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Abstract priate servet. While there exists no central waiting queue

at the dispatcher, each server has a separate queue for wait-

Size-based policies have been known to successfully bal'"9 jobs and a separate processor, see .F'gure 1.' PT"” re-
search has shown that the job service time distribution is

ance load and improve performance in homogeneous clus-""° ) S
ter environments where a dispatcher assigns a job to acrmcal for the performange of load balqnqng.pollmes. n
server strictly based on the job size. We first examine such a setting an_d that size-based pOI'C.'eS’ €., PO“C'eS
how size-based policies can provide service differentia- _that_alm at balancmg_load b_ased on th_e size _of_th_e incom-
tion and complement admission control and/or priority ing jobs, perform OP“’_“a"y_ i th(_a goal 'S to minimize the
scheduling policies. We find that under autocorrelated ar- expected job completion time, job waiting time, and job
rivals the effectiveness of size-based policies quickig-de slowdown [5, 13].

riorates. We propose a two-step resource allocation policy Back — end Nodes

that makes resource assignment decisions based on the fol-

lowing principles. First, instead of equally dispatchitget ‘
work among all servers in the cluster, the new policy biases
load balancing by an effort to reduce performance loss due Arriving tasks | Front—end :
to autocorrelation in the streams of jobs that are directed A . Dispaicher
to each server. As a second step, an additional, per-class 1 ‘
bias guides resource allocation according to differenssla
priorities. As a result, not all servers are equally utilize
(i.e., the load in the system becomes unbalanced) but per-
formance benefits are significant and service differentia- Figure 1. Model of a clustered server.
tion is achieved as shown by detailed trace-driven simula-
tions.

Keywords: load balancing, autocorrelated arrivals, ser-
vice differentiation
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In this paper, we focus on clustered systems as those de-
picted in Figure 1 that accept two classes of priority jobs,
i.e., high and low priority job$. Content-distribution net-
works and media-server clusters that provide streaming of
high quality audio and video from a central server config-
uration are an example of a centralized system where size-
based policies provide good balancing solutions [11, 3].
Storage systems which deploy mirroring for enhanced per-
We focus on load balancing in clustered systems with a formance and data availability are another case of a clus-
Sing|e System image, i_e., Systems where a set of homogelered System where load balanCing based on the JOb size
neous hosts behaves as a single host. Jobs (or requests) df- beneficial. In both of the above examples, the stream
rive at a dispatcher which then forwards them to the appro-

1 Introduction

IThroughout this exposition we are using the terms “jobs” ted
quests” interchangeably.

*This work was partially supported by the National Sciencarféa- 2In this paper, we only focuses on a system with dual-priariagses.
tion under grants CCR-0098278, ACI-0090221, and ITR-0323%&nd However, the algorithms can be easily extended to multisda with the
by Seagate Research. same spirit.




of requests from the system’s end-users is considered higlformance of the high priority class benefits from this shift.
priority and served within the delay constraints placed by This new policy, appropriately unbalances load so that it
the respective applications, while the set of system-levelstrikes a balance between two (in some cases) conflict-
activities that aim at maintaining the cluster and enhanc-ing goals: load is “shifted” such that high priority jobs are
ing its performance and availability (via data movement, moved into less utilized servers, while each server serves
mirroring, profiling, prefetching) are considered low pri- requests of as similar size as possiblelFHEQAL does
ority. In such systems, because the streams of requests fonot assume ang priori knowledge of the job service time
the two different priority classes are generated by difiere  distribution of the two priority classes, nor any knowledge
processes or applications, their characteristics, revads of the intensity of the dependence structure in their arriva
and service demands, are expected to be differenttoo.  streams. By observing past arrival and service character-
Performance differentiation in such systems can be iSti(_:S’ the policy adjusts its configuration paramgtersn'q a
achieved either via admission control, priority schedul- qnllnefash|on. To the.bestofo.ur knowledgethlsils t'he.flrst
ing, or both [4, 7, 2, 1, 14, 6, 9]. The proposed method- time that load ba!ancmg c_on5|ders both dug_l-prlorltyjobs
ologies are often based on feedback control theory, Ccm_anddependence in the arrival process as critical character-

straint optimization, and preferential scheduling thegeéa istics for performance aiming at performance differentia-
at minimizing queuing delays. In this paper, we focus on

tion. The closest work in the literature is the one by Aron

the problem of performance differentiation in a clustered et. al. [1,] whgre the problem of load bglancmg and per'for-
server from the perspective of load balancimy, i.e., we mance |sola_1t|0n in clustered servers Il_kg the one dgplcted
do not consider admission control or priority scheduling " F1gure 1 is addressed by mapping it into an equivalent

to improve on the performance of priority classes. Admis- constrain_ed optimization pro_blem. Our contribution r_ler_e
sion control and priority scheduling, although instrumen- can be viewed asa mechamsm to' complement gdmlssmn
tal for performance differentiation, are outside the sanfpe control and/or priority scheduling via load balancing.

this work. Instead, the work presented here can be used a3 his paper is organized as follows. Section 2 presents
complementary to admission control and priority schedul- background material and analyzes the performance of size-
ing, because the results shown can be considered as lowdpased policies for dual-priority services. The performeanc
boundsto performance, i.e., performance of high priority effect of autocorrelation in the arrival streams of the two
jobs can only improve if admission control and/or priority priority classes for the proposed off-line size-based-poli
scheduling is also deployed. cies is examined in Section 3. The on-line size-based pol-
Oif:y is presented in Section 4. Section 5 summarizes our

We focus on a clustered system that accepts two classes L
contributions.

jobs and aim at adjusting size-based load balancing poli-
cies to account for performance differentiation. If the ar-
rival stream at the dispatcher bbth priority classes or 2 Background

either of the two classes iautocorrelated(i.e., bursty),

then the effectiveness of size-based policies deteriorate

and policies that “unbalance” the load such that there is aln this section we give an overview of the performance
performance bias toward correlated servers become desireffect of autocorrelated traffic in a single queue. We
able. We further show that when considering performancealso give a quick overview of BapTLoAD [13] and
differentiation, additional per-class load unbalancingtt  EQAL [12], two size-based load balancing policies that
simplyfavors the higher priority class is not sufficient. have been previously proposed.

Based on our observations, we propose a two-step size-

based load balancing policy that aims at reducing the 2,1  Autocorrelation (ACF)
performance degradation due to autocorrelation in each
server, while maintaining the property of serving jobs of
similar sizes by each server. This new policy, calleg¢-D
FEQAL, strives to differentiate services but eglly dis-

Throughout this paper we use the autocorrelation func-
tion (ACF) as a metric of the dependence structure of a

tribute work guided by atocorrelation anddad. DFFE- time series (either request arrivals or services) and the co

QAL measures autocorrelation and variation of each pri- €fficient of variation (CV) as a metric of variability in a
ority stream in an online fashion and appropriately unbal- ime series (either request arrivals or services). Conside
ances load at the cluster aiming at meeting the following & Stationary time series of random variab{es, }, where
two goals: first, the entire load, irrespective of job tyge, i " = 0, -+, 00, in discrete time. The AChx (), and the
“shifted” from one server to the next such that the effect of CV are defined as follows

autocorrelation in job performance is minimized and sec- El(Xs — 1) (Xigr — )] g

ond, per-class load is further “shifted” such that the per- px (k) = px, x, ., = 52 ,CV = ;,
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Figure 2. (a) ACF of the inter-arrivals, (b) response time, a
system utilization when inter-arrivals are independent (n
(ACF).

nd (c) queue length as a function of
o ACF) or have positive autocorrelation

where is the mean and? is the common variance of
{X,}. The argument is called the lag and denotes the
time separation between the occurrenégsand X, .

request service time and its waiting time in the queue, and
queue length (in Figure 2(c)) which is the total number
of requests in the server queue including the one in
The values ofpx (k) may range from -1 to 1. Ipx (k) = service. Observe that system performance deteriorates by
0, then there is no autocorrelation at laglf px (k) = 0 3 orders of magnitude when comparing to the case with
for all £ > 0 then the series is independent, i,e., uncorre- no ACF arrivals' Hence, it is not only variability in the
lated. In most cases ACF approaches zerb ereases.  arrival and service processes that hurts performance, but
CV values less than 1 indicate that the variability of the more importantly the dependence structure in the arrival
sample is low and CV values larger than 1 show high vari- process.

ability. The exponential distribution has a CV of 1.

Autocorrelated arrivals are observed in different levéls 0 2 2 ApapTLoAD and EQAL

real systems, such as the incoming traffic to e-commerce

Web servers [10], or the arrivals at storage systems sup- _ _ _

porting (dedicatedly) various applications [12]. Using th In prior work, a size-based policypTLOAD that does
data from the storage system of a Web server described10t requirea priori knowledge of the service time dis-

in [12], we parameterize a simple MMPR/A queuing tribution has been shown to be effective under changing
model to analyze the effect of the autocorrelation in the workload conditions [13]. Under correlated traffic, its ef-
inter-arrival process on performance. The arrival processfectiveness degrades significantly. An enhancement to the
is drawn from a 2-stage MMPP process with mean inter- ADAPTLOAD policy named AL is presented in [12].
arrival time equal to 13.28 ms and CV equal to 5%6he EQAL accounts for dependence in the arrival process by
service process is drawn from a 2-stage hyper-exponential€laxing ADAPTLOAD's goal to balance the work among
(H,) distribution with mean service time equal to 3 ms all nodes of the cluster and has demonstrated superior per-
and CV equal to 1.85. Inter-arrival times are scaled so formance under correlated traffic [12].

th.a't we examine the system performancg under QiﬁergntThe policies are summarized as follows:

utilization levels. We also present experiments with dif-

ferent MMPPs such that we maintain the same mean and

. ; . with N server
CV in the arrival process, but we change its autocorrela-

e ADAPTLOAD: In a cluster

. . . nodes, AAPTLOAD artitions  the 0SsSi-

tion structure so that there is no autocorrelation (ACF=0, . > part P _

for all lags), or there is positive autocorrelation with ACF ble  request sizes intoN intervals, {[so =
9s), P 0,%1),[s1,82),...[sSN-1,8n = o00)}, so that if

starting at 0.47 at lag=1 but decaying to 0 at lag=500 (see
Figure 2(a)).

Figure 2 presents performance measures for the
MMPP/H,/1 queuing model as a function of system

utilization. We measure performance by reporting on
response time (see Figure 2(b)) which is the sum of the

the size of a requested file falls in thth interval,
i.e., [si—1,s:), this request is routed to serverfor
1 < i < N. These boundarieg for1 < ¢ < N
are determined by constructing the histogram of
request sizes and partitioning it in equal areas, i.e.,
representing equal work for each server, as shown by

SWe selected a Markovian-Modulated Poisson Process (MM&P),
special case of the Markovian Arrival Process (MAP) [8], todel auto-
correlated inter-arrival times because it is analyticéigctable. Its basic
building block is a simple exponential but it can be easilyapzeterized
to show dependence in its structure.

4Because of the scale used in the figure and because of thesdifée
of the two curves, the performance measures with no ACF labk\ith
no ACF for utilization equal to 0.9, queue length is equal3a,lbut this
number is dwarfed in comparison to the queue length withcautelated
arrivals.



the following equation: two priority classes in the cluster, each with a different
. arrival process and a different service process. The load
/ ' z-dF(z) ~ =, 1<i<N, (1) ratio of the low priority class and the high priority class

Si1 N is 70%/30%. To examine the effect of ACF in the arrival
process, we use a 2-stage MMPP, which with appropriate
parameterization allows for changiogly the ACF while
maintaining the same mean and CV. The service process
is modeled using a 2-stage hyper-exponenHa)( whose
ACF values are consistently 0.

where F'(z) is the CDF of the request sizes and the
amount of total work isS. By sending requests of
similar sizes to each server, the policy improves av-
erage job response time and average job slowdown
by avoiding having short jobs been stuck behind long
jobs in the queue. For a transient workload, the value We evaluate the effect of autocorrelated inter-arrivaesm

of the N — 1 size boundaries;, s, . .., sy_1 is Crit- on the performance of load balancing policies by analyzing
ical. ADAPTLOAD self-adjusts these boundaries by the response time (i.e., wait time plus service time), and
predicting the incoming workload based on the his- the average slowdown (i.e., the ratio of the actual response
togram of the lask requests. In our simulations, we time of a request to its service time). The mean utilization
set the value ofs equal to10000. of each server is 50% undemAPTLOAD. EQAL indeed
unbalances work across the cluster so that the per server
EQAL: EQAL uses the same histogram information ytjlization is not identical. AsR increases, utilization of
as ADAPTLOAD, but sets the new boundarigsby  the first two servers decreases while utilization of the last
weighting the work assigned to each server with the two servers increases. The last server’s utilization, the.
degree of autocorrelation in the arrival process, basedserver that serves the largest size jobs) is now the highest

on the observation thatin order to achieve similar per- jn the cluster. Note that thentiresystem utilization i$0%
formance levels under autocorrelated arrivals the sys-ynder both policies.

tem utilization must be lower than the utilization un-
der independent arrivals.

S,
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(b) Average slowdown
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A shifting percentage vectey = (p1,p2, -, pn) IS
defined in AL so that the work assigned at server
i is now equal to(1 + p;)= for 1 < i < N, pro-
vided thaty>Y | p; = 0 for 1 < i < N. The values O%DA
of p;, for 1 < ¢ < N are statically defined by letting

p1 be equal to a pre-determined corrective constant  Figure 3. The average response time (a) and
R, 0% < R < 100%. The rest of the shifting per- the average slowdown (b) of ADAPTLOAD and

centagey;, for 2 < i < N, are calculated using EQAL by different R under correlated ar-
a semi-geometric increasing method [12]. Because rjvals.

ADAPTLOAD is a size-based policy and the work-
load is heavy-tailed, most requests are for small files
and the first server receives most of requests. It fol- The inter-arrivals of the low priority class have an ACF
lows that the ACF of its arrival process is very similar structure which is the same as the one in Figure 2(a). Both
to the original ACF of the arrival process at the dis- arrival process have the same CV of 4.47. Both service
patcher [12]. Therefore, the shifting percentagés processes have the same mean, but different CVs that are
negative, i.e.p;1 = —R. The negative value indi- setto 1.87 and 10 for low priority and high priority classes,
cates that the amount of work assigned to server isrespectively. Figure 3 shows system performance under
now reduced. The following equation formalizes this this correlated traffic in the cluster. Both average slow-
new load distribution: down and average response time of the first server reduce
s g as the shifting ratio increases, but a turning point exists
/ x-dF(z)~(1+p)—=, 1<i<N. (2) where shifting more work to subsequent servers adversely
si-1 N affects average response time. The best performance is
achieved when the shifting ratio ofdAL is 40%.

@
o
=]

response time (s)
N B
o O
o o

We compare the performance of these two policies. In all ) )
our experiments, we consider a cluster of four homoge- Despite of its better than BAPTLOAD performance un-

neous back-end servers that serve requestéiistacome- ~ der correlated arrivals, ®AL treats all requests equally,
first-serve(FIFO) orde® We also assume that there are -8+ without distinguishing job priorities. In the follew

SExperiments with larger number of nodes have been also dohe b 6In this set of experiments and in the experiments presemtedei
results are qualitatively the same and are not reportedcheré¢o lack of rest of the paper, we set the utilization of the entire systef0% only
space. to examine policy behavior in a systems that is om¢rloaded



ing section, we present a two-step load balancing policy ! .. . Shifted boundaries

.

that provides service differentiation for the two classes o ] W Assume N=4 servers
jobs. s;fr?,e'a
| , toserver 3
3 Two-step Resource Allocation Policy ‘; i tosenerd
Size
T 0 A I
i i . =0slod s od s oud §=m Step 1
In this section, we propose an enhancement to the size- ® s 10 )
based policies presented in the previous section, to ac-msenTverl <o -swpz

count for dependence in the arrival process and provide
service differentiation by relaxing their basic goal to-bal
ance work among all nodes of the cluster. The proposed

. 2 toserver3 High Priority
N Class

to server 4

— — Size

policy strives to judiciouslyinbalancehe load among the T I

nodes by moving jobs from the nodes with a strongly cor- sﬂf’ M I i W
related arrival process to the nodes with weaker correla- wsewver1!

tion in their inter-arrival times, and unfairlshift per-class o |0

loads such that high priority jobs are moved into less uti- ) e 3 t© server 4

lized servers. In the following sections, we first present ‘ i — e

an off-line version of the policy where we assume apri- {f ®* 1%
ori knowledge of the dependence structure in the arrival *°% % % e
streams. Then, we present an on-line version of this pol- ) o )
icy where past arrival and service characteristics guide th ~ Figure 4. DIFFEQAL’s high level idea for

adjustment of configuration parameters to improve overall ~ récalculating boundaries under autocorre-
system performance. lated inter-arrival times and different priority

classes.

3.1 Off-line DIFFEQAL

Recall that with appropriate shifting parameter)At EQAL performs better than AAPTLOAD under corre-
gives the optimal overall performance for both average re- lated traffic. Based on the above observation, we first
sponse time and average slowdown. HoweverAE does statically define the values ¢f for 1 < i < N, by let-

not provide performance differentiation because it only ting p; be equal to a pre-determined corrective constant
uses one histogram for both classes of jobs. R, where0% < R < 100%, and then by calculating
the rest of the corrective factogg for 2 < ¢ < N us-

ing a semi-geometric increasing method, as described by
the algorithm in Figure 5, Step 1. Note th&tis equal

Off-line DIFFEQAL consists of two steps, as depicted in
Figure 4. The first step of IBFEQAL is equivalent to
EQAL, i.e., it moves (both high and low priorities) jobs ) X X
from the servers with a strongly correlated arrivals to the © 07 under independent traffic, whil& > 0% under
servers with weakly correlated arrivals. As a second step,correlated traffic. Because the first server is usually the
an additional, per-class bias guides load balancing aecord or:e thdat_ SEIVes ,thT small rek?uests and has strong autocor-
ing to different class priorities. We introduce a per-class €/ated inter-arrival imes, the corrective parameters
corrective factor vectop®, wherec € {high, low}, SO usually negative, i.ep; = —R. For example, if we define

that we have the following equation for the work of class R; = 10% the_n the(;orre(iwe paroa/meter_s for ?/4—s§rver
assigned at server cluster arep; = —10 0,p2 = —1.67 0,p3 = 3.33% an

‘ pg = 8.34%. For R = 20% the corrective parameters are
55 . o Ee ) twice as high as in the case Bf= 10%, i.e.,p; = —20%,
/g o dF(z) = (L+p)S7, 1<i< N, (3) ) — 33406 py = 6.67%, andp, = 16.67%.

In order to favor high-priority jobs while improving ovetal
system performance, we continue to determine the values

571
whereF<(z) is the CDF of the request sizes of clasand

S¢ is the amount of the work belonging to classwhich of the per class corrective factgrs(c € {high, low}), by

is assigned to sgrvérafter th? .first step. Note thaf can . letting p§ be equal to a pre-determined corrective constant
take both negative and positive values and that equation,. where0% < R° < 100%, and then by calculating the

N - e
2_;=1 i = 0 should be satisfied for each class. rest of the corrective parametersfor 2 < ¢ < N, using
As shown in Section 2, without service differentiation, the same semi-geometric increasing method as for com-
ADAPTL OAD works well under independent arrivals while  putingp; (see the algorithm in Figure 5, Step 2). Note that



Step 1.1 initialize variables
a. initialize a variableadjust adjust — —R
b. initialize the shifting percentages pi—O0foralll <i< N
Stepl.2fori=1to N —1do
a. addadjust to p; p; — p; + adjust
b. forj=i+1toN do
equally distributeidjust to the remaining servers  p; «— p; — “]‘ffﬁjt
c. reduceadjust to half adjust < adjust/2
Step 2.1 initialize variables for per class
a. initialize a variablexdjust© adjust® «— —R° for ¢ € {high,low}
b. initialize the shifting percentages pi«—O0foralll <i< N
Step2.2fori=1to N —1do
a. addadjust® to p§ p§ «— p§ + adjust®
b. forj=i+1toN do
equally distributexdjust® to the remaining servers  p§ < p§ — (”j{;—’_i’
c. reduceadjust® to half adjust® — adjust®/2

Figure 5. The algorithm for setting the shifting percentage s p; and p§ for dual-priority classes in
DIFFEQAL.

adjusting bothRr!* and R"*9" concurrently makes system are different, which results in a per-class load ratio ofldua
performance less predictable. Consequently, we fix oneclasses equal t60% (low priority) over30% (high prior-
class boundaries and control the performance differentia-ity).” The mean service times of these two classes are also
tion by shifting the other one only. We fix the parameters the same, but we use different CVs to illustrate the effect
of the high priority class, resulting iR"9" = 0% and of service variability on system performance. The system

p?igh =0, for1 <14 < N. Because the first server is usu- utilization of each server is about 50% without per-class
ally the one that exhibits strongly correlated arrival® th bias shifting®
corrective parameter°” is negative, i.e p!°* = —Rlov,

Figure 6 gives the performance results when the low prior-

ity class has a CV of only 1.87, but the high priority class

requests are highly variable with a CV equal to®10in-

der this setting, the best overall performance followirg th

3.2 Performance Evaluation of the off-lineDiF- first step in DFFEQAL, is for R = 0%, which is effec-
FEQAL tively the original ADAPTLOAD [12]. Without consider-

ing performance differentiation, dual classes have simila

performance results, where the average response time of

low (high) class is about 15.8 (12.9) and the average re-

quest slowdown of low (high) class is about 43.7 (57.8).

We then further shift the low priority class jobs to the lat-

ter servers as described in the second stepIBFIEQAL.

By increasing the shifting percentag&®, the average re-

the service times are drawn from an Histribution, and ~ >PO"S€ time and the average s_Iowdown of the high priority

the entire system utilization is 50% (i.e., the system is class k(?ep decreasing (see Figure 6(c)-(d)). For instance,

when R% = 90%, the values of the average response

operating under medium load). The total sample space is..
10 million requests. time and the average slowdown are equal to 8.5 and 12.8,

to ensure that most high-priority small jobs are served at
servers with lower utilization.

We evaluate DFFEQAL using arrivals of two classes,
where potentially each class has different inter-
arrival/service time distributions. The policy effectigss

is examined by using both independent and correlated
arrivals. Similarly to Section 2.2, for each class, the
inter-arrival times follow an MMPP process of order 2,

I. No ACF in the arrivals of both classes "Throughout this paper, we use this load ratio for all the erpents.
Other ratios give qualitatively the same results so that weat report

The first set of experiments examines independent arrivals.thegn here due to lack of space.

In all experiments, the autocorrelated structure and CV of ., EXPeriments under light and heavy loads are also evaluate -

. . . : . vide qualitatively similar results as that under mediurndloa
inter-arrival times for both classes are the same, i.e., ACF 9, ail the experiments, we use a CV equal to 10 as a high vagjanc
=0 for all lags and CV =4.47, but the mean arrival rates and a CV equal to 1.87 as a low variance.
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Figure 6. The average response time and Figure 7. The average response time and
average slowdown of the low priority class average slowdown of the low priority class
(a)-(b) and the high priority class (c)-(d) of (a)-(b) and the high priority class (c)-(d) of
ADAPTLOAD and DIFFEQAL by different R'v ADAPTLOAD and DIFFEQAL by different R!ov
under independent arrivals. The low prior- under independent arrivals. The low priority
ity class has CV equal to 1.87 and the high class has CV equal to 10 and the high priority
priority class has CV equal to 10. class has CV equal to 1.87.

respectively, which are abod6% and22% of those un-  average response time and average slowdown of the high
der the original AAPTLOAD. This improvement how-  priority class. Such improvement is more significant and
ever negatively affects the performance of the low priority more effective when high priority jobs have highly vari-
class, whose average response time increasestinyes able sizes.

(see Figure 6(a)), but its average slowdown improves by

60% (see Figure 6(b)) as a result of ’FEQAL's shifting.

Note that small jobs, which have large chance for huge !l. Low priority class has correlated arrival process;
slowdown values, are still served in the first server. On high priority class has independent arrival process

the other hand, the incremental response time of compar-

atively fewer large jobs served in the last server may only Recall that when autocorrelation exists in both priority
increase their slowdown slightly. classes or either one of themQEL with positive shifting

) o .. parameterR provides optimal overall performance. We
The next experiment changes the service time dIStI’.IbutIOHSnOW use the same setting as the correlated experiments in
of the two classes. Now the low priority class has high CV gection 2.2, i.e., the inter-arrivals of the low priorityast
equal to 10 and the high priority class has low CV equal haye an autocorrelated structure as the one in Figure 2(a),
to 1.87. Figure 7 illustrates the average performance of he arrivals for high priority class are independent, ared th
these two classes. Comparing these results with the onegjgh priority requests have higher variable service times.
in Figure 6, one can observe that the performance of theynger this setting, BAL gives the best performance when
high priority class may glsp improve by sacrificing the per-  _ 4q9 (see Figure 3).
formance of the low priority class, but such performance ) ) o
improvement is incremental. The average high priority re- Figure 8 illustrates the performance _differentiation
sponse time in Figure 7(c) is stable under differ&ft” achieved by DFFEQAL as a function of differentr’o _
values. The maximum improvement of the average high va]ues. Due to its correlated mter—arnval;, the low pri-
priority slowdown, i.e., a 75% decrease, is obtained under Mty class has worse performance even without per-class
Rl* = 90%, butincurs an increment as high@smes to shifting. Both of its average response time and average

the average low priority response time (see Figure 7(a)). slowdown are 2 t_imes higher than the high priority p_erfor-
mance. AsR'" increases, the average response time of

the high priority class keeps constant #tf°* = 40%,

but its average slowdown keeps decreasing to 36%. When
Rlv = 60%, average response time increases by 15%,
but average slowdown reaches its ideal value with 77% im-

Observation 1 If both priority classes have the same ar-
rival process with or without autocorrelatiot¥,then shift-
ing the size boundaries of the low priority class improves

10we also introduced same ACF in dual classes inter-arrivabsts, provement.
the trend of performance differentiation is qualitativelgme as the one ) ) . )
with independent arrivals. We then look into the cumulative probability function
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Figure 8. The average response time and av-
erage slowdown of the low priority class (a)-
(b) and the high priority class (c)-(d) of EQAL
and DIFFEQAL by different R under corre-
lated low priority arrivals. The low priority
class has CV equal to 1.87 and the high pri-
ority class has CV equal to 10.
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Figure 9. The CDFs of response time and
slowdown of the low priority class (a)-(b) and

the high priority class (c)-(d) of ADAPTLOAD,
EQAL and DIFFEQAL for different R!°™ under
correlated low priority arrivals. The low pri-

ority class has CV equal to 1.87 and the high
priority class has CV equal to 10.

(CDF) of per-class results to better understand the pes clas
policy behavior. Figure 9 gives the CDFs of response
time and slowdown for both classes. The higher the line,
the better the policy performs. Across all graphs in Fig-
ure 9, the original AAPTLOAD performs worst. [F-
FEQAL with various corrective constants provides bet-
ter slowdown for the high priority jobs thandAL does
(see Figure 9(d)). Additionally, BFEQAL also pro-
vides better slowdown for the low priority class except for
Rl*v = 80% (see Figure 9(b)). AlthougR'” = 60%

priority class, it improves the response time of most re-
quests as shown in Figure 9(c). Compared with others,
underR!°® = 60%, at least 4% more of the total requests
have response time less than 50, and the same amount of
requests have response time less than 300, which is about
88% of total high priority requests. Its higher average re-
sponse time can be explained by its long tail of the cdf of
response times, but admission control or priority schedul-
ing can further improve on the tail performance.

Il. High priority class has correlated arrival process;
low priority class has independent arrival process

This set of experiments considers the cases where ACF ex-
ists in the high priority class. Other parameters are kept th
same as in the previous experiment. Again the ideshE

is for R = 40%. The results are displayed in Figure 10.
The best high priority performance is achieved under the
most aggressive shifting?’*® = 90%. Note that after

the high priority class is favored by shifting low priority
jobs to the latter servers, the high priority class still-per
forms worse than the low priority class even under the best
Rl°* showing that shifting only is not sufficient to main-
tain the acceptable performance. In this case, admission
control may be the only way to improve performance. In-
deed, experiments that droppalll low priority requests
(see Appendix) show that performance improvements are
stillincremental. Itis the ACF structure of the high prigri
class that causes performance degradation.
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Figure 10. The average response time and
average slowdown of the low priority class
(a)-(b) and the high priority class (c)-(d) of
EQAL and DIFFEQAL by different R°“ under
correlated high priority arrivals. The low pri-
ority class has CV equal to 1.87 and the high
priority class has CV equal to 10.

By focusing on the effect of autocorrelation structure, we
now opt to shift the class with more autocorrelated arrivals

does not give the best average response time for the high.e., the high priority class. As shown in Figure 11(c), the
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Figure 11. The average response time and
average slowdown of the low priority class
(a)-(b) and the high priority class (c)-(d) of
EQAL and DIFFEQAL by different R"9" un-
der correlated high priority arrivals. The low
priority class has CV equal to 1.87 and the
high priority class has CV equal to 10.
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Figure 12. The CDFs of response time and
slowdown of the low priority class (a)-(b) and

the high priority class (c)-(d) of ~ADAPTLOAD,
EQAL and DIFFEQAL for different R9" un-
der correlated high priority arrivals. The low
priority class has CV equal to 1.87 and the
high priority class has CV equal to 10.

average response time of the high priority class is kept sta-
ble till R"9" = 40%, and then it increases quickly, as con-
firmed also by the cdf results shown in Figure 12. When
RMh = 20%, 24.7% of the high priority requests have
response times less than 20, while 9" = 40%, this
percentage increases to 51%. These two lines cross at r
guest timel50, where 68% of the high priority requests
have a response time less thiif.

Comparing Figures 10 and 11, we conclude that shift-
ing the high priority class gives better performance when

stronger ACF exists in the high priority class. Also note
that although the two classes still have different variatio

in their service times, this does not affect which class to
shift.

Observation 2 When the two classes have different ACF
structures, always shifting the one with a stronger ACF
yields better performance.

4 On-line service differentiation via load
balancing

In the previous section, we confirmed that by further un-
balancing load of low-priority jobs in a system that de-
ploys a size-aware load balancing policy, the performance
of the high-priority class improves. However, if the auto-
correlation structure of arrivals of the high priority cdas
stronger than the autocorrelation in arrivals of the low pri
ority class, then unbalancing the load of the high-priority
class is more benefici@bthfor overall and per-class per-
formance than simply unbalancing the load of the low-
priority class only. Consequently, autocorrelation isniide
tified as more important for performance than service time
variation. When the ACF structure of the arrivals of the
two classes of jobs is substantially different, identifyin
which class should be unbalanced for better performance
becomes critical. Here, we propose a new on-line ver-
sion of DIFFEQAL which does not assume aray priori
knowledge of the workload characteristics. Our prediction
is based on monitoring past arrival and service processes.
By observing past arrival and service characteristics, the
policy measures the autocorrelation of each priority strea
and then adjusts its configuration parameters, e.g., correc
tive factors for both classes, in an online fashion.

The policy updates its parameters for evéryobs served

by the clusterC' must be large enough to allow for effec-
tive ACF measurement but also small enough to allow for
quick adaptation to transient workload conditions. In the
experiments presented hetkis set to 100K. The policy
starts by setting corrective constarits R"*9" and R'*v,

to zero, i.e., there is no load shifting beyond the com-
puted ADAPTLOAD boundaries. After every' jobs, the
policy computes the ACF of each priority class using the
observed inter-arrival times of jobs within the batch. The
measured ACF is used as prediction for batch of the next
C jobs. Based on the predicted ACF per priority class, the
policy resets the corrective constarits R"*9" and R'*

o the appropriate pre-determined valuésft, shift'o?,

and shi ft"9" respectively. In our experiments we set
shift, shiftl*®, andshift"9" equal t040%, 40% and
20%, respectively. The following four scenarios of ACF in
the arrivals of the priority classes are considered:



1. neitherpriority class is autocorrelated:
e R—0
° Rhlgh —0
° Rlow - Shiftlmu
2. two priority classes haveimilar ACF:
o R «— shift
° hagh —0
° Rlow - Shiftlow

3. low priority class has stronger ACF:
e R — shift
° hagh —0
° Rlow - Shiftlow

4. high priority class has stronger ACF:
o R« shift
o ROV ,
° hagh - Shifthzgh

Corrective factorsp$, wherel < ¢ < N andc €

are computed every 10K requests, and the resetting of cor-
rective constant®, R"9" and R'™ for on-line DIFFE-

QAL is triggered everyC' = 100K requests. Additionally,

in this trace, the autocorrelation of each class stream al-
ternates as follows: in the first 2 million requests only the
low priority class is autocorrelated, then in the next 2 mil-
lion requests only the low priority class is autocorrelated
The on-line DFFEQAL policy alternatesR = shift,
Rlov = shiftlow and RM9" = 0 with R = shift,

Rlow = 0 andRM9" = shi fthioh,

We compare the original BaPTLOAD, EQAL with R =
40%, off-line DIFFEQAL with R"" = 40%, off-line DIF-
FEQAL with RM9h = 20%, and on-line DFFEQAL.
Note thatR is equal t040% for all DIFFEQAL experi-
ments. Figure 14(a) and (b) show the average response

{high,low}, are computed using the algorithm of Fig- time and the average slowdown, respectively, of the low
ure 5. Once all the corrective factors are computed, thepriority class, and Figure 14(c) and (d) show the aver-
per server and per class job size boundaries are calculategge response time and the average slowdown, respectively,
using Eq. (2) and (3). The online part of the load balancing of the high priority class. Consistent to the performance
algorithm is described in Figure 13. results shown in the previous sections, the effectiveness
of the original ADAPTLOAD quickly deteriorates under

1 initialize correlated traffic while BAL achieves significant perfor-
a. setR 0 mance improvement. AL achieves the fastest average
b. setR® « 0forc € {high,low} response time for both classes, but off-lineFEEQAL
2 every(C requests achieves the smallest average request slowdown for both
a. compute the ACF of each priority class classes. The on-line IBFEQAL balances the average re-
b. if neitherpriority class has ACF sponse time and the average request slowdown, i.e., both
thenR «— 0 are close to the optimal results.
elseR « shift
C. |f h|gh priority Cla.SS ha.S Stronger ACF \E 600 (a‘) Low‘priorit‘y resp‘onse ‘lime 2500 Fb) LOYV prio‘rity slo‘wdow‘n
then 1. Rl*¥ — 0 §
Il. Rhigh — ghj fthigh 5
else 1. RMgh 0 g
1. leu - Shiftlow
3. Computep, andps for 1 < ¢ < N using Figure 5 ~
4. Compute per server per class job size boundaries usi@
Eq. (2), Eq. (3) and thg;, p{ computed irB. p
5. goto2. g

Figure 13. Reseting of the corrective con-
stants R, R"9" and R'** in on-line fashion.

Figure 14. Average per-class response time

and request slowdown for the original
ADAPTLOAD, EQAL with R = 40%, off-line
DIFFEQAL with R = 40%, R = 0% and
Rlow = 40%, off-line DIFFEQAL with R
40%, Rlv = 0% and RM9" = 20%, and on-
line DIFFEQAL under mixed autocorrelated
traffic.

4.1 Performance of On-lineDIFFEQAL

In this section, we evaluate the effectiveness of on-line
DIFFEQAL. As in the previous sections, each experiment
is driven by the 10 million request trace consisting of 7
million low priority requests and 3 million high priority
requests. The CV of the service time of low priority class In Figure 15, the cdfs of per-class response time and
is setto 1.87 and the CV of the service time of the high pri- request slowdown are shown. These cdfs further con-
ority class is equal to 10, the boundaries ais#®TL OAD firm that the on-line DFFEQAL significantly improves
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the per-class performance for most requests, especially fo future service demands, and finally adjusts its parameters
small requests. Using on-linelEFEQAL, about65% of based on these predictions. Our simulation evaluation in-
high-priority requests have response time less @itsand dicates that under highly changing workloads the on-line
about50% of low-priority requests have less response time DIFFEQAL adapts its parameters well to incoming work-
than 50. Most importantly, the on-linelEFEQAL policy load and performs nearly as a static policy with the knowl-
achieves the best performance differentiation, with arclea edge of the workload.

performance bias toward the high-priority class.
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11



high priority class becomes perform worse than the low
priority class even under the bekt*. We also find that
even in some extreme cases, e.g., dropping all low priority
jobs in ADAPTLOAD and EQAL, the performance of high
priority class are still not good. In Figure 16 and Figure 17,
when all low priority jobs are dropped indAL, the opti-

mal average response time and slowdown of the high pri-
ority class are equal to 129 and 210, respectively. But the
optimal average response time and slowdown of the low
priority class in Figure 10 are equal to 97 and 109, respec-
tively. That is because of the bad performance effect under
a positive ACF structure [12]. showing that shifting only is
not sufficient to maintain the acceptable performance. In
this case, admission control may be the only way to im-
prove performance.

(b) High priority slowdown

response time (s)

Figure 16. The average response time (a)
and the average slowdown (b) of high pri-
ority class for ADAPTLOAD with dropping all
low priority class, EQAL with dropping all
low priority class, and off-line DIFFEQAL with
Rlov = 80%.
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Figure 17. The CDFs of response time (a)
and slowdown (b) of high priority class for
ADAPTLOAD with dropping all low priority
class, EQAL with dropping all low priority
class, and off-ine DIFFEQAL with Rl =
80%.
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