cannot guarantee good performance across the life-
time of the workload.

Second, prerequisite to the classification of jobs to
partitions is the availability of accurate job runtime esti-
mates. User-provided runtime estimates are notoriously
inaccurate [9, 11]. Users tend to “overestimate” ex-
pected execution time of jobs to avoid having the job
terminated by the scheduler due to a short estimate. Fur-
thermore, if a job crashes (which often happens very
early in its execution), there will likely be asignificant
discrepancy in the estimated and actual execution time.
Such inaccurate estimates often cause jobs to be placed
into inappropriate partitions, diminishing system perfor-
mance [8].

This paper addresses the above shortcomings of
multiple-queue backfilling. The stated goals and out-
line of this work are:

• To present a methodology for automatic recalcula-
tion of job partitioning criteria, given a fixed num-
ber of queues (see Section 2). This methodology is
based on observation of the past workload behav-
ior to predict future workload behavior.

• To present ageneral and practical methodol-
ogy for automating scheduler parameterization.
The methodology uses online simulation to se-
lect the ideal number of queues on the fly (see
Section 3). We further show that online simula-
tion allows the system to recover from incorrect
(and possibly unavoidable) decisions.

• To summarize our contributions and outline future
work (see Section 4).

2. Multiple-Queue Backfilling: Solutions
and Shortcomings

In [7], workload analysis usingactualruntimes from
traces in the Parallel Workloads Archive showed that us-
ing four queues provides the best separation of jobs to
reduce the waiting time of jobs. The motivation for us-
ing four queues was given after examining the statistical
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characteristics of workload traces available in the Paral-
lel Workloads Archive. For more details on trace work-
load analysis, we direct the interested reader to [7].

In Figure 1, we provide a representative sample of the
resource demands of two actual supercomputer traces,
the first, labeled KTH, from a 100-node SP2 at the
Swedish Royal Institute of Technology, and the second,
labeled SDSC-SP2, from the 128-node IBM SP2 at the
San Diego Supercomputer Center. Figures 1(a)–1(f) il-
lustrate the time evolution of the arrival process by pre-
senting the total number of arriving jobs per week, the
time evolution of the service process, and its coefficient
of variation (C.V.). We observe significant variability in
the job arrival and service processes, which indicates the
importance of not onlyaggregatestatistics (i.e., the aver-
age performance measures obtained after simulating the
system using the entire workload trace), but also oftran-
sientstatistics within small windows of time.

Figures 1(c)–1(f) also show the mean service times
and their respective C.V.s if jobs are classified accord-
ing to their duration (dashed lines). We observe very
skewed run times within each workload and significant
variability in their C.V.s, which significantly reduce if
jobs are classified according to their duration. This clas-
sification also aims at balancing the length of each of the
four queues by keeping the number of jobs per week as-
signed to each queue nearly the same. Figures 1(g)–1(h)
shows that despite the fact that we havea priori knowl-
edge of the workload demands, thisstaticclassification
does not result in a well-balanced system across time
as the target of maintaining roughly 25% of the number
of jobs per class, is not reached across all weeks. The
multiple-queue backfilling policy that was developed in
[7] is based on this classification, and experiments indi-
cate that a four-queue classification is promising across
most of the workload traces from the Parallel Workloads
Archive, but no clear answer is given as to what theideal
numberof queues should be. Furthermore, given a pre-
defined ideal number of queues, no clear answer is given
to the problem of how to bestpartition jobs into differ-
ent classes in order to meet the needs of a dynamically
changing workload. We address these two questions in
the following sections.

2.1. The Multiple-Queue Backfilling Policy

The multiple-queue backfilling policy splits the sys-
tem into multipledisjoint partitions, with one queue per
partition. Initially, each partition is assigned an equal
number of processors. As time evolves, processors idle
in one partition can be used for backfilling in another

partition. In this way, the partition boundaries are dy-
namic, allowing the system to adapt itself to fluctuat-
ing workload patterns. Furthermore, the policy does not
starve a job that requires all processors for execution.

In general, the process of backfillingexactly one
queued job (of possibly many queued jobs to be back-
filled) proceeds as follows. LetP be the partition to
which the job is assigned. Definep

P
to be thepivot

(i.e., the first job in the queue) in partitionP, and de-
fine t

P
to be the time whenp

P
can begin executing. If

the job under consideration isp
P

, it begins executing
only if the current time is equal tot

P
, in which case a

newp
P

is defined. If the job is notp
P

, the job begins ex-
ecuting only if there are sufficient idle processors in par-
tition P without delayingp

P
, or if partitionP can obtain

sufficient idle processors from one or more other parti-
tions without delaying any pivot. This process of back-
filling exactly one job is repeated, one job at a time, un-
til all queued jobs have been considered. The multiple-
queue backfilling policy, outlined in Figure 2, is exe-
cuted whenever a job is submitted or whenever an ex-
ecuting job completes.

Although permitting processors to cross parti-
tion boundaries begins to address the issue of fluctu-
ating workload patterns, the fixed criteria for defin-
ing job classes and assigning them to partitions, as
given in [7, 8] (see legend in Figure 1), are too in-
flexible for a good general solution. These fixed
criteria must be determineda priori , which is impos-
sible in any real world scenario. A better approach,
which we introduce here, is to dynamically recom-
pute the partitioning criteria to better meet the needs
of the transient arrival and service demands of evolv-
ing workloads.

To this end, at the start of each new week, we evaluate
the set of jobs that completed in the previous week. Us-
ing this set of jobs only, we define new partitioning crite-
ria by examining the estimated runtimes of the jobs, and
from those estimated runtimes select appropriate crite-
ria that would have balanced the number of jobs across
all queues. The algorithm for determining the partition-
ing criteria for a new week is given in Figure 3. As de-
scribed in the sections to follow, this algorithm provides
the multiple-queue backfilling policy more flexibility to
respond to workload fluctuations, yet alone it is not a
sufficient general solution.

2.2. Experimental Methodology

The simulation experiments are driven by four work-
load traces from the Parallel Workloads Archive [3]:
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Figure 1. Total number of arriving jobs per week (a)–(b), mea n job service time per week (c)–
(d), coefficient of variation (C.V.) of job service times (e) –(f), and percentage of jobs per class
(g)–(h). All graphs are presented as a function of time (week s).

• CTC: log containing 79 302 jobs executed on a
512-node IBM SP2 at the Cornell Theory Center
from July 1996 through May 1997;

• KTH : log containing 28 490 jobs executed on a
100-node IBM SP2 at the Swedish Royal Institute
of Technology from October 1996 through August
1997;

• SCDC-SP2: log containing 73 496 jobs executed
on a 128-node IBM SP2 at the San Diego Su-
percomputer Center from May 1998 through April
2000;

• Blue Horizon: log containing 250 440 jobs exe-
cuted on a 144-node with 8 processors per node
IBM SP at the San Diego Supercomputer Center
from April 2000 through January 2003.

From the traces, for each job we extract the arrival time
of the job (i.e., the submission time), the number of pro-
cessors requested, the estimated duration of the job, and
the actual duration of the job. Because we do not use job
completion times from the traces, the scheduling strate-

gies used on the corresponding systems are not relevant
to our study.

We evaluate and compare via simulation the perfor-
mance of multiple-queue backfilling relative to standard
single-queue backfilling. We consideraggregate mea-
sures, i.e., average statistics computed using all jobs for
the entire simulation run, andtransient measures, i.e.,
per-week snapshot statistics that are plotted versus ex-
periment time to illustrate how the policies react to sud-
den changes in the workload. The performance measure
of interest here is each job’s bounded slowdown1 [11]
defined by

s = 1 +
d

max{10, ν}

whered andν are respectively the queuing delay time
and the actual service time of the job. To compare the
multiple-queue policy with the single-queue policy, we

1 The maximizing function in the denominator reduces the other-
wise dramatic impact that very small jobs can have on the slow-
down statistic. The 10 second execution time parameter is stan-
dard in the literature[11].
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for (all jobs in order of arrival)
1.P ←− partition in which job resides
2. p

P
←− pivot job (first job in the queue forP)

3. t
P
←− earliest time when sufficient processors will be available forp

P

4. i
P
←− currently idle processors inP

5. x
P
←− idle processors in partitionP at t

P
not required byp

P

6. if (job is p
P

)
a. if (current time equalst

P
)

I. if necessary, reassign processors from other partitions toP
II. start job immediately

7. else
a. if (job requires≤ i

P
andwill finish by t

P
) start job immediately

b. else if (job requires≤ min{i
P

, x
P
}) start job immediately

c. else if (job requires≤ {i
P

plus some combination of idle/extra processors in other partitions}
such that no pivot is delayed)

I. reassign necessary processors from other partitions toP
II. start job immediately

Figure 2. Multiple-queue backfilling algorithm

1. P ←− current number of partitions in the system
2. S ←− set of jobs that completed in the previous week
3. F (t) ←− build the cumulative distribution function using runtime estimatest of jobs inS
4. for (i from 1 toP )

find ti such thatF (ti) = i/P
5. New week’s partitioning boundaries for job with runtime estimatet is

P =

8

>

>

>

>

<

>

>

>

>

:

1, 0 < t < t1

2, t1 ≤ t < t2
...

P, tP−1 ≤ t < tP

Figure 3. Algorithm for automatically recalculating the jo b partitioning criteria in multiple-
queue backfilling.

define theslowdown ratioR for a job by the equation

R =
s1 − sm

min{s1, sm}

where s1 and sm are the bounded slowdowns com-
puted for that job using respectively single-queue and
multiple-queue backfilling.R > 0 indicates anR-fold
gain in performance using the multiple-queue policy rel-
ative to a single queue.R < 0 indicates anR-fold loss
in performance using the multiple-queue policy relative
to a single queue. The aggregate and transient measures
are computed as averages of job slowdown ratios.

Note that the use of theR metric is meaningful in
the context of our goals. We compare individually the
performance of each job under the two different poli-

cies. If one policy outperforms the other with respect to
a given job, this will be reflected in the measurement
— but a loss in performance relative to the other policy
will also be reflected. Our goal is to improve the overall
slowdown by reducing the queuing delay experienced by
short jobs. Since the bounded slowdown metric is most
affected by queuing delay for short jobs, a positive re-
sult forR indicates that, indeed, the multiple-queue pol-
icy is assisting the shorter jobs.

2.3. Multiple-Queue Backfilling: Strengths and
Weaknesses

In this section, we present results showing that the
multiple-queue backfilling policy outperforms the stan-
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dard single-queue policy in the presence of exact esti-
mates and, in most cases, in the presence of inexact user
runtime estimates. For the figures to follow, we use the
multiple-queue backfilling algorithm with four queues
enhanced by automatic recalculation of the job partition-
ing criteria, but without any other modifications.

Figure 4 depicts the aggregate slowdown ratioR of
multiple-queue backfilling relative to single-queue back-
filling for each of the four workloads. Figure 4(a) pro-
vides an overall comparison of the relative performance
of the two policies when exact runtimes are provided by
the user and when these same exact runtimes are used
for recomputing the job partitioning criteria each week.
In other words, we assume that we have the ideal case,
where the workload is knowna priori . As shown by
these aggregate performance measures, multiple-queue
backfilling provides better overall job slowdown (i.e.,
R > 0) for all four traces. There are, as one can ex-
pect, varying degrees of success from one workload
to another, with SDCS-SP2 receiving the best perfor-
mance gain while CTC receives the most modest gain.
Nonetheless, the improvements for CTC and Blue Hori-
zon using multiple-queue instead of single-queue back-
filling are nearly two-fold.

Figure 4(b) provides an overall comparison of the
relative performance of the two policies using inexact
user estimates (i.e., runtime estimates provided in the
workload traces), and when the runtime estimates of the
previous week are used to recalculate the job partition-
ing criteria using the algorithm of Figure 3. The figure
shows that partitioning using user estimates can nega-
tively impact the performance of multiple-queue back-
filling. User runtime estimates are notoriously poor [9,
11]. As a result, user estimates can lead to poor par-
titioning of jobs relative to their actual runtimes so
that the effectiveness of the multiple-queue policy is
reduced. Nonetheless, performance improvement rela-
tive to single-queue backfilling is achieved for three of
the four traces, with improvement for SCSD-SP2 over
that usingexactestimates. Note that for CTC, however,
multiple-queue backfilling with inexact estimates per-
forms worse overall than single-queue backfilling.

We now turn to the transient performance behavior
of multiple-queue backfilling. Figure 5 depicts transient
one-week snapshots of the slowdown ratio versus time
for each of the four traces. The dashed lines in the figure
represent the improvement of multiple-queue backfill-
ing over single-queue backfilling when using actual run-
times of that same week as exact estimates for job clas-
sification (i.e.,a priori knowledge). Generally, marked
improvement in job slowdown is achieved (R > 0)
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Figure 4. Aggregate slowdown ratio R for
four traces using actual times as exact es-
timates, using inexact user estimates, and
using online simulation.

by using multiple-queue backfilling. Although single-
queue outperforms multiple-queue backfilling (R < 0)
for a select few of the weeks (e.g., week 11 for KTH,
week 101 for Blue Horizon),R is positive for a major-
ity of the weeks, corresponding to performance gains us-
ing multiple-queue backfilling.

The solid lines in Figure 5 represent the practical case
when no workload is knowna priori . In this case, user
estimates of the previous week are used to recalculate
the partitioning criteria, and each incoming job is allo-
cated to a queue according to its estimated (inexact) run-
time. In this context of inexact user estimates, transient
analysis is consistent with the generally diminished per-
formance shown in the aggregate results. Relative to the
exact-estimate results (i.e., dashed lines), for three of the
four traces there is an increase in the number of neg-
ative peaks (R < 0) and the magnitude of the positive
peaks is diminished. This trend is most notable for CTC,
with few prominent positive peaks and several promi-
nent negative peaks (e.g., weeks 30 and 40).

In short, our results show that multiple-queue back-
filling with automatic recalculation of partitioning cri-
teria provides dramatic improvement in slowdown rela-
tive to single-queue backfilling when exact runtime es-
timates are knowna priori . However, in the more real-
istic setting in which runtimes estimates arenot known,
and are often very inaccurate, the performance benefit of
multiple-queue backfilling can diminish or can even re-
sult in a performance loss. These observations lead us
to consider an improved, more flexible scheduling pol-
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Figure 5. Slowdown ratio R per week as a function of time for each of the four traces. For
dashed lines, actual runtimes were used with a priori knowledge of the workload. For solid
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icy discussed in the following sections.

3. Online Simulation Policy

The results in the previous section show that in
most instances the multiple-queue policy outper-
forms the single-queue policy overall, but there are
instances where the single-queue policy does per-
form better, especially (in the practical case) when
only inexact user runtime estimates are available. Al-
though with estimates the algorithm looks at the
past (previous week) to predict the future (current
week) for determining the partitioning criteria, experi-
ments withdifferentnumbers of queues (e.g., 2, 3, and
8) have also shown that there is no universal number
of queues that is ideal across all weeks for each work-
load. (Due to space restrictions, we do not present those

results here.) For some weeks, two queues may per-
form better than three, but for some others four queues
perform best. Based on this observation, we intro-
duce a new scheduling policy here that automates
changing the number of partitions on the fly to ad-
dress transient workload fluctuations. The policy is
based on the ability to execute lightweight simula-
tion modules in anonlinefashion.

More specifically, self-adaptive parameterization
based on online simulation can be described as fol-
lows. Given a current state of the system and given a set
of jobs that are waiting for service in the queue, we sim-
ulate a different scheduling policy (as defined by a dif-
ferent number of partitions for multiple-queue backfill-
ing with automatic recalculation of partitioning criteria).
In this regard, it should be noted that single-queue back-
filling is a special case of the more general multiple-
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queue backfilling withP = 1. FIX: The main idea is
to run a quick trace-driven simulation for the wait-
ing jobs without affecting the operation of the actual
system. The ability to run and compare the perfor-
mance of several such simulations (each modeling a
different policy) within a very short time can help pro-
vide educated changes in the policy employed by the
scheduler to better serve the waiting jobs. These simu-
lations are triggered whenever a performance measure-
ment (here, bounded slowdown) exceeds a pre-specified
threshold. The multiple simulations are executed on-
line but with the initial state of the simulationexactly
the same as the state of the real system. The num-
ber of partitions that provides the best simulated perfor-
mance is then chosen as the (perhaps new) number of
partitions in the real system, with appropriate reconfig-
uration (if necessary) of the real system to incorporate
this number of partitions. In this fashion, we antic-
ipate to reach faster system recovery from “wrong”
scheduling decisions (because of inexact user esti-
mates that direct jobs to the wrong queues) that result
in a substantial increase in the waiting queue (and con-
sequently significant increase in the average job slow-
down).

3.1. Policy Parameterization

More specifically, for the online simulation policy,
define the following parameters.

• T : the pre-specified bounded slowdown threshold
that triggers online simulation; and

• L: the length of time (weeks) to simulate.

Let P be the current number of partitions in the sys-
tem, and letPmax be the maximum number of partitions
allowed in the system. When the aggregate bounded
slowdown in the system exceedsT , Pmax online sim-
ulations are executed, using multiple-queue backfill-
ing with automatic recalculation of partitioning criteria,
with 1, 2, . . . , Pmax partitions respectively. The simula-
tion with the best aggregate bounded slowdown for the
simulated periodL determines the number of partitions
to be used in the actual system.

We stress that for each experiment we must start the
online simulation inexactly the same state as the real
system, but with a different number of partitions. If the
number of partitions is different, we keep the same col-
lection of queued jobs that are present in the real sys-
tem, but we must partition those jobs differently based
on the new partitioning criteria that are adjusted for the
new number of partitions. For more details on this and

other implementation particulars, we direct the reader to
Appendix A.

3.2. Online Simulation Policy Performance

In this section, we present results showing that the
online simulation policy, using multiple-queue backfill-
ing with automatic recalculation of partitioning criteria,
performs well even in the presence of inexact user es-
timates. That is, unlike certain instances for multiple-
queue backfilling with automatic recalculation of par-
titioning criteria alone, the online simulation policy is
able to perform well even when there isno a priori
knowledge of the workload.

For Figures 4(c) and 6, we have used the online sim-
ulation policy parameters(T ,L) for each trace as fol-
lows: (2.5, 2) for CTC; (100, 2) for KTH; (25, 1) for
SDSC-SP2; and(10, 1) for Blue Horizon.2 Figure 4 de-
picts for each of the four workloads the aggregate slow-
down ratioR relative to single-queue backfilling for (a)
multiple-queue backfilling using actual runtimes with
a priori knowledge, (b) multiple-queue backfilling us-
ing inexact user estimates and noa priori knowledge,
and (c) online simulation using inexact user estimates
and noa priori knowledge. Note that, with each policy
in the presence of inexact user estimates, online simu-
lation outperforms multiple-queue backfilling for each
of the four traces (compare (b) and (c)). Furthermore,
online simulation with inexact user estimates performs
nearly as well as multiple-queue backfilling with actual
runtimes (i.e.,a priori knowledge) for CTC and Blue
Horizon, and even better for KTH and SDSC-SP2 (com-
pare (a) and (c)). Even though in an actual scheduling
context we can not know exact runtimesa priori , our re-
sults suggest that with online simulation we can perform
nearly as well as, or even better than, havinga priori
knowledge of the workload.

Figure 6 depicts transient one-week snapshots of the
slowdown ratioR versus time using online simulation
with inexact user estimates. The solid lines represent
the results from using online simulation and noa priori
knowledge of the workload; the dashed lines represent
the results from using multiple-queue backfilling assum-
ing a priori knowledge of the workload, and are the
same as the dashed lines in Figure 5. AgainR > 0 in-
dicates a performance gain from using online simula-
tion relative to single-queue backfilling. For the solid

2 We empirically selected these parameters by comparing re-
sults from simulation runs for each trace withT ∈
{2.5, 5, 7.5, 10, 25, 50, 75, 100} andL ∈ {1, 2}.
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lines, R is positive for a majority of the weeks, and
the number of negative spikes prevalent in Figure 5 is
dramatically reduced, most specifically for CTC. Also
notice that online simulation corrects the problems that
multiple-queue backfilling experiences with inexact es-
timates.

We note that online simulation cannot be used indis-
criminately. Instead, the online simulation policy param-
etersT andL should be tuned to match the characteris-
tics of a specific system. Fortunately, for online simula-
tion there are few parameters that a system administra-
tor must set. As suggested by the previous figures, ap-
propriate parameters can lead to very good performance
even in the presence of inexact runtime estimates. How-
ever, inappropriately chosen parameterscan (but does
not often) lead to a loss in performance with respect to
single-queue backfilling. Our experiments showed that,
in general, even if the parameters are chosen indiscrimi-
nately, the online simulation policy will improve the per-
formance of the system.

4. Concluding Remarks

We have presented a first step toward automating
the difficult process of job scheduler parameterization
in high-end parallel systems. Detailed simulation ex-
periments using actual supercomputer traces from the
Parallel Workloads Archive strongly suggest that self-
adaptive policies are needed to address the observed
variability in workloads to improve policy performance.
We have presented a policy that is based on online ex-
ecution of lightweight simulation modules, each mod-
eling a different scheduling policy. This online simu-
lation approach proves effective in modeling schedul-
ing micro-scenarios and departs from earlier work in
that it strives for online tuning of scheduling parame-
ters, thus stressing speed in addition to accuracy. Speed
allows for executing these alternative scheduling scenar-
ios while the system is in operation, and for making con-
clusions on possible scheduler parameter reconfigura-
tion if required. Our experiments indicate that this on-
line methodology does allow for quick system recovery
from earlier incorrect scheduling decisions, resulting in
schedulers that manage to adapt their parameters to the
transient nature of the workload.

In this paper we showed the effectiveness of online
simulation when used to define the best parameters for
performance in multiple-queue backfilling policies. Our
future work will concentrate on developing lightweight
simulation modules that can be easily parameterized by
the system administrator. More specifically, the system

administrator may choose to optimize another measure
than average job slowdown, or may define policies that
are not based on multiple-queue backfilling. Our target
is to provide a library of lightweight simulation mod-
ules which the system administrator can use to define
different policies and explore online their performance.
Finally, we will provide simulation modules that will al-
low the modeling of policies that provide priorities and
reservations to jobs, i.e., the schedule guarantees that a
job completes by a certain time, or a job starts execu-
tion at a specific time.
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