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ABSTRACT
Burstiness and temporal dependence in service processes are often
found in multi-tier architectures and storage devices and must be
captured accurately in capacity planning models as these features
are responsible of significant performance degradations. However,
existing models and approximations for networks of first-come first-
served (FCFS) queues with general independent (GI) serviceare
unable to predict performance of systems with temporal depen-
dence in workloads.

To overcome this difficulty, we define and study a class of closed
queueing networks where service times are represented by Marko-
vian Arrival Processes (MAPs), a class of point processes that can
model general distributions, but also temporal dependent features
such as burstiness in service times. We call these models MAP
queueing networks. We introduce provable upper and lower bounds
for arbitrary performance indexes (e.g., throughput, response time,
utilization) that we call Linear Reduction (LR) bounds. Numeri-
cal experiments indicate that LR bounds achieve a mean accuracy
error of2%. The result promotes LR bounds as a versatile and re-
liable bounding methodology of the performance of modern com-
puter systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Algorithms, Performance, Theory

Keywords
Queueing networks, closed systems, bound analysis, burstiness,
nonrenewal service, temporal dependence, Markovian arrival pro-
cesses

1. INTRODUCTION
Capacity planning of modern computer systems requires to ac-

count for the presence of nonrenewal features in workloads,such as
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short-range or long-range temporal dependence which significantly
affect performance [23–25, 31, 33]. A typical example of temporal
dependence is workload burstiness, where the jobs processed by
the system are not independent, e.g., the arrival of a short job is
much more likely to be followed by the arrival of another short
job (and vice versa for long jobs). Time-varying workloads of this
type are naturally modeled as nonrenewal workloads with temporal
dependence among consecutive requests.

Because of the complexity of their analysis, only small nonre-
newal models based on one or two queues have been considered in
the literature, mostly in matrix analytic methods research[28]. We
address the current lack of more general modeling techniques for
systems with nonrenewal workloads by introducing and analyzing a
new class of closed queueing networks which can account for tem-
poral dependence in their service processes. Our analysis enables
for the first time the analytical performance evaluation of complex
environments with nonrenewal workloads and immediately finds
application in the capacity planning of multi-tier architectures and
storage systems.

Capacity planning based on product-form queueing networks[5]
has been extensively used in the past, since these models enjoy sim-
ple solution formulas and low computational cost of exact and ap-
proximate algorithms [10, 22]. Queueing networks with general
independent (GI) service [8, 16, 29, 32] have been proposed as a
solution, but although much more accurate than product-form net-
works, they remain insufficient for robust performance predictions
if the service process is nonrenewal. That is, because they com-
pletely ignore temporal dependence between service times,they
cannotbe used to predict performance correctly in systems with
nonrenewal workloads.

This paper overcomes the limitations of existing modeling tech-
niques by providing a bound analysis methodology for queueing
networks with nonrenewal workloads. We study a class of closed
queueing networks where service times are modeled by Markovian
Arrival Processes (MAPs). We call these modelsMAP queueing
networks. MAPs are a family of point processes which can easily
model general distributions and nonrenewal features such as auto-
correlation in service times [28]. Efficient fitting schemesfor MAP
parameterization from measurements are available, e.g., [1,11,20],
and the resulting MAPs can approximate effectively long-range de-
pendence [1].

Because of the well-known difficulty of extending exact solution
formulas outside the product-form case, we study bound analysis
techniques for MAP networks. With the exception of the general
ABA bounds [27] which provide good estimates only for very low
or very high population values, no bounding techniques for non-
renewal networks exist and this is due to the lack of exact results
which are usually needed to prove the bounding property. In this



paper, we show that it is possible to obtain provable bounds on per-
formance indexes also in non-product-form models.

Our nonrenewal bounds derive from the analysis of the Markov
process underlying the MAP queueing network. Because of the
state space explosion, its equilibrium behavior cannot be deter-
mined exactly, but we argue that it can still be bounded accurately
by describing the system with “reduced” state spaces (whichwe
call marginal state spaces). This state space transformation cap-
tures the behavior of the network conditioned on a given queue
being busy or idle. The number of states in these marginal spaces
grows linearly with the number of jobs in the network; thus, the
proposed approach remains computationally tractable alsoon mod-
els with large populations. We deriveexactbalance equations for
the equilibrium behavior of the reduced state spaces and illustrate
how these formulas can be combined with linear programming [6,
26] for the computation of bounds on mean value indexes. Because
the number of reduced states grows linearly with the number of
jobs in the network, we call these bounds Linear Reduction (LR)
bounds.

The main contribution of this paper is to present a new method-
ology for the efficient analytic solution of queueing networks with
nonrenewal workloads. This methodology automatically applies
to queueing networks with renewal workloads as well. The stated
contributions and outline of this work are as follows.

• We provide evidence that existing GI approximations and
decomposition methods show unacceptably large errors on
queueing network models with temporal dependence in the
service process (Section 2).

• We define MAP queueing networks as a generalization of ex-
isting queueing networks that can model nonrenewal work-
loads (Section 3).

• We develop the LR bounds on performance indexes for non-
renewal MAP queueing networks that are based on a new
marginal state space reduction (Sections 4 and 5).

• We present an extensive set of representative case studies
showing that the LR bounds capture very well mean perfor-
mance indexes such as response times or utilizations (Sec-
tion 6).

We stress that MAP queueing networks are a superset of exist-
ing non-product-form networks with GI workloads. Therefore, the
presented analytic methodology has a wide applicability. The LR
bounds are corroborated by extensive numerical validation, where
we show that they achieve a mean accuracy error of approximately
2% on a set of10, 000 random models, promoting MAP queue-
ing networks as versatile models of modern computer systems. We
conclude the paper by outlining model generalizations and exten-
sions in Section 7. The AMPL specification [18] of the LR bounds
is available athttp://www.cs.wm.edu/MAPQN/.

2. PREVIOUS WORK
In Section 2.1, we review previous work on non-product-form

queueing network models with FCFS queues and GI service [7].
These models are the renewal specialization of the MAP queue-
ing networks introduced in Section 3. In Section 2.2, we evaluate
the applicability of approximation algorithms for models with GI
service to models with nonrenewal service. Due to limited space,
we point the reader to [7,13,22] for general background on queue-
ing network modeling and Markov processes. Throughout thispa-
per we assume that service time distributions are modeled bythe
method of phases [7,14].

2.1 Analysis of Models with Renewal Service
Closed networks of FCFS queues enjoy a product-form solution

if all service times are exponentially distributed [5]. If one or more
servers have renewal (also called general independent (GI)) service,
such as hyperexponential or Coxian [14], the product-form theory
does not apply and approximate methods are used for evaluating
performance [7].

An approximation based on Markov renewal theory is developed
by Reiser in [29]. For each queue, the MVA arrival theorem [30]
is generalized to include the coefficient of variation (CV) of the GI
service process. Experiments in [8, 16] show that this approach,
although simple, is prone to large approximation errors.

In [32], Zahorjan et al. obtain an approximate mean value anal-
ysis (AMVA) by decomposition-aggregation [13]. The underlying
Markov process of the network is decomposed according to the
active phases at the GI servers. Each partition is evaluatedin iso-
lation by Mean Value Analysis [30] and the results are weighted
to approximate the GI network. Validation results of the AMVA
decomposition-aggregation show good accuracy.

In [16], Eager et al. improve the results in [29] and [32]. The
response time at the GI queue used in Reiser’s method is replaced
by a more effective interpolation which also accounts for the re-
sponse time at the other queues. [16] also improves the decompo-
sition method in [32] and makes it compatible with the iterative
AMVA framework to achieve lower computational costs on net-
works with several queues.

Marie’s method, the diffusion approximation (DA) method, and
the maximum entropy method (MEM) assume a product-form for
the equilibrium state probabilities of the GI network and approxi-
mate the model accordingly [7]. DA and MEM rely on formulas
involving only the mean and the coefficient of variation; Marie’s
method is more general and uses specialized relations for Coxian
distributions. Marie’s method provides good accuracy in models
with GI servers although its convergence properties have not been
assessed [8]; DA and MEM are typically less accurate.

Finally, the Chandy-Herzog-Woo (CHW) method [12, 22] re-
places an arbitrary subsystem by a flow equivalent server which
preserves the mean throughput of the original subsystem in each
feasible state. If the subsystem includes GI servers, CHW isknown
to be less accurate than Marie’s method [8].

2.2 Applicability to Nonrenewal Service
To the best of our knowledge, no results are available for ana-

lyzing closed networks with nonrenewal service, see [28] for re-
lated work in single queue systems. In this section, we establish
the applicability of the methods described in Section 2.1 toclosed
networks with nonrenewal service.

We consider identically distributed service processes which are
characterized by temporal dependence. The temporal dependence
of a nonrenewal processes can be approximately modeled by the
autocorrelation functionρk which captures the similarity in mag-
nitude of samples spaced byk lags [14]. As an example, a service
process can have hyperexponentially distributed samples without
being necessarily renewal; that is, the usual terminology “hyper-
exponential service” implicitly refers to the renewal version of the
process, but in general nonrenewal processes with hyperexponen-
tial distribution can be defined. These are immediately obtained by
changing the order of the samples without altering their distribu-
tion, which results in temporal dependence.

A simple case of nonrenewal closed network is shown in Fig-
ure 1. We use this simple model to evaluate the applicabilityof
methods for GI queueing networks to models with nonrenewal ser-
vice. Queue1 is exponential with rateµ1 = 1; queue2 has MAP(2)
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Figure 1: Example model with nonrenewal service.The service
is an exponential process with rateµ1 at queue1, at queue2 is a possibly
nonrenewal two-phase Markovian Arrival Process (MAP(2)) [28].

service [17] which can exhibit autocorrelation in service time sam-
ples and thus be a nonrenewal process. In a MAP(2), the lag-k
autocorrelationρk geometrically decays to zero with rate1 γ2 ac-
cording to the relationρk = γk

2

`

1 − 1/CV2
´

/2, [11]. In this
example we chooseγ2 = 0.75, the MAP(2) is33% faster than the
exponential queue (i.e., mean rateµ2 = 1.33), hasCV = 5, and
skewness15; the process is obtained by the moment and autocorre-
lation matching algorithm in [11]. The results discussed below are
qualitatively similar for other models.

Using the model in Figure 1, we have observed that several of
the methods considered in Section 2.1 cannot be applied to models
with nonrenewal workloads; we distinguish two groups:

Non-applicable methods. This group includes Reiser’s approx-
imation, the AMVA methods in [16,32], Marie’s method, DA, and
MEM. Intuitively, these methods cannot apply for the following
reasons. For the considered example, all these methods depend
onlyon the mean, theCV, and the probability of starting service in
one of the two phases. For instance, Marie’s method applies cor-
rections based on the two-phase Coxian renewal process model that
is completely specified by these three parameters [7]. The informa-
tion about the order of sampling, that is fundamental to nonrenewal
service, is given only by the underlying Markov process which is
not directly evaluated by these methods. Since these techniques
ignore the order of sampling of the service times, they cannot ac-
count for the temporal dependence and therefore produce identical
results ifρk ≡ 0, k ≥ 1, or in the nonrenewal caseρk 6= 0, for
somek ≥ 1. Yet nonrenewal models can have performance that is
extremely different from their renewal counterpart [24, 25]; there-
fore these methods are unfit for the analysis of nonrenewal models.

Applicable methods. Decomposition-aggregation [13] can in-
stead be used for the analysis of models with nonrenewal service.
Since this method requires to evaluate all or part of the underly-
ing Markov process, it is not limited to statistical momentsof the
service time distribution, but can account for changes in the phase
transition rates of the MAP which result in autocorrelated samples.
Decomposition-aggregation can be easily applied to the underlying
process by aggregating states with identical active MAP phases;
methods similar to those in [16, 32] can be defined based on this
partitioning.

However, we have found that decomposition-aggregation canfre-
quently exhibit severe errors if used in networks with nonrenewal
service. Figure 2 show the predicted utilization of decomposition
(dashed line) versus the actual utilization (solid line) for the bottle-
neck queue1 in Figure 1. The actual utilization is obtained by solv-
ing the underlying Markov process by global balance, therefore it
is exact. The ABA bounds, which apply to general models [22,27],

1The valueγ2 is in a MAP(2) the second largest eigenvalue of the Markov
chain embedded at arrival instants [11].
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Figure 2: Exact global balance solution of the nonrenewal
model in Figure 1 compared with the ABA bounds [22,27] and
the decomposition-aggregation approximation [13]. Although
accurate in renewal models, in nonrenewal models the decomposition is
often unable to capture the trend of performance indexes such as the utiliza-
tion shown here. The saturation of the approximation is due to the saturation
of the underlying product-form models used in the decomposition. Also the
ABA bounds, which apply to general networks, are inaccurate.

are also depicted. We recall that other classes of bounds such as
the popular balanced job bounds (BJB) apply only to product-form
networks [22]. Although decomposition is very accurate in the
renewal case, its application to the nonrenewal case results in in-
creasingly large approximation errors for larger populations. Cases
similar to the one plotted in Figure 2 are easy to find for different
values of the model parameters. The low quality of the results in
the nonrenewal case is due to the quick saturation of the product-
form models used in these approximations, which reach maximum
utilization for lower loads than the nonrenewal model.

The observations of this section indicate that the analysisof non-
renewal workloads cannot be performed accurately with existing
techniques for models with GI service times. Due to the largeap-
proximation uncertainty and the lack of an exact product-form so-
lution, bounding techniques are desirable. In order to address this
limitation, in the following sections we introduce a bound analysis
methodology for nonrenewal networks.

3. MAP QUEUEING NETWORKS
We introduce the class of MAP queueing networks supporting

nonrenewal service which is studied in the rest of the paper.A
summary of the main notation is given in Table 1.

3.1 Model Definition
We consider a closed network with single-server queues, which

serve jobs according to a MAP service time process and under
work-conserving FCFS scheduling. The service process is inde-
pendent of both the job allocation across the queues and the state
of other service processes. The network is composed byM queues
and populated byN statistically indistinguishable jobs (single class
model), which proceed through the queues according to a state-
independent routing scheme. That is, upon departure from a server
i, a job joins queuej with fixed probabilitypi,j . Without loss of
generality, the average visit ratio atj with respect to the number of
visits at queue1 is Vj , thusV1 = 1.

The service process at queuei is modeled by a MAP withKi ≥
1 phases. General service can be approximated accurately by a
MAP [4]. If Ki = 1, then the MAP reduces to an exponen-
tial distribution, otherwise it generates service time samples that



Bk
j states(~n,~k) wherej is busy in phasek

Ck
j (i) mean queue-length of queuei within Bk

j

~ei vector of zeros with a one in thei-th position
h, k, u, k∗ phase indexes

i, j, m queue indexes
Ik

j states(~n,~k) wherej is idle in phasek
Jk

j (i, h) utilization of queuei in phaseh within Bk
j ∪ Ik

j

ki active phase at queuei in ~k
Ki number of phases in queuei’s MAP

Kmax maximumKi, 1 ≤ i ≤ M
~k phase vector, i.e., active phases
M number of queues in the network
µi mean service rate of queuei

µk,h
i completion rate of queuei, phasek → h
N number of jobs in the network
ni number of jobs at queuei in ~n
~n population vector, i.e., job allocation

pi,j routing prob. from queuei to queuej
π(~n,~k) prob. of state(~n,~k)

πk
j (ni, h) prob. ofni jobs in queuei in phaseh within Bk

j

π̄k
j (ni, h) prob. ofni jobs ini in phaseh within Ik

j

qk,h
i,j rate(~n,~k) → (~n − ~ei + ~ej ,~k

′), ki = k, k′
i = h

Qi mean queue-length at queuei
Qk

i mean queue-length at queuei in phasek
Ui mean utilization of queuei
Uk

i mean utilization of queuei in phasek
vk,h

i background trans. rate of queuei, phasek → h
Vi mean visit ratio at queuei (V1 = 1)
X mean throughput (measured at queuei = 1)

Table 1: Summary of main notation

are phase-type (PH) distributed [28]. That is, hyperexponential,
hypoexponential, Erlang, and Coxian are all allowed service time
distributions; nonrenewal service is also supported, e.g., Markov
Modulated Poisson Process (MMPP), Interrupted Poisson Process
(IPP) [17]. It should be nevertheless remarked that MAP fitting can
be still a challenging problem if the data has an irregular temporal
dependence structure, see [20] for a review. We point to [11]for a
new technique, called Kronecker Product Composition (KPC), that
can provide MAP fitting of higher-order moments and temporalde-
pendence structure of arbitrary processes.

The transition from phasek to phaseh for the MAP service
process of queuei has rateφk,h

i and produces a service comple-
tion with probability tk,h

i ; if h = k then tk,k
i = 1 according to

the MAP definition. We defineµk,h
i = tk,h

i φk,h
i to be the rate

of job completions in phasek that leave the MAP in phaseh;
vk,h

i = (1 − tk,h
i )φk,h

i , k 6= h is the complementary rate of tran-
sitions not associated with job completions that only change the
MAP active phase (background transitions). In this representation
of queuei’s MAP, µk,h

i is the element in rowk and columnh of
theD1 matrix;vk,h

i is in rowk and columnh of D0. We point the
reader to [20] and references therein for background on MAPsand
MAP fitting.

3.2 Underlying Markov Process
General MAP service requires to maintain information at the

process level on the current service phase at each queue. A feasible
network state in the queueing network underlying Markov process
is a tuple(~n,~k), where~n = (n1, n2, . . . , nM ), 0 ≤ ni ≤ N ,

µ2

p1,3

p1,2

p1,1

µ1

p    =1
2,1

p    =1
3,1

Queue 1

M

M

MAP

Queue 3

Queue 2

Figure 3: Example network composed by two exponential
queues and a MAP queue. In the case where the MAP is a renewal
two-phase hyperexponential process, this reduces to Balbo’s model consid-
ered in the validation of approximations for GI service [8].

PM

i=1 ni = N , describes the number of jobs in each queue, and
~k = (k1, k2, . . . , kM ), 1 ≤ ki ≤ Ki, specifies the active phase for
each service process. According to this space, the Markov process
transitions have rateqk,h

i,j from state(~n,~k) to (~n − ~ei + ~ej ,~k
′),

ki = k, k′
i = h, where~et is a vector of zeros with a one in thet-th

position; the rate is computed as

qk,h
i,j =

(

pi,jµ
k,h
i , i 6= j,

vk,h
i + pi,iµ

k,h
i , i = j and k 6= h.

(1)

In (1),qk,h
i,j is for i 6= j the rate of departures fromi to j triggering a

phase transition ini’s service process from phasek to h; otherwise
it accounts for the background transitionsvk,h

i and the rate of the
self-looping jobspi,iµ

k,h
i . Note that the case fori = j andk = h

is not explicitly accounted since it corresponds to the diagonal of
the infinitesimal generator of the Markov process. This diagonal is
computed to make each row sum to zero.

The size of the infinitesimal generator corresponds to the car-
dinality of the related global balance equations and is of the or-
der of

`

N+M−1
N

´`

Kmax+M−1
Kmax

´

, whereKmax is the maximum of
Ki, 1 ≤ i ≤ M ; this size quickly becomes computationally pro-
hibitive.

As a summarizing example, the MAP network in Figure 3 with
routing probabilitiesp1,1, p1,2, p1,3 = 1 − p1,1 − p1,2 at the first
queue andp2,1 = 1, p3,1 = 1, at the remaining queues has un-
derlying Markov process as shown in Figure 4. The state space
description is given in the caption. Forp1,1 = 0.1 andp1,2 = 0.7
the network reduces to Balbo’s model used in the numerical ex-
periments in [8]; throughout the paper we illustrate some ofthe
proposed techniques using this model.

4. STATE SPACE REDUCTION
General approximation techniques for non-product-form mod-

els, such as decomposition, are reviewed in Section 2. Theseap-
proaches often start from the idea of applying a state space trans-
formation to reduce model complexity. For instance, approximate
lumping is used in decomposition to partition the state space into
macrostates that can be evaluated in isolation [7].

However, existing state space reductions introduce approxima-
tion errors that cannot be bounded in sign or in magnitude. This
leaves a high degree of uncertainty on the final approximation accu-
racy. In this section we develop a new family of state space reduc-
tions that doesnot introduce any degree of approximation, while
still simplifies model analysis. The proposed reduction is there-
fore exact, but because of several differences from exact lumping,
the transformation cannot be reduced to lumping or to any method
presented in previous work.
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Figure 4: Underlying Markov process of the network in Fig-
ure 3 in the simple case when the MAP is a MMPP(2) process;
the job population is N = 2. Two queues are exponential with rates
µ1 ≡ µ1,1

1 andµ2 ≡ µ1,1
2 , respectively; the third queue is a MAP with

K3 = 2 phases havingµk,h
3 = 0 for k 6= h, that is a MMPP(2) process.

(002, 1) indicates that the exponential queues are idle and the MAP queue
has two jobs and is in phase1; in (110, 2), the phase2 is the phase left
active by the last served job.

4.1 Busy Condition Reduction
We introduce a state space reduction that scales linearly with the

population size. We use the term “busy condition" to identify the
set of stateswhere a given queue is busy in a certain phase, which
is intuitively similar to a conditional state space. For each model
we generate the followingO(K2

maxM2) reduced state spaces with
dimensionO(N) as follows.

DEFINITION 1 (MARGINAL STATE SPACES). Let the busy con-
dition subspaceBk

j = {(~n′,~k′) : n′
j ≥ 1, k′

j = k} be the set of
states of the MAP network where queuej is busy and in phasek.
Themarginal state spaceof queuei in phaseh withinBk

j is the state
space describing the observation withinBk

j of queuei’s queue-
length while its phase ish, 1 ≤ h ≤ Ki, (the casesi = j and
h = k are both considered).

Since in a non-product-form network the state of a queue implicitly
depends also on the activity of the rest of the network, the marginal
state spaces allow to explore in a compact way the mutual rela-
tions between any two queuesi andj. A probabilistic definition
of marginal state space is given later in Section 4.1.1. Two ex-
ample marginal spaces for the model in Figure 4 obtained for the
busy condition subspaceB1

3 are shown in Figure 5. Figures 5(a)-
(b) are obtained by observing the exponential queuei = 2 in its
only phaseh = 1 within B1

3 . Since queue3 is always busy in
B1

3 , it has queue-lengthn3 ≥ 1 and the queue-length of queue2
can only ben2 = 0 or n2 = 1. Note that the rate of transitions
from n2 = 1 to n2 = 0 depends only on queue2’s service rateµ2;
the rate fromn2 = 0 to n2 = 1 depends instead on job comple-
tions at the other queues and in the original state space is equal to
π(101, 1)p1,2µ1 which is unknown2 without the equilibrium prob-
ability π(101, 1). Figure 5(b) similarly describes the queue-lengths
of queue3 in phase1 within B1

3 , which can be onlyn3 = 1 or
n3 = 2 since queue3 is busy. The unknown transition rate is in
this caseπ(101, 1)p1,3µ1.

Figure 5 clearly shows that our approach differs from an exact
lumping or a decomposition-aggregation for at least three reasons:
the latter techniques are applied to the entire state space and not
to busy subspaces only, the aggregates are always non-overlapping

2We henceforth assume that global balance solutions for MAP network is
prohibitively expensive, therefore the equilibrium probabilities are all un-
known.
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Figure 5: Example of marginal state spaces for the model in
Figure 4. Figures (a) and (c) show the observation of either queue2 or
queue3 in phase1 during the busy subspaceB1

3 of queue3 in phase1.
The dashed ovals indicate states in the original state spacein Figure 4 that
are implicitly accounted for in the marginal state spaces for queue2 and for
queue3 in phase1 depicted in figure (b) and (d), respectively. Note that
the reduction is not a lumping or a decomposition-aggregation since we
are completely ignoring the transition from/to the busy condition subspace
that are present in Figure 4; also some rates would require the equilibrium
probability of the state(101, 1) in Figure 4 which is unknown, and therefore
the marginal state space cannot be solved in isolation.

(two busy subspaces instead can overlap, e.g.,B3,1 andB2,1), and
the aggregates result in a reduced state space whereall rates are
known so that it is later analyzed by other techniques (e.g.,decom-
position solves each macrostate in isolation by global balance or
mean value analysis).

The main idea motivating the busy condition reduction is as fol-
lows. Even if some rates are unknown, we can obtain balance
equations both for the equilibrium inside each marginal space or
between the probabilities of multiple marginal spaces. We show in
Section 5 how the busy condition reduction can be used to define
the LR performance bounds.

4.1.1 Marginal Probabilities
The marginal probabilityπk

j (ni, h) of havingni jobs in queuei
during phaseh, 1 ≤ h ≤ Ki, while queuej is busy in phasek,
1 ≤ k ≤ Kj , completely characterizes the marginal state spaces.
Each marginal probability can be computed as

πk
j (ni, h) =

P

{(~n′,~k′)∈Bk
j :n′

i=ni,k′

i=h} π(~n′,~k′),

whereBk
j is the busy condition subspace of queuej in phasek. By

definition, it isπk
j (ni = N, h) ≡ 0 for i 6= j, πk

j (nj = 0, k) ≡ 0,
πk

j (nj , h) ≡ 0 for h 6= k, andπk
j (nj , k) ≥

PKi

h=1 πh
i (nj , k)

for j 6= i, nj ≥ 1. The last inequality follows immediately by
observing thatπk

j (nj , k) accounts for all states in
PKi

h=1 πh
i (nj , k)

plus the states withinBk
j wherei is idle.

Because any event in the underlying Markov process involvesat
most two-phases and two queues, that is, source and destination
queues for job departures with a possible phase transition at the



source queue, the marginal probabilitiesπk
j (ni, h) still capture all

departures and phase changes in the model. Therefore, the knowl-
edge of allπk

j (ni, h)’s is sufficient to compute all mean perfor-
mance indexes of interest in the original state space, including: the
utilization of queuei, i.e., Ui =

PKi

k=1 Uk
i , where we denote by

Uk
i the utilization ofi in phasek, that is

Uk
i =

PN

nt=0

PKt

h=1 πk
i (nt, h) (2)

wheret, 1 ≤ t ≤ M , is an arbitrary queue since the summation
is always equal to the probability of the busy subspaceBk

i ; the
throughput which by the Utilization Law [22] is

X =

K1
X

k=1

K1
X

h=1

M
X

j=1

qk,h
1,j Uk

1 = U1µ1/V1,

that is the mean rate of jobs flowing out of queue1 assumed as
reference for network completions and whereµ1 denotes the mean
rate of the MAP service process at queue1; the mean queue-length
of queuei is Qi =

PKi

k=1 Qk
i , with

Qk
i =

PN

ni=1 ni πk
i (ni, k) (3)

being the mean queue-length ofi in phasek. Note that these in-
dexes are also sufficient to compute response and residence times
by Little’s Law, see [22]. In particular, the response time is R =
N/X.

4.1.2 Single Busy Subspace of a Single Queue
We characterize the equilibrium reached at steady state by marginal

spaces. We focus on the marginal state spaces which describea sin-
gle busy subspaceBk

j and use the population constraint
PM

i=1 ni =
N . Although an obvious condition, it is impossible to impose it if
the state space is transformed in such a way to hide some of the
ni’s, as in the marginal state spaces. We therefore define a new
population constraint for the busy condition subspace.

THEOREM 1. Define

Ck
j (i) =

PN

ni=1

PKi

h=1 niπ
k
j (ni, h), (4)

as the mean queue-length ofi in the busy condition subspaceBk
j ,

thusCk
j (j) = Qk

j . Then withinBk
j theCk

j (i) sum toNUk
j , i.e.,

PM

i=1 Ck
j (i) = NUk

j , (5)

1 ≤ k ≤ Kj .

PROOF. Using (2) and the population constraint we have

NUk
j =

PM

i=1 ni

PN

nt=0

PKt

h=1 πk
j (nt, h)

and choosing the arbitrary queuet equal toi

NUk
j =

PM

i=1

PN

ni=1

PKi

h=1 niπ
k
j (ni, h) =

PM

i=1 Ck
j (i).

4.1.3 Multiple Busy Subspaces of a Single Queue
We obtain a constraint for multiple busy subspaces which re-

sembles the global balance equations of the MAP service process
considered in isolation.

THEOREM 2. The utilizations of queuei in its Ki phases are in
equilibrium, i.e.,

PM

j=1

Ki
P

h=1
h6=k if j=i

qk,h
i,j Uk

i =
PM

j=1

Ki
P

h=1
h6=k if j=i

qh,k
i,j Uh

i , (6)

for all 1 ≤ i ≤ M , 1 ≤ k ≤ Ki.

PROOF. (Sketch of the proof, see [9] for a complete derivation.)
Consider the cut separating the group of statesGi

k where queuei
is in phasek from the complementary set of statesCi

k where queue
i is in phaseh 6= k. The outgoing probability flux fromGi

k is the
left hand side of (6) and must be balanced at steady state by an
equal incoming flow generated by the phase change transitions in
Ci

k. This probability flux is exactly the right hand side of (6), which
completes the proof.

The derived equation imposes that the MAP in isolation and the
MAP observed in the busy subspaces of queuei have the same
stochastic properties, which is expected if the service process of
queuei is independent of the job allocation across the network and
of the service processes of the other queues.

4.1.4 Marginal Balance Conditions
Compared to the previous balances which only involve means

such as queue-lengths or utilizations, the balances described in this
section, calledmarginal balances, are more informative as they re-
late individual marginal probabilities.

We have found that there exists a form of partial balance between
marginal state spaces, although the class of models considered in
this paper is non-product-form. This new class of balances,called
marginal balances, shows that MAP service imposes an equilib-
rium between the departure and the arrival process of queuei in
groups of states belonging to different busy subspaces. Marginal
balance derives from global balance, but characterizes only the set
of marginal queue-length probabilities which makes it always com-
putationally tractable. The balance is expressed as follows.

THEOREM 3 (MARGINAL BALANCE ). The arrival rate at queue
i when its queue-length isni jobs,1 ≤ ni ≤ N − 1, is balanced
by the rate of departures when the queue-length isni + 1, that is,

PM
j=1
j 6=i

PKj

k=1

PKj

h=1

PKi

u=1 qk,h
j,i πk

j (ni, u)

=
PM

j=1
j 6=i

PKi

k=1

PKi

h=1 qk,h
i,j πk

i (ni + 1, k), (7)

for all 1 ≤ i ≤ M . In the caseni = 0 the marginal balance spe-
cializes to the more informative relation

PM
j=1
j 6=i

PKj

k=1

PKj

h=1 qk,h
j,i πk

j (ni = 0, u)

=
PM

j=1
j 6=i

PKi

k=1 qk,u
i,j πk

i (ni = 1, k), (8)

which holds for each phaseu, 1 ≤ u ≤ Ki, with1 ≤ i ≤ M .

PROOF. (Sketch of the proof, see [9] for a complete derivation.)
The statement is a consequence of the state partitioning that sep-
arates the states wherei has no more thanni enqueued jobs from
the states where the queue-length is at leastni + 1 jobs. Their ex-
changed probability flux must be balanced at steady state. The flux
from the partition for statesni to the partition for stateni + 1 is
equal to the rate of a job completed anywhere in the network being
routed to queuei. This is the left hand side of (7), which also ac-
counts for all possible phases of the job’s departing queuej and the
destination queuei. The opposite flux fromni + 1 to ni has rate
equal to the right hand side of (7), which is the set of all possible
departures fromi that are not routed toi itself.

Following the proof of the marginal balance conditions, we ob-
tain an additional balance between marginal probabilities.



COROLLARY 1.
Letk∗, 1 ≤ k∗ ≤ Ki, be a phase of queuei; the following balance
holds for each queue-lengthni, 1 ≤ ni ≤ N − 2,

PM
j=1
j 6=i

PKj

k=1

PKj

h=1(q
k,h
j,i πk

j (ni + 1, k∗)

+
PKi

u=1
u 6=k∗

qk,h
i,j πk

j (ni, u)) +
PKi

k=1
k 6=k∗

qk∗,k
i,i πk∗

i (ni + 1, k∗)

=
PM

j=1
j 6=i

(qk∗,k∗

i,j πk∗

i (ni + 2, k∗) +
PKi

k=1
k 6=k∗

(qk,k
i,j πk

i (ni + 1, k)

+ qk,k∗

i,j πk
i (ni + 2, k) +

PKi
h=1
h6=k

qk,h
i,j πk

i (ni + 1, k)))

+
PKi

k=1
k 6=k∗

qk,k∗

i,i πk
i (ni + 1, k), (9)

for all 1 ≤ i ≤ M . For ni = N − 1 the balance reduces to

PKi

k=1
k 6=k∗

qk∗,k
i,i πk∗

i (ni + 1, k∗)

+
PM

j=1
j 6=i

PKj

k=1

PKj

h=1

PKi
u=1

u 6=k∗

qk,h
i,j πk

j (ni, u)

=
PM

j=1
j 6=i

PKi
k=1

k 6=k∗

(qk,k
i,j πk

i (ni + 1, k)+
PKi

h=1
h6=k

qk,h
i,j πk

i (ni +1, k))

+
PKi

k=1
k 6=k∗

qk,k∗

i,i πk
i (ni + 1, k), (10)

for all 1 ≤ i ≤ M .

PROOF. The proof follows similarly to the proof of Theorem
3 by now considering the set of states wherei has no more than
ni enqueued jobs except for phasek∗, 1 ≤ k∗ ≤ Ki, where its
population can be no more thanni + 1. The theorem follows im-
posing the equilibrium at the interface with the set of states where
the marginal queue-length is at leastni + 1 and in phasek 6= k∗

and at leastni + 2 and in phasek∗.

4.2 Idle Condition Reduction
This state space reduction can be regarded as the complementary

of the busy condition reduction described in the previous section.
We consider the idle condition subspaceIk

j where queuej is empty
and the last served job has left the MAP process atj in phasek,
1 ≤ k ≤ Kj . We obtain a set ofO(KmaxM2) reduced state
spaces with dimensionO(N) by describing the evolution within
Ik

j of the queue-length ofi during phaseh, 1 ≤ h ≤ Ki. The
related marginal probability function is

π̄k
j (ni, h) =

P

(~n′,~k′)∈S̄k
j (ni,h) π(~n′,~k′), (11)

where the marginal space is̄Sk
j (ni, h) = {(~n′,~k′) ∈ Ik

j : n′
i =

ni, k
′
i = h}, the idle subspace isIk

j = {(~n,~k) : nj = 0, kj = k}.
Further, by the given definitions,̄πk

j (nj , h) ≡ 0 if nj ≥ 1 or
h 6= k and similarly to the busy condition reductionπk

j (nj , k) ≥
PKi

h=1 π̄h
i (nj , k) for j 6= i, nj ≥ 1. Note that from the comple-

mentarity ofπk
j (ni, h) and π̄k

j (ni, h), the total state space proba-
bility is immediately obtained as

PKi

h=1

PN

ni=0(π
k
j (ni, h) + π̄k

j (ni, h)) = 1, (12)

for all 1 ≤ i ≤ M . Moreover, let the utilization of queuei in phase
h within Bk

j ∪ Ik
j be

Jk
j (i, h) =

PN

ni=1(π
k
j (ni, h) + π̄k

j (ni, h)). (13)

where by definition the second term in the summation may be rewrit-
ten as

PN

ni=1 π̄k
j (ni, h) = πh

i (nj = 0, k), (14)

which similarly to (12) relates the busy and idle reductions. Bal-
ances similar to those given for the busy condition reduction can
be derived for the idle time reduction. For instance, following the
proof of (5) one immediately obtains the population constraint

PM

i=1 C̄k
j (i) = Nπ̄k

j (nj = 0, k), (15)

whereπ̄k
j (nj = 0, k) is the probability ofIk

j and

C̄k
j (i) =

PN

ni=1

PKi

h=1 niπ̄
k
j (ni, h) (16)

is the mean queue-length ofi in phaseh within Ik
j .

The balance equations obtained for the idle reduction are often
redundant with the balances of the busy ones. Therefore, we are
not interested in developing a comprehensive characterization of
this reduction. We point out two relations deriving from manipula-
tions of the global balance equations which characterizeBk

j ∪ Ik
j

wherej is in phasek; these formulas cannot be expressed within
the probability space of the busy subspace only.

THEOREM 4. The sum of mean queue-lengths during the sub-
spaceBk

i ∪ Ik
i satisfies

PM

t=1(C
j
k(t) + C̄j

k(t)) ≥ N
PKi

h=1 Jk
j (i, h), (17)

for all 1 ≤ i ≤ M , 1 ≤ j ≤ M , 1 ≤ k ≤ Kj .

PROOF. Letting
P

Bk
j
∪Ik

j
≡

P

(~n,~k)∈Bk
j
∪Ik

j
, we have

N
P

Bk
j
∪Ik

j
π(~n,~k) =

PM

t=1

P

Bk
j
∪Ik

j
ntπ(~n,~k)

=
PM

t=1(
P

Bk
j

ntπ(~n,~k) +
P

Ik
j

ntπ(~n,~k))

=
PM

t=1(C
j
k(t) + C̄j

k(t)),

where the last passage follows by definition ofCj
k(t) andC̄j

k(t) as
mean queue-lengths inBk

j andIk
j . Starting from the same term we

also have

N
P

Bk
j
∪Ik

j
π(~n,~k) ≥ N

PKi

h=1 Jk
j (i, h)

since the utilization of any queuei, 1 ≤ i ≤ M , duringBk
j ∪ Ik

j

cannot be greater than the sum of the probabilities of all states of
Bk

j ∪ Ik
j .

THEOREM 5. The performance indexes in busy and idle sub-
spaces are related by the following equation

PKi
h=1,
h6=k

PM

j=1 qk,h
i,j Qk

i +
PM

j=1,
j 6=i

PKi

h=1
qh,k

i,j Uh
i

=
PM

j=1,
j 6=i

PKj

h=1

PKj

u=1 qh,u
j,i Jk

i (j, h) +
PKi

h=1,
h6=k

PM

j=1 qh,k
i,j Qh

i ,

(18)

for all 1 ≤ i ≤ M , 1 ≤ k ≤ Ki.

PROOF. (Sketch of the proof, see [9] for a complete derivation.)
The proof follows similarly to that of Theorem 2 by weightingthe
contribution of each group of states byni. We point to the technical
report [9] for an extensive derivation.

5. LINEAR REDUCTION BOUNDS
We obtain the LR bounds using the results for the busy and the

idle condition reductions. We determine the values of the marginal
probabilities

π = {πk
j (ni, h), ∀ i, j, k, h, ni} ∪ {π̄k

j (ni, h), ∀ i, j, k, h, ni}



fmin = min f(π)
subject to:
/* preliminary definitions*/

eq. (2),(3),(4),(13),(16);
Ck

j (j) = Qk
j ;

πk
j (nj , k) ≥

PKi

h=1 πh
i (nj , k), if nj ≥ 1, i 6= j;

πk
j (nj , k) ≥

PKi

h=1 π̄h
i (nj , k), if nj ≥ 1, i 6= j;

πk
j (nj , h) = 0, if nj = 0;

πk
j (nj , h) = 0, if h 6= k;

πk
j (ni, h) = 0, if ni = N , i 6= j;

π̄k
j (nj , h) = 0, if nj ≥ 1;

/* exact characterization*/
eq. (5), (6), (7), (8), (9), (10), (15), (17), (18);

/* reduction constraints*/
eq. (12), (14);

/* feasibility of results*/
πk

j (ni, h) ≥ 0, for all πk
j (ni, h) ∈ π.

π̄k
j (ni, h) ≥ 0, for all π̄k

j (ni, h) ∈ π.

Figure 6: Linear program determining a lower bound on an
arbitrary linear performance index fexact = f(πexact). For
instance,fexact can be either a mean index such as a throughput or a more
detailed descriptor such as a marginal probabilityπk

j (ni, h).

so that the linear functionf(π) is a bound on a performance metric
fexact ≡ f(πexact), whereπexact is the set of exact equilibrium
probabilities of the MAP network. In the case of lower bounds
fmin ≤ fexact, the values of the marginal probabilities inπ can
be determined using linear programming [6] as follows.

PROPOSITION1 (LR LOWER BOUND). The program in Fig-
ure 6 returns a lower boundfmin ≤ f(πexact).

PROOF. All the relations in the linear program are exact as we
have proved in the previous sections; thereforeπ = π

exact is a
feasible solution. Since linear programming always returns an op-
timum

min f(π) = min{f(π) | feasible π},

we conclude thatmin f(π) ≤ f(πexact) becauseπexact is a fea-
sible value ofπ.

The last proposition generalizes immediately if the linearprogram
is reformulated to compute an upper bound (LR Upper Bound)
fmax = max f(π) ≥ f(πexact); therefore the same constraints
in Figure 6 can be used both for upper and lower bounds and only
the objective function has to be modified.

The accuracy of the LR bounds is validated in the Section 6.
The computational costs of the LR technique are indeed feasible
for practical applications, e.g., we have solved the linearprogram
for a model with10 MAP(2) queues andN = 50 jobs using
an interior point solver in approximately four minutes; forN =
100 the solution of the same model is found in approximately ten
minutes suggesting good scalability. In general, the complexity
of computing bounds with the linear program in Figure 6 grows
as O(lp(M2Kmax + MN, K2

maxM2N)), wherelp(r, c) is the
computational cost of solving a linear program withr rows andc
columns. The number of rows is either dominated by the numberof
possible marginal balances for the caseni ≥ 1 that isO(MN) or
by the number of inequalities (17) which grows asO(M2Kmax);

total states total states
M N Kmax marginal spaces original space
3 50 2 1.84 · 103 5.30 · 103

3 100 2 3.64 · 103 2.06 · 104

3 200 2 7.24 · 103 8.12 · 104

5 50 2 5.10 · 103 1.27 · 106

5 100 2 1.01 · 104 1.84 · 107

5 200 2 2.01 · 104 2.80 · 108

10 50 2 2.04 · 104 5.03 · 1010

10 100 2 4.04 · 104 1.71 · 1013

10 200 2 8.04 · 104 7.04 · 1015

Table 2: State Space Reduction Effectiveness.Comparison of the
total number of states in the marginal state spaces with the original state
space of the queueing network. All queues have MAP service times with
Kmax phases. The number of states in the marginal state spaces grows
linearly in the population size, whereas the growth for the original state
space is combinatorial.

the number of columns isO(K2
maxM2N) because the cardinality

of π is upper bounded by2K2
maxM2N .

To appreciate the reduction of the state space, Table 2 compares
the number of states in the marginal state spaces with the original
state space size in models with larger population and numberof
queues. The reduced spaces have cardinality that can be several
orders of magnitude smaller than the original state space.

5.1 Discussion
The balances obtained in the Section 4 provide a rich charac-

terization of the underlying Markov process of the MAP network.
However, the number of exact relations remains much smallerthan
the number of the marginal probabilitiesπk

j (ni, h) andπ̄k
j (ni, h).

We stress that our exact characterization is in general underdeter-
mined and describes afamily of possible equilibria for the under-
lying Markov process, among which we cannot distinguish thereal
one. The linear programming approach allows to select the equi-
librium that provides a worst-case or best-case bound on a given
performance metric.

Because of the complexity of the feasibility region described by
(2)-(18), it is also very hard to establish the relative importance of
each equation with respect to the others, as well as determining
analytical linear independence conditions among the balance equa-
tions. In our experiments, we have frequently observed thatremov-
ing either equation (7) or (18) reduces significantly the quality of
the bounds. Conversely, we have found that (9) and (10) improve
accuracy only on certain models. Standard sensitivity analysis of
linear programs [6] may be used as a tool for investigating the rel-
ative importance of a certain balance for the model under study in
order to minimize the size of the linear program.

6. ACCURACY VALIDATION
We assess the accuracy of the LR bounds using the following

methodology. We use both randomly-generated models and repre-
sentative case studies, see Table 3 for a description of the employed
input parameters. In order to assess the accuracy of the LR bounds,
we evaluate their maximal relative error with respect to theexact
solution of the MAP network computed by global balance. Due to
the state space explosion, the experimentation using exactglobal
balance solutions is often prohibitive for MAP networks with more
than three queues and populationN ≥ 100. Given its mean,CV,
skewness, and autocorrelation decay rateγ2, a MAP(2) is gener-
ated using the exact moment and autocorrelation matching formu-
las in [11].



Network Param. Case Studies Random Models
M 2 − 3 3
pi,j variable random[0, 1]
N 10, 25, 100 all in [10, 1000]

# of nonren. MAPs 1, 2, 3 1
MAP(2) Param. Case Studies Random Models

mean variable random[0, 1]
CV 0.5, 2, 4, 8 random[0.5, 10]

skewness 30 random[2, 250]
γ2 [.00, .99] random[.00, .99]

Table 3: Input parameters used in the validation study.

For each model, we use the linear program in Figure 6 to com-
pute upper and lower limitsXmax andXmin on the mean through-
put f(π) = X. Then, using Little’s Law we get the response time
boundsRmin = N/Xmax andRmax = N/Xmin which are used
to compute absolute relative errors from the exact responsetime
R. We do not report errors on other measures due to lack of space,
but we remark that they are typically in the same range as those of
response time. We used the GNU Linear Programming Kit [19] to
solve the linear program on an Intel Xeon 3.73Ghz using an AMPL
specification [18] of the linear program in Figure 6. The AMPL
specification is available for download at [15].

6.1 Random Models
In order to evaluate the general quality of the LR bounds, we

evaluate10, 000 random models. The models are generated ac-
cording to the specifications in Table 3. Each random model is
solved for all feasible populations and the following absolute value
of the maximal relative error is computed

∆bnd = max
N

˛

˛

˛

˛

Rbnd(N) − Rexact(N)

Rexact(N)

˛

˛

˛

˛

,

whereRexact(N) is the response time of the exact solution com-
puted for the network considered with populationN andRbnd(N)
is the LR bound evaluated with the same population, eitherRmax(N)
or Rmin(N). We stress that the∆ error function is a conservative
estimator since it returns themaximumerror ofRbnd over all eval-
uated populations. The converge of the bounds to the exact asymp-
totic value is not accounted by this metric and only the worstcase
error is measured.

We see that the variability in the routing matrix makes it pos-
sible to evaluate different levels of balancing in the mean service
demand at the queues. Table 4 indicates that the proposed bounds
perform extremely well also for this class of models. The mean
error is1 − 2% for both bounds with a standard deviation of0.02;
the median is less than the mean, indicating that the asymmetry
of the error distribution is more concentrated on small errors. The
maximum error is found to be14.2% for the response time upper

Maximal Relative Error∆
M mean std dev median max

Rmax 3 0.013 0.021 0.004 0.141
Rmin 3 0.022 0.020 0.019 0.126

Table 4: Results of Random ExperimentsAbsolute maximal rela-
tive error (0 ≡ 0%, 1 ≡ 100%) over10, 000 random queueing networks
for the response timeR = N/X (Rmin=lower LR bound,Rmax=upper
LR bound). E.g., the mean of the error∆ is 1.3% for Rmax and2.2% for
Rmin .

bound and12.6% for the lower bound. We have inspected care-
fully these cases and found that models with more than10% error
in at least one of the two bounds account for only the1% of the to-
tal number of experiments. The burstiness in these cases increases
the response times at the autocorrelated station in a way that can-
not be easily captured. Furthermore, the lower bound seems to be
more sensitive to increased variability and autocorrelation than the
upper bound, where the worst case error is for a MAP with mod-
erate burstiness. The difference in sensitivity to MAP parameters
is a positive property of the LR bounds, because large inaccuracies
in one bound can be compensated by the relative accuracy of the
other. Detailed numerical sensitivity of the two bounds with respect
to the model parameters supporting these intuitions is discussed in
the next subsection.

6.2 Representative Case Studies
We consider six representative case studies illustrating the ac-

curacy properties of the LR bounds; the results presented inthis
sections are typical of the actual bound accuracy as we have shown
in the random model validation section.

Depending on the experiment, the MAP can be either an Erlang-
2 (E2), a renewal two-phase hyperexponential (H2), a Poisson pro-
cess (M ), or a nonrenewal MAP(2) (MAP ). As we show in Case
3, the bounding is more difficult for increasing values ofCV; there-
fore we consider theE2 process withCV < 1 only in Case1. To
focus on the effects on accuracy of the most important moments
(i.e., mean andCV), we also fix in the case studies the skewness
to 30. In the random experiments, we have spanned all feasible
skewness values for the considered MAPs (range[2, 250]).

6.2.1 Case 1: Sensitivity to Renewal and Nonrenewal
Service Processes

The network is composed by two queues in series. The service
process can beE2, M , H2 or MAP . For all processes, the mean
rate isµ1 = 1 at the bottleneck queue1, µ2 = 2 at the non-
bottleneck queue2. The MAP hasCV = 5 and autocorrelation
decay rate (γ2 = 0.5); theH2 has the same moments of the MAP,
but being renewalρk ≡ 0, for all lagsk ≥ 1.

Results.Table 5 reports the maximal relative error on response
times for all possible combinations of service processes. It is found
that: (1) nonrenewal models are significantly more difficultto eval-
uate than renewal models, e.g., on the most difficult renewalcase,
theH2/H2 model, the LR bounds progressively converge to the ex-
act asN increases, while on the MAP/MAP case the error remains
at 10% also forN = 100; (2) hyper-exponential CVs are typi-
cally more difficult to approximate than hypo-exponential CVs; (3)
the error ofRmin is no greater than4% and is quite insensitive to
the service process type; (4)Rmax is more sensitive to nonrenewal
service where it achieves a worst-case error of11%.

6.2.2 Case 2: Sensitivity to Network Routing
We evaluate the impact on accuracy of network routing, show-

ing the counter-intuitive fact that nonrenewal balanced networks
are difficult to approximate. We consider the three queue model in
Figure 3 with the mean service rates considered in [8], i.e.,µ1 =
1/0.028, µ2 = 1/0.04, andµ3 = 1/0.28. We evaluate the accu-
racy of the LR response time bounds in the case where the network
is perfectlybalanced(p1,1 = 0.2, p1,2 = 0.7, p1,1 = 0.1), par-
tially unbalanced(i.e., queue3 is bottleneck, queue1 and queue2
are balanced,p1,1 = 0.1, p1,2 = 0.7, p1,1 = 0.2, this case corre-
sponds to Balbo’s model in [8]), orunbalanced(queue3 is bottle-
neck, queue2 is slower than queue1, p1,1 = 0.33, p1,2 = 0.33,
p1,3 = 0.34). The MAP queue3 hasCV = 4 andγ2 = 0.5.



Service N = 10 N = 25 N = 100
renewal service processes only

bnk nonbnk ∆min ∆max ∆min ∆max ∆min ∆max

E2 E2 0.01 0.00 0.01 0.00 0.00 0.00
E2 H2 0.01 0.08 0.02 0.05 0.02 0.00
H2 E2 0.01 0.00 0.00 0.00 0.00 0.00
H2 H2 0.01 0.09 0.01 0.06 0.01 0.01

at least one nonrenewal service process
bnk nonbnk ∆min ∆max ∆min ∆max ∆min ∆max

MAP E2 0.01 0.00 0.01 0.00 0.00 0.00
MAP H2 0.01 0.09 0.01 0.06 0.01 0.01
E2 MAP 0.00 0.11 0.00 0.11 0.00 0.10
H2 MAP 0.00 0.05 0.00 0.05 0.00 0.06

MAP MAP 0.00 0.11 0.00 0.11 0.00 0.10

Table 5: Case 1 - Sensitivity to Renewal/Nonrenewal Service
Processes. Absolute value of the maximal relative error (0 ≡ 0%,
1 ≡ 100%) on the response timeR = N/X of two queues networks
(∆min=lower bound error,∆max=upper bound error).

Results.Figure 7 shows the LR bounds on response times and
queue3 utilization in the balanced and partially unbalanced cases;
the utilization bounds follows immediately from the response time
bounds by Little’s Law and the Utilization Law [22] and are useful
to evaluate the LR bound accuracy as a function of the bottleneck
queue congestion level. We have found that the unbalanced case is
extremely similar to the partially unbalanced and therefore is not
plotted. It is found that: (1) the LR bounds of both utilization and
response times are very close to the exact value on most popula-
tions; (2) both bounds progressively converge to the asymptotic
exact, a feature that is not always found in standard bounds for
queueing networks (e.g., the ABA lower utilization bound never
converges asymptotically ifM ≥ 2); (3) the slower asymptotic
convergence in the balanced case makes the approximation more
challenging, but the maximal error remains less than11% of re-
sponse time and12% of bottleneck utilization.

6.2.3 Case 3: Sensitivity to Service Variability and
Autocorrelations

We consider the nonrenewal MAP/MAP model in the last row of
Table 5 and we vary theCV and the autocorrelation decay rateγ2

for the two identical MAPs.
Results.Table 6 reports the maximal relative error on response

times. It is found that: (1) the error ofRmin is loosely sensitive to
CV andγ2; (2) the error ofRmax is proportional to bothCV and
γ2, but decreases with the population size; (3) the maximum error
of Rmax (13%) is compensated by the minimum error ofRmin

(0%). Note that the errors are higher than in the random models
since we are now considering two MAPs instead of one.

6.2.4 Case 4: Applicability to Real Workloads
We illustrate the applicability to real workloads evaluating the

model in Figure 3 using Balbo’s partially unbalanced configura-
tion (p1,1 = 0.1, p1,2 = 0.7, p1,1 = 0.2) and considering at
queue3 the nonrenewal MMPP(16) fitted in [1] from the classic
long-range-dependent (LRD) Bellcore-pAug89 trace of [23]. This
trace is often considered in the literature as representative of many
long-range dependent processes found in modern computer, com-
munication, and multimedia systems. We scale the mean of the
MMPP(16) so thatµ3 = 1/0.28; CV, skewness and autocorrela-
tions are unchanged (see [1] for details on this MMPP(16) andits
autocorrelationsρk).

Results.Table 7 illustrates results for different populations. We
considerN = 50 instead ofN = 100 because global balance

N = 10 N = 25 N = 100
CV γ2 ∆min ∆max ∆min ∆max ∆min ∆max

2 0.000 0.00 0.01 0.00 0.01 0.00 0.00
2 0.250 0.00 0.02 0.00 0.01 0.00 0.00
2 0.500 0.00 0.02 0.00 0.01 0.00 0.00
2 0.750 0.00 0.02 0.00 0.02 0.00 0.01
2 0.990 0.00 0.02 0.00 0.02 0.00 0.02
4 0.000 0.00 0.05 0.01 0.03 0.01 0.00
4 0.250 0.00 0.05 0.01 0.04 0.01 0.01
4 0.500 0.00 0.06 0.00 0.04 0.01 0.02
4 0.750 0.00 0.06 0.00 0.05 0.01 0.03
4 0.990 0.00 0.06 0.00 0.06 0.00 0.06
8 0.000 0.00 0.12 0.01 0.10 0.02 0.04
8 0.250 0.00 0.12 0.01 0.10 0.02 0.05
8 0.500 0.00 0.12 0.01 0.11 0.02 0.07
8 0.750 0.00 0.12 0.00 0.12 0.01 0.09
8 0.990 0.00 0.13 0.00 0.13 0.00 0.13

Table 6: Case 3 - Sensitivity to Burstiness and Autocorrelations.
Absolute value of the maximal relative error (0 ≡ 0%, 1 ≡ 100%) on the
response timeR = N/X for a MAP/MAP network (∆min=lower bound
error,∆max=upper bound error).

N ∆min ∆max

1 0.00 0.00
2 0.05 0.03
10 0.03 0.02
25 0.01 0.01
50 0.00 0.01

Table 7: Case 4 - Applicability to Real LRD Workloads. We
use the Bellcore-Aug89 trace [23] fitted in [1] by a MMPP(16).Absolute
value of the maximal relative error (0 ≡ 0%, 1 ≡ 100%) on the response
time R = N/X for the network in Figure 3 with the MMPP(16) at queue
3 (∆min=lower bound error,∆max=upper bound error).

is prohibitively expensive in the second case. The results indicate
that: (1) the maximal error is of5% and the accuracy improves
with the population size. This result is consistent with theaccuracy
levels in the other case studies and indicates the applicability of the
LR bounds also with models of real workloads; (2) because of the
large order of the MMPP, the experiment also illustrates thelow
sensitivity of accuracy to changes in the number of phases.

6.2.5 Case 5: Sensitivity to Multiple MAP Queues
We consider a closed network with three queues in series. The

mean service rate at queuei is µi = i. Service is either exponential
or MAP(2) with CV = 4 andγ2 = 0.5. During thei-th exper-
iment, 0 ≤ i ≤ 3, the firsti queues are exponential, while the
remainingM − i are MAP(2).

Results. Table 8 reports results of the four experiments. It is
found that: (1) the worst case error of11% is achieved when all
three queues are MAP(2); (2) both LR bounds are sensitive to the
increase in the number of MAP queues; (3) with zero or one MAP(2)
the bounds yet converge asymptotically to the exact value; (4) the
same conclusion is not immediate for the other cases, but comput-
ing Rmin andRmax for N = 250, 500 reveals (not shown in the
table) that atN = 250 the gap between the bounds isRmax/Rmin−
1 ≈ 11%, while for N = 500 it drops to≈ 6% suggesting conver-
gence.

6.2.6 Case 6: Sensitivity to Network Size
In general, we have observed that for large models with dense

routing matrices the linear constraining of the inevitablyvery small
marginal probabilities may lead to numerically difficult problems.
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Figure 7: Case 2 - Sensitivity to Network Routing.Analysis of utilization and response time in the balanced and partially unbalanced cases of the
network in Figure 3. The unbalanced case (not depicted) is qualitatively similar to the partially unbalanced, but showsa quicker convergence to the saturation.

MAPs N ∆min ∆max MAPs N ∆min ∆max

0/3 2 0.00 0.00 2/3 2 0.00 0.10
0/3 10 0.03 0.00 2/3 10 0.04 0.11
0/3 25 0.01 0.00 2/3 25 0.05 0.09
0/3 100 0.00 0.00 2/3 100 0.09 0.03
1/3 2 0.00 0.05 3/3 2 0.00 0.13
1/3 10 0.03 0.02 3/3 10 0.04 0.15
1/3 25 0.02 0.00 3/3 25 0.07 0.12
1/3 100 0.00 0.00 3/3 100 0.11 0.04

Table 8: Case 5 - Sensitivity to Multiple MAP Queues. Absolute
value of the maximal relative error (0 ≡ 0%, 1 ≡ 100%) on the response
time R = N/X for the MAP/MAP network in Table 5 (∆min=lower
bound error,∆max=upper bound error). The notationk/3, k = 0, 1, 2, 3,
used in the MAPs column indicates the number of nonexponential MAPs
used in the model; the remainingM − k queues have exponential service.

In these cases, interior point algorithms perform better than the sim-
plex algorithm [6], but the numerical corrections of the linear solver
can inflate computational times. However, if the model is large and
the routing is sparse, the numerical conditioning is usually much
improved, and models up to 15-20 queues and hundreds of jobs
can be evaluated efficiently.

In this example, we study a distributed system composed by a
farm of J Web servers. Each Web server serves directly static ob-
ject requests (e.g., pictures) and communicates with a local database
for the generation of HTML pages. Each local subsystem of Web
server and database server is modeled as shown in Figure 8 simi-
larly to the model of a real J2EE Web application defined and val-
idated in [21]. We use the values found in [21] for the parameteri-
zation of the service times at the Web servers (µ−1

WS = 12.98ms),
at the DB servers (µ−1

DB = 10.64ms), and for the local commu-
nication (µ−1

WS−DB−Comm = 1.12ms). The ratio between static
object requests and Web pages requests is set to9.15 : 1 as mea-
sured in [3]. We fix the routing probability from the communica-
tion link to each subsystem to1/J . We use the median file size
measured in [3] which is approximately three packets. The mean,
variance, skewness and lag-1 autocorrelation of inter-arrival times
between packets is set as in the real workload used in Section6.2.4.
With these parameters, the fitted MAP at the communication links
is a MAP(2) with ratesv1,2

Net = 0.8074, v2,1
Net = 0.2107, µ1,1

Net =

14.5809, µ1,2
Net = 0.0, µ2,1

Net = 0.0, andµ2,2
Net = 131.7814.

Results. Since, due to the state space explosion, exact global
balance solutions are prohibitive forM ≥ 4, we report in Table
9 the relative gapRmax/Rmin − 1 between LR upper and lower
response time bounds for different value ofJ . According to the

p

1−p

µ3

µ1 µ2

1/J

DB Server j

WS−DB Comm j

Web Server j

MAP

Web/DB Server j=1,...,J

In/Out Traffic (Net)

Figure 8: Case 6: Distributed Web System. Web farm composed
by J Web servers. Bursty inbound/outbound traffic is modeled by aMAP
server with temporal dependent service. Incoming requestsare dispatched
to a given Web server with fixed probability1/J .

model definition, the number of queuesM is equal to3J+1, where
the additional queue is representative of inbound/outbound traffic.
As J increases, there is little impact on the accuracy of the method
which remains acceptable on all populations. In particular, as the
population increases the error decreases below10% on models with
large populations.

To summarize, we have provided numerical evidence that the LR
bounds provide accurate estimates using an extensive set ofexper-
iments. Sensitivity analysis to the different parameters has been
conducted to identify the major sources of inaccuracy for the LR
bounds.

7. CONCLUSIONS AND FUTURE WORK
Recent workload characterizations have shown that nonrenewal

service processes are good abstractions of real systems’ workloads,
especially of those found in storage systems and Web servers[24,
25, 31]. We have shown that existing queueing network models,
which always consider renewal service processes and do not ac-
count for nonrenewal features such as autocorrelation in service
times, grossly overestimate or underestimate actual system perfor-
mance.

We have presented a solution to this problem by studying a new
class of MAP closed networks that supports nonrenewal service.
We have introduced a class of exact state space reductions that are



M N bnd gap M N bnd gap
10 10 0.187 13 10 0.189
10 25 0.141 13 25 0.143
10 100 0.098 13 100 0.097
10 250 0.089 13 250 0.088
16 10 0.181 19 10 0.180
16 25 0.137 19 25 0.138
16 100 0.089 19 100 0.089
16 250 0.085 19 250 0.080

Table 9: Case 6 - Sensitivity to Network Size. Relative gap
Rmax/Rmin − 1 of upper and lower bounds (0 ≡ 0%, 1 ≡ 100%) on
the response timeR = N/X (Rmin=lower bound,Rmax=upper bound).

computationally tractable and allow the efficient computation of
upper and lower linear reduction (LR) bounds on arbitrary MAP
network performance indexes, such as utilizations, throughputs, re-
sponse times, and queue-lengths. To the best of our knowledge,
this is the first time that bounds for queueing networks with MAP
service are obtained. The LR bounds AMPL specification together
with additional resources on MAP queueing networks are available
at http://www.cs.wm.edu/MAPQN/. Experiments indicate
that the LR bounds are extremely accurate, showing on average a
2% relative error on the response time with a maximum error of
14% (for 99% of the random models the maximum error is also
found to be less than10%). We also remark that if the objective
functionf used in the program in Figure 6 is a nonlinear function
of π, our result immediately generalizes to the nonlinear case pro-
vided that the results are global optima.

An important extension of this work is the optional inclusion of
delay servers into the MAP network. Since the service rates of a
delay are load-dependent, this requires a generalization of our work
to the load-dependent case. It may be also interesting to extend the
presented class of MAP networks to include additional schedul-
ing disciplines or multiclass workloads in order to fully subdue the
class of product-form queueing networks. Finally, it may beinter-
esting to compare our bounds with standard diffusion or asymptotic
approximations.
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