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ABSTRACT short-range or long-range temporal dependence whichfisignily
affect performance [23-25, 31, 33]. A typical example of penal
dependence is workload burstiness, where the jobs pratésse
the system are not independent, e.g., the arrival of a sbbris;
much more likely to be followed by the arrival of another ghor
job (and vice versa for long jobs). Time-varying workloadshos
type are naturally modeled as nonrenewal workloads witipteai
dependence among consecutive requests.

Because of the complexity of their analysis, only small eenr
newal models based on one or two queues have been considered i
the literature, mostly in matrix analytic methods resed2d}. We

Burstiness and temporal dependence in service processefen
found in multi-tier architectures and storage devices andtrbe
captured accurately in capacity planning models as thesarfs
are responsible of significant performance degradatiowsveder,
existing models and approximations for networks of firstaedirst-
served (FCFS) queues with general independent (Gl) seariee
unable to predict performance of systems with temporal epe
dence in workloads.

To overcome this difficulty, we define and study a class ofaxlos

ueueing networks where service times are represented tyoMa ) :
\Cjian Arri?/al Processes (MAPs), a class of poin? processmgdsgn address th_e current lack of more gene_ral modgllng techgltme
model general distributions, but also temporal dependmmiufes systems with nonrenewal vyorkloads by |ntr9duung and aatya
such as burstiness in service times. We call these models MAP €W class of closed_ queueing n_etworks Which can accounefor t
queueing networks. We introduce provable upper and lowend® poral depenQence In thelr.serwce Processes. Our.analyaijes
for arbitrary performance indexes (e.g., throughput, asp time, for t_he first time _the analytical performance evalgatlon@hplex_
utilization) that we call Linear Reduction (LR) bounds. Neria environments with nonrenewal workloads and immediatelg<fin

cal experiments indicate that LR bounds achieve a meanamgur ~ Pplication in the capacity planning of multi-tier arclaieres and

error of2%. The result promotes LR bounds as a versatile and re- storage ;ysttalms._ based duct-f . K
liable bounding methodology of the performance of modem-co Capacity p anning based on pro uct- orm queueing netvx{ﬁq S
puter systems. has been extensively used in the past, since these modeyssam;-

ple solution formulas and low computational cost of exact ap-

. . . proximate algorithms [10, 22]. Queueing networks with gahe
Categories and Subject Descriptors independent (GI) service [8, 16, 29, 32] have been proposea a
C.4 [Performance of Systemp Modeling techniques solution, but although much more accurate than product-foet-
works, they remain insufficient for robust performance foohs
if the service process is nonrenewal. That is, because they c

General Terms pletely ignore temporal dependence between service tithey,

Algorithms, Performance, Theory cannotbe used to predict performance correctly in systems with
nonrenewal workloads.
Keywords This paper overcomes the limitations of existing modelieght

niques by providing a bound analysis methodology for quesei
networks with nonrenewal workloads. We study a class ofedos
gueueing networks where service times are modeled by Menkov
Arrival Processes (MAPs). We call these model&P queueing
networks MAPs are a family of point processes which can easily
1. INTRODUCTION model general distributions and nonrenewal features ssicuto-

Capacity planning of modern Computer Systems requires_to ac correlation in service times [28] Efficient f|tt|ng scheniesMAP

count for the presence of nonrenewal features in worklaads) as ~ Parameterization from measurements are available, &,41[20],
and the resulting MAPs can approximate effectively longgede-

pendence [1].
Because of the well-known difficulty of extending exact sian
Permission to make digital or hard copies of all or part 0§ tiwork for formulas outside the product-form case, we study boundyaisal
personal or classroom use is granted without fee providatidbpies are techniques for MAP networks. With the exception of the gaher
not made or distributed for profit or commercial advantage that copies ABA bounds [27] which provide good estimates only for verylo

Queueing networks, closed systems, bound analysis, bhessti
nonrenewal service, temporal dependence, Markovianahpio-
cesses

bearg?ishntotice atnd the full Citattion %r.‘ tth'i fitrsttp?ge. .Tw‘ﬂ’.'efwise'_p or very high population values, no bounding techniques for-n
Lieumi;:idngﬁglsorog fseeervers orto redistribute to listguitkes prior specific renewal networks exist and this is due to the lack of exaatli®es
SIGMETRICS'08June 2—6, 2008, Annapolis, Maryland, USA. which are usually needed to prove the bounding propertyhimn t
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paper, we show that it is possible to obtain provable boundseo-
formance indexes also in non-product-form models.
Our nonrenewal bounds derive from the analysis of the Markov

2.1 Analysis of Models with Renewal Service

Closed networks of FCFS queues enjoy a product-form solutio
if all service times are exponentially distributed [5]. H®or more

process underlying the MAP queueing network. Because of the servers have renewal (also called general independents@tice,

state space explosion, its equilibrium behavior cannot étere
mined exactly, but we argue that it can still be bounded ately

by describing the system with “reduced” state spaces (whieh
call marginal state spacés This state space transformation cap-
tures the behavior of the network conditioned on a given gueu
being busy or idle. The number of states in these marginaespa
grows linearly with the number of jobs in the network; thuse t
proposed approach remains computationally tractableoslsnod-
els with large populations. We deriexactbalance equations for
the equilibrium behavior of the reduced state spaces amstrite
how these formulas can be combined with linear programnting [
26] for the computation of bounds on mean value indexes. lBeca
the number of reduced states grows linearly with the numiper o
jobs in the network, we call these bounds Linear Reductidr) (L
bounds.

The main contribution of this paper is to present a new method
ology for the efficient analytic solution of queueing neti®with
nonrenewal workloads. This methodology automaticallyliapp
to queueing networks with renewal workloads as well. Theedta
contributions and outline of this work are as follows.

e We provide evidence that existing Gl approximations and

such as hyperexponential or Coxian [14], the product-fdreoty
does not apply and approximate methods are used for evajuati
performance [7].

An approximation based on Markov renewal theory is develope
by Reiser in [29]. For each queue, the MVA arrival theorem] [30
is generalized to include the coefficient of variati@i\{) of the Gl
service process. Experiments in [8, 16] show that this agrp
although simple, is prone to large approximation errors.

In [32], Zahorjan et al. obtain an approximate mean valué-ana
ysis (AMVA) by decomposition-aggregation [13]. The ungery
Markov process of the network is decomposed according to the
active phases at the Gl servers. Each partition is evaluateso-
lation by Mean Value Analysis [30] and the results are weaght
to approximate the Gl network. Validation results of the AMV
decomposition-aggregation show good accuracy.

In [16], Eager et al. improve the results in [29] and [32]. The
response time at the Gl queue used in Reiser’s method icezpla
by a more effective interpolation which also accounts fa té-
sponse time at the other queues. [16] also improves the geeom
sition method in [32] and makes it compatible with the itmet
AMVA framework to achieve lower computational costs on net-

decomposition methods show unacceptably large errors on Works with several queues.

gueueing network models with temporal dependence in the

service process (Section 2).

We define MAP queueing networks as a generalization of ex-
isting queueing networks that can model nonrenewal work-
loads (Section 3).

We develop the LR bounds on performance indexes for non-

Marie's method, the diffusion approximation (DA) methodgda
the maximum entropy method (MEM) assume a product-form for
the equilibrium state probabilities of the Gl network angbraxi-
mate the model accordingly [7]. DA and MEM rely on formulas
involving only the mean and the coefficient of variation; M&
method is more general and uses specialized relations fkiao
distributions. Marie’s method provides good accuracy indaie

renewal MAP queueing networks that are based on a new With Gl servers although its convergence properties havdeen

marginal state space reduction (Sections 4 and 5).

assessed [8]; DA and MEM are typically less accurate.
Finally, the Chandy-Herzog-Woo (CHW) method [12, 22] re-

We present an extensive set of representative case studiesyjaces an arbitrary subsystem by a flow equivalent servectwhi

showing that the LR bounds capture very well mean perfor- preserves the mean throughput of the original subsysteradh e
mance indexes such as response times or utilizations (Sec-feasible state. If the subsystem includes Gl servers, CHaa/n

tion 6).

We stress that MAP queueing networks are a superset of exist-

ing non-product-form networks with Gl workloads. Therefothe
presented analytic methodology has a wide applicabilitye TR
bounds are corroborated by extensive numerical validatitrere
we show that they achieve a mean accuracy error of approadynat
2% on a set of10,000 random models, promoting MAP queue-
ing networks as versatile models of modern computer systéfas
conclude the paper by outlining model generalizations ateine
sions in Section 7. The AMPL specification [18] of the LR bosind
is available aht t p: / / www. cs. wm edu/ MAPQV .

2. PREVIOUS WORK

In Section 2.1, we review previous work on non-product-form
queueing network models with FCFS queues and Gl service [7].
These models are the renewal specialization of the MAP gueue
ing networks introduced in Section 3. In Section 2.2, we usia
the applicability of approximation algorithms for modelgwGl
service to models with nonrenewal service. Due to limiteacsp
we point the reader to [7, 13, 22] for general background augu
ing network modeling and Markov processes. Throughoutghis
per we assume that service time distributions are modeletthdoy
method of phases [7, 14].

to be less accurate than Marie's method [8].

2.2 Applicability to Nonrenewal Service

To the best of our knowledge, no results are available for ana
lyzing closed networks with nonrenewal service, see [28]rés
lated work in single queue systems. In this section, we #skab
the applicability of the methods described in Section 2.¢lesed
networks with nonrenewal service.

We consider identically distributed service processe<hvhre
characterized by temporal dependence. The temporal depead
of a nonrenewal processes can be approximately modeledeby th
autocorrelation functiop, which captures the similarity in mag-
nitude of samples spaced kyags [14]. As an example, a service
process can have hyperexponentially distributed sampi®ut
being necessarily renewal; that is, the usual terminoldgypér-
exponential service” implicitly refers to the renewal versof the
process, but in general nonrenewal processes with hypamerp
tial distribution can be defined. These are immediatelyiobthby
changing the order of the samples without altering theitritis-
tion, which results in temporal dependence.

A simple case of nonrenewal closed network is shown in Fig-
ure 1. We use this simple model to evaluate the applicalulity
methods for Gl queueing networks to models with nonrenewsal s
vice. Queud is exponential withratg, = 1; queue2 has MAP(2)
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Figure 1. Example model with nonrenewal service.The service
is an exponential process with rate at queuel, at queue is a possibly
nonrenewal two-phase Markovian Arrival Process (MAP(28][

service [17] which can exhibit autocorrelation in serviceda sam-
ples and thus be a nonrenewal process. In a MAP(2), thé& lag-
autocorrelatiorp;, geometrically decays to zero with rate, ac-
cording to the relationp, = ~5 (1 —1/CV?) /2, [11]. In this
example we choosg, = 0.75, the MAP(2) is33% faster than the
exponential queue (i.e., mean ratg = 1.33), hasCV = 5, and
skewnesd 5; the process is obtained by the moment and autocorre-
lation matching algorithm in [11]. The results discusselblweare
qualitatively similar for other models.

Using the model in Figure 1, we have observed that several of
the methods considered in Section 2.1 cannot be applied delsio
with nonrenewal workloads; we distinguish two groups:

Non-applicable methods This group includes Reiser’s approx-
imation, the AMVA methods in [16, 32], Marie’s method, DA,can
MEM. Intuitively, these methods cannot apply for the follogy
reasons. For the considered example, all these methodsidlepe
only on the mean, th€V, and the probability of starting service in
one of the two phases. For instance, Marie’s method appties c
rections based on the two-phase Coxian renewal procesd thatle
is completely specified by these three parameters [7]. Thenra-
tion about the order of sampling, that is fundamental to enewal
service, is given only by the underlying Markov process \Whic
not directly evaluated by these methods. Since these tpobsi
ignore the order of sampling of the service times, they caane
count for the temporal dependence and therefore produoédee
results ifpr, = 0, &k > 1, or in the nonrenewal case, # 0, for
somek > 1. Yet nonrenewal models can have performance that is
extremely different from their renewal counterpart [24], 2Bere-
fore these methods are unfit for the analysis of nonrenewedktao

Applicable methods Decomposition-aggregation [13] can in-
stead be used for the analysis of models with nonrenewaicgerv
Since this method requires to evaluate all or part of the tpde
ing Markov process, it is not limited to statistical momeafghe
service time distribution, but can account for changes énpthase
transition rates of the MAP which result in autocorrelatathples.
Decomposition-aggregation can be easily applied to thenlyidg
process by aggregating states with identical active MAPseba
methods similar to those in [16, 32] can be defined based an thi
partitioning.

However, we have found that decomposition-aggregatiorfirean
quently exhibit severe errors if used in networks with noereal
service. Figure 2 show the predicted utilization of decosifjimn
(dashed line) versus the actual utilization (solid line)tfee bottle-
neck queud in Figure 1. The actual utilization is obtained by solv-
ing the underlying Markov process by global balance, tlozeeit
is exact. The ABA bounds, which apply to general models [Z2R, 2

1The valuey, is in a MAP(2) the second largest eigenvalue of the Markov
chain embedded at arrival instants [11].

Evaluation of the Nonrenewal Model in Figure 1
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Figure 2. Exact global balance solution of the nonrenewal
model in Figure 1 compared with the ABA bounds [22,27] and
the decomposition-aggregation approximation [13]. Although

accurate in renewal models, in nonrenewal models the deasitign is

often unable to capture the trend of performance indexds asithe utiliza-
tion shown here. The saturation of the approximation is diieg saturation
of the underlying product-form models used in the decontjoosiAlso the

ABA bounds, which apply to general networks, are inaccurate

are also depicted. We recall that other classes of boundsasic
the popular balanced job bounds (BJB) apply only to prodoct:
networks [22]. Although decomposition is very accuratehe t
renewal case, its application to the nonrenewal case seisuih-
creasingly large approximation errors for larger popoladi Cases
similar to the one plotted in Figure 2 are easy to find for défe
values of the model parameters. The low quality of the resnlt
the nonrenewal case is due to the quick saturation of theupted
form models used in these approximations, which reach maxim
utilization for lower loads than the nonrenewal model.

The observations of this section indicate that the anabfsien-
renewal workloads cannot be performed accurately withtiegs
techniques for models with Gl service times. Due to the lage
proximation uncertainty and the lack of an exact produatifgo-
lution, bounding techniques are desirable. In order to esklthis
limitation, in the following sections we introduce a bourhbysis
methodology for nonrenewal networks.

3. MAP QUEUEING NETWORKS

We introduce the class of MAP queueing networks supporting
nonrenewal service which is studied in the rest of the pager.
summary of the main notation is given in Table 1.

3.1 Model Definition

We consider a closed network with single-server queues;twhi
serve jobs according to a MAP service time process and under
work-conserving FCFS scheduling. The service processdis-in
pendent of both the job allocation across the queues andate s
of other service processes. The network is composed lgueues
and populated by statistically indistinguishable jobs (single class
model), which proceed through the queues according to a-stat
independent routing scheme. That is, upon departure fraenvars
1, a job joins queug with fixed probabilityp; ;. Without loss of
generality, the average visit ratio atvith respect to the number of
visits at queud is V;, thusV; = 1.

The service process at queiis modeled by a MAP with; >
1 phases. General service can be approximated accurately by a
MAP [4]. If K; = 1, then the MAP reduces to an exponen-
tial distribution, otherwise it generates service time gi® that



stateg(77, k) wherej is busy in phasé
mean queue-length of queuvithin Bj‘
€; vector of zeros with a one in theth position

h,k,u,k* phase indexes
1,5, m queue indexes
Iy stateq(i7, k) wherej is idle in phasek
JF(i,h)  utilization of queue in phaseh within BY U I}

ki active phase at queuén k
number of phases in queus MAP
maximumkK;, 1 <i< M
k phase vector, i.e., active phases

M number of queues in the network
i mean service rate of queue
pkh completion rate of queug phasek — h
N number of jobs in the network
n; number of jobs at queugn 7

7 population vector, i.e., job allocation

Di,j routing prob. from queuéto queuej
n(7i,k)  prob. of state7i, k)
7% (ni,h)  prob. ofn; jobs in queug in phaseh within BY
75 (ni,h)  prob. ofn; jobs ini in phaseh within I
g rate(ii, k) — (i — & + &, k'), ki = k, ki = h

Qi mean queue-length at queile
; mean queue-length at queilim phasek

U; mean utilization of queug
Uk mean utilization of queugin phasek
k,h

v’ background trans. rate of queughasek — h
mean visit ratio at queug(V; = 1)
mean throughput (measured at quéue 1)

Table 1: Summary of main notation

are phase-type (PH) distributed [28]. That is, hyperexptiak
hypoexponential, Erlang, and Coxian are all allowed sertiime
distributions; nonrenewal service is also supported, &grkov
Modulated Poisson Process (MMPP), Interrupted PoissooeBso
(IPP) [17]. It should be nevertheless remarked that MA(fittan
be still a challenging problem if the data has an irregulanteral
dependence structure, see [20] for a review. We point tofldrld
new technique, called Kronecker Product Composition (KRG
can provide MAP fitting of higher-order moments and tempdeal
pendence structure of arbitrary processes.

The transition from phasé to phaseh for the MAP service
process of queué has rate;z&f*h and produces a service comple-
tion with probability¢t*"; if » = k thent®* = 1 according to
the MAP definition. We defing."" = t""¢"" to be the rate
of job completions in phasé that leave the MAP in phask;
Pt = (1 = t9")eP", k # his the complementary rate of tran-
sitions not associated with job completions that only cleatite
MAP active phase (background transitions). In this repreg®n
of queuei’s MAP, 1" is the element in rovk and columnh of
the D1 matrix; v/*" is in row k and columnh of Do. We point the
reader to [20] and references therein for background on Meiels
MAP fitting.

3.2 Underlying Markov Process

General MAP service requires to maintain information at the
process level on the current service phase at each queuasiblfe
network state in the queueing network underlying Markovcpes
is a tuple(7, k), wherei = (n1,na,...,na), 0 < n; < N,

Figure 3: Example network composed by two exponential
queues and a MAP queue. In the case where the MAP is a renewal
two-phase hyperexponential process, this reduces to Batimdel consid-
ered in the validation of approximations for Gl service [8].

SM.n; = N, describes the number of jobs in each queue, and

=

k= (ki,ka,...,km), 1 < ki < K;, specifies the active phase for
each service process. According to this space, the Markasegs
transitions have rate}”" from state(i, k) to (i — & + &, k'),

ki = k, ki = h, wheree; is a vector of zeros with a one in theh
position; the rate is computed as

. kh

qk,h_ Pijly s
i, k,h _ k.h
'UZ' +pi,z,ui )

In (1), qﬁ}h isfori #£ j the rate of departures frofo j triggering a
phase transition iiis service process from phaseo h; otherwise
it accounts for the background transitiorfs” and the rate of the
self-looping jobsp;,i1". Note that the case far= j andk = h
is not explicitly accounted since it corresponds to the ol of
the infinitesimal generator of the Markov process. This oifeg is
computed to make each row sum to zero.

The size of the infinitesimal generator corresponds to the ca
dinality of the related global balance equations and is efdh
der of (N1 7) (K’";(ﬁ;ffl), where K pmaz is the maximum of
K;, 1 < i < M,; this size quickly becomes computationally pro-
hibitive.

As a summarizing example, the MAP network in Figure 3 with
routing probabilitie,1, p1,2, p1,3 = 1 — p1,1 — p1,2 at the first
queue and,1 = 1, p3,1 = 1, at the remaining queues has un-
derlying Markov process as shown in Figure 4. The state space
description is given in the caption. Fpr,; = 0.1 andpi,2 = 0.7
the network reduces to Balbo’s model used in the numerical ex
periments in [8]; throughout the paper we illustrate soméhef
proposed techniques using this model.

4. STATE SPACE REDUCTION

General approximation techniques for non-product-forndmo
els, such as decomposition, are reviewed in Section 2. Tagse
proaches often start from the idea of applying a state spaos-t
formation to reduce model complexity. For instance, apjnake
lumping is used in decomposition to partition the state spawm
macrostates that can be evaluated in isolation [7].

However, existing state space reductions introduce appesx
tion errors that cannot be bounded in sign or in magnitudes Th
leaves a high degree of uncertainty on the final approximatezu-
racy. In this section we develop a new family of state spadaae
tions that doesot introduce any degree of approximation, while
still simplifies model analysis. The proposed reductionhisré-
fore exact, but because of several differences from exagpilg,
the transformation cannot be reduced to lumping or to anyaaet
presented in previous work.

i 7 7,

t=jandk # h. @
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Figure 4: Underlying Markov process of the network in Fig-
ure 3 in the simple case when the MAP is a MMPP(2) process;
the job population is N = 2. Two queues are exponential with rates
u = u}’l andus = ué’l, respectively; the third queue is a MAP with
K3 = 2 phases havin@lg“’h = 0 for k # h, that is a MMPP(2) process.
(002, 1) indicates that the exponential queues are idle and the MAReu
has two jobs and is in phase in (110, 2), the phase is the phase left
active by the last served job.

4.1 Busy Condition Reduction

We introduce a state space reduction that scales lineatttytie
population size. We use the term “busy condition" to idgntife
set of statesvhere a given queue is busy in a certain phase, which
is intuitively similar to a conditional state space. Forteacodel
we generate the followin@ (K2, M?) reduced state spaces with
dimensionO(NN) as follows.

DEFINITION1 (MARGINAL STATE SPACES). Letthe busy con-
dition subspaceB® = {(@,k) : n} > 1,k} = k} be the set of
states of the MAP network where queuis busy and in phasg.
Themarginal state spac¥ queue in phaseh within B]’? is the state
space describing the observation witth of queuei’'s queue-
length while its phase i8, 1 < h < Kj, (the cases = j and
h = k are both considered).

Since in a non-product-form network the state of a queueiditiyl
depends also on the activity of the rest of the network, thegmal
state spaces allow to explore in a compact way the mutual rela
tions between any two queuésndj. A probabilistic definition

of marginal state space is given later in Section 4.1.1. Two e
ample marginal spaces for the model in Figure 4 obtainedhfer t
busy condition subspacB; are shown in Figure 5. Figures 5(a)-
(b) are obtained by observing the exponential queue 2 in its
only phaseh = 1 within Bi. Since queus is always busy in
B3, it has queue-length; > 1 and the queue-length of quee
can only ben, = 0 or ny = 1. Note that the rate of transitions
fromny = 1tons = 0 depends only on queds service ratgus;

the rate fromnz = 0 tone = 1 depends instead on job comple-
tions at the other queues and in the original state spacesa &g
7(101, 1)p1 201 Which is unknowr without the equilibrium prob-
ability (101, 1). Figure 5(b) similarly describes the queue-lengths
of queue3 in phasel within B3, which can be onlyas = 1 or

ns = 2 since queus is busy. The unknown transition rate is in
this caser(101, 1)p1,3p1.

Figure 5 clearly shows that our approach differs from an exac
lumping or a decomposition-aggregation for at least theasans:
the latter techniques are applied to the entire state spateat
to busy subspaces only, the aggregates are always norajopie

2We henceforth assume that global balance solutions for MétRark is
prohibitively expensive, therefore the equilibrium prbliities are all un-
known.

Marginal State Space

"""""" queue 2 c
length O g | |H2
c
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Figure 5. Example of marginal state spaces for the model in
Figure 4. Figures (a) and (c) show the observation of either queoe
queue3 in phasel during the busy subspadé% of queue3 in phasel.
The dashed ovals indicate states in the original state spdeigure 4 that
are implicitly accounted for in the marginal state spacesjfeue2 and for
queues3 in phasel depicted in figure (b) and (d), respectively. Note that
the reduction is not a lumping or a decomposition-aggregasince we
are completely ignoring the transition from/to the busyditan subspace
that are present in Figure 4; also some rates would requéredhilibrium
probability of the staté101, 1) in Figure 4 which is unknown, and therefore
the marginal state space cannot be solved in isolation.

(two busy subspaces instead can overlap, &g, andB- 1), and
the aggregates result in a reduced state space velilerates are
known so that it is later analyzed by other techniques (degom-
position solves each macrostate in isolation by globalrzseor
mean value analysis).

The main idea motivating the busy condition reduction isas f
lows. Even if some rates are unknown, we can obtain balance
equations both for the equilibrium inside each marginakcepar
between the probabilities of multiple marginal spaces. émsin
Section 5 how the busy condition reduction can be used toalefin
the LR performance bounds.

4.1.1 Marginal Probabilities

The marginal probabilityrj’?(m, h) of havingn; jobs in queue
during phase:, 1 < h < Kj;, while queuej is busy in phasé,
1 < k < K, completely characterizes the marginal state spaces.
Each marginal probability can be computed as

my (ni, h) = PINEY EeBYnl=n; ki=h} (', k),

whereB]’? is the busy condition subspace of quela phase:. By
definition, itis7} (n; = N,h) = 0fori # j, nf(n; = 0,k) =0,
m¥(nj,h) = 0for b # k, andn¥(n;, k) > S0t 7l(ng, k)
for j # i, n; > 1. The last inequality follows immediately by
observing that¥ (n;, k) accounts for all states |, , 7/ (n;, k)
plus the states withifs} wherei is idle.

Because any event in the underlying Markov process invatves
most two-phases and two queues, that is, source and dastinat
queues for job departures with a possible phase transititinea



source queue, the marginal probabilitiefs(ni, h) still capture all
departures and phase changes in the model. Therefore, ¢iad-kn
edge of allwf(ni, h)’s is sufficient to compute all mean perfor-
mance indexes of interest in the original state space, diroju the
utilization of queue;, i.e.,U; = Zf:il U, where we denote by
UF the utilization ofi in phasek, that is

Ut Znt =0 Zh 1 (nt, h) ()

wheret, 1 < ¢t < M, is an arbitrary queue since the summation
is always equal to the probability of the busy subspate the
throughput which by the Utilization Law [22] is

K1 K

X = ZZZq Uf:ULul/Vl,

k=1h=1j=1

that is the mean rate of jobs flowing out of queL@ssumed as
reference for network completions and wheredenotes the mean
rate of the MAP service process at qudyéhe mean queue-length
of queuei is Q; = S ri, QF, with

Qk Zn 1T k(niv k) (3)

being the mean queue-length in phasek. Note that these in-
dexes are also sufficient to compute response and resideme® t
by Little’s Law, see [22]. In particular, the response timeri =
N/X.

4.1.2 Single Busy Subspace of a Single Queue

We characterize the equilibrium reached at steady statesbginal
spaces. We focus on the marginal state spaces which deadiire
gle busy subspacﬁf and use the population constraE])‘,fi1 n; =
N. Although an obvious condition, it is impossible to impos# i

the state space is transformed in such a way to hide some of the.
n;'s, as in the marginal state spaces. We therefore define a new.

population constraint for the busy condition subspace.
THEOREM 1. Define
CF (@) = X1 Sony mumf (ni, ), @)

as the mean queue-lengthioi the busy condition subspa@k
thusC () = Q}. Then withinB} the C (i) sum toNU7, i.e.,

YL, CF (i) = NUJ, (5)
1<k <K;.
PROOF Using (2) and the population constraint we have

NUJk = ZM1 i Znt =0 Zh 175 (nt7 h)
and choosing the arbitrary quetiequal toi

NUJk = ZZZ1 22:1 ZhK;1 nﬂTf (ni,h) = ZM Ck( )-
' |
4.1.3 Multiple Busy Subspaces of a Single Queue

We obtain a constraint for multiple busy subspaces which re-
sembles the global balance equations of the MAP serviceepsoc
considered in isolation.

THEOREM 2. The utilizations of queugin its K; phases are in
equilibrium, i.e.,

K; K;
M k M h
Zj:l hzl qLJ U Zj:l }21 qZJ UZ ’ (6)
hkif j=i hoth if j—i

forall1<i< M,1<k<K,.

PROOF. (Sketch of the proof, see [9] for a complete derivation.)

Consider the cut separating the group of sta@tbsvhere queué
is in phasek from the complementary set of stagswhere queue
iis in phaseh # k. The outgoing probability flux frong is the
left hand side of (6) and must be balanced at steady state by an
equal incoming flow generated by the phase change trarsiition
C. This probability flux is exactly the right hand side of (6)eh
completes the proof.

O

The derived equation imposes that the MAP in isolation ard th
MAP observed in the busy subspaces of quélmve the same
stochastic properties, which is expected if the servicegss of
queuei is independent of the job allocation across the network and
of the service processes of the other queues.

4.1.4 Marginal Balance Conditions

Compared to the previous balances which only involve means
such as queue-lengths or utilizations, the balances tesktin this
section, callednarginal balancesare more informative as they re-
late individual marginal probabilities.

We have found that there exists a form of partial balance &etw
marginal state spaces, although the class of models coediite
this paper is non-product-form. This new class of balancaled
marginal balancesshows that MAP service imposes an equilib-
rium between the departure and the arrival process of quéue
groups of states belonging to different busy subspaces gikkdr
balance derives from global balance, but characterizgstbelset
of marginal queue-length probabilities which makes it 3isveom-
putationally tractable. The balance is expressed as fellow

THEOREM3 (MARGINAL BALANCE). The arrival rate at queue

7 when its queue-length is; jobs,1 < n; < N — 1, is balanced
by the rate of departures when the queue-length; is- 1, that is,

Z Zk 1Zh 1Zu 1q51h
:Z' Zk 1Zh 1qkh

forall 1 <i < M. Inthe caser; = 0 the marginal balance spe-
cializes to the more informative relation

Z Zk 1Zh1qkh k(”z—ou)
_Zyle 1qku k(

which holds for each phase 1 < v < K;, with1 <i < M.

k(nivu)

F(ng+1,k), (7)

=Lk),

PROOF. (Sketch of the proof, see [9] for a complete derivation.)
The statement is a consequence of the state partitioningéipa
arates the states wheirdas no more than; enqueued jobs from
the states where the queue-length is at least 1 jobs. Their ex-
changed probability flux must be balanced at steady staeflik
from the partition for states; to the partition for states; + 1 is
equal to the rate of a job completed anywhere in the netwarigbe
routed to queué. This is the left hand side of (7), which also ac-
counts for all possible phases of the job’s departing qyeared the
destination queué The opposite flux fromn; + 1 to n; has rate
equal to the right hand side of (7), which is the set of all fies
departures froni that are not routed toitself.

o

Following the proof of the marginal balance conditions, ve o
tain an additional balance between marginal probabilities



COROLLARY 1.
Letk*, 1 < k* < K, be a phase of queuethe following balance
holds for each queue-lengthy, 1 <n; < N — 2,

K, K; )

Z?il 2kl Zh;1(Q§ L'} T (nz +1,k%)

+Zu1q (n“ ))+Zk1qkkzk

—z ( PR (i 4 2, k*>+zk 1<qff Bni +1,k)

(n’i + 17k*)

+qi,; 7w (ni + 2, k)+2h 1q“ F(ni+1,k)))

+ Z k=1 qi,z‘ Wf(ni +1, k)v (9)
kA£k*

forall 1 <i: < M. Forn; = N — 1 the balance reduces to
YLy bt (1, k7)
k#k*
+Z Zk DI 1Zu 1, qty' ™ (i, w)
= Z]# Zkk# 1 (qf]k Fni+1,k) +Zh ! qk pl 7w (ni+ 1, k))

+ 35 b e+ 1K), (10)
k#£k™*

forall1 <i< M.

PROOF The proof follows similarly to the proof of Theorem
3 by now considering the set of states whetgas no more than
n; enqueued jobs except for phakg 1 < k* < K;, where its
population can be no more than + 1. The theorem follows im-
posing the equilibrium at the interface with the set of Satbhere
the marginal queue-length is at least+ 1 and in phasé # k*
and at least; + 2 and in phasé™*.

([l

4.2 |dle Condition Reduction

This state space reduction can be regarded as the complment
of the busy condition reduction described in the previougice.
We consider the idle condition subspafg,f‘e/vhere queug is empty
and the last served job has left the MAP process iat phasek,

1 < k < K;. We obtain a set 00 (K e M?) reduced state
spaces with dimensio®(N) by describing the evolution within
If of the queue-length of during phaseh, 1 < h < K;. The
related marginal probability function is

7 (ni, h) = X #ye st nem T K, (11)
where the marginal space & (ni, h) = {(ﬁ K) eIl :nf =
n;, ki = h}, the idle subspace & = {(7, k) : n; = 0,k; = k:}.
Further, by the given definitionst} (n;,h) = 0if n; > 1 or

h # k and similarly to the busy condition reductiarj (n;, k) >
fo;l 7l(ng, k) for j # 4, n; > 1. Note that from the comple-
mentarity of} (n;, h) and 7} (ns, h), the total state space proba-
bility is immediately obtained as

Sohiy w75 (i, h) + 7 (s, b)) = 1, (12)
forall 1 < i < M. Moreover, let the utilization of queuen phase
h within BY U IF be

T (i, h) = 30N _ (w5 (ni, h) + 75 (ni, ). (13)
where by definition the second term in the summation may batrew
ten as

Son oy 7 (nish) = 7l (ng = 0,k), (14)

which similarly to (12) relates the busy and idle reductioBsl-
ances similar to those given for the busy condition reductian
be derived for the idle time reduction. For instance, foltayvthe
proof of (5) one immediately obtains the population coristra

i, CF(i) = N7y (nj = 0, k), (15)
wherer¥ (n; = 0, k) is the probability off ¥ and
CJ (1) = 325, 21 2oy ity (na ) (16)

is the mean queue-length oin phaseh within If.

The balance equations obtained for the idle reduction agmof
redundant with the balances of the busy ones. Thereforereve a
not interested in developing a comprehensive charactenizaf
this reduction. We point out two relations deriving from rpana-
tions of the global balance equations which characteifeJ I}
wherej is in phasek; these formulas cannot be expressed within
the probability space of the busy subspace only.

THEOREM 4. The sum of mean queue-lengths during the sub-
spaceB} U IF satisfies

L1(CL) + CL®) = N3 J5 (6, ),
forall 1 <i<M,1<j<M,1<k<Kj.
PROOF LettingZB;?UI];p = Z(ﬁ’,;)eru;, we have

7

NZB;‘UI;‘ ﬂ'(ﬁ, k) =
=Y

ivil ZB;?UI]’? ner (7, k)
1(2}3]{@ nam (7, E) + Zﬂv ngm (7, E))
= XL (CL0) + CLw),

where the last passage follows by definitionf(t) andC5 (¢) as
mean queue-lengths Bf andIf. Starting from the same term we
also have

NZB’?UI’?“( )>NZh 1Jk(Z h)

since the utilization of any queuel < i < M, during BY U I}
cannot be greater than the sum of the probabilities of aéstaf
BFUIL.

O

THEOREM 5. The performance indexes in busy and idle sub-
spaces are related by the following equation

K; h,k
Zh:l,Z] 1q1,] Q’L +Z Zh 1q Uh

h#k
Z Zh 1Zu 1qh U«Jk( )_‘—ZhK;l, Z] 1 'L,] Qz7
h#k
(18)

forall1<:< M,1<k<K;.

PrROOF (Sketch of the proof, see [9] for a complete derivation.)
The proof follows similarly to that of Theorem 2 by weightittge
contribution of each group of states hy. We point to the technical
report [9] for an extensive derivation.

o

5. LINEAR REDUCTION BOUNDS

We obtain the LR bounds using the results for the busy and the
idle condition reductions. We determine the values of thegimal
probabilities

m = {m}(ni, h), Vi,5, k,h,ni} U{F5(ni, h), Vi,5,k, h,n:}



f'min = min f(ﬂ')

subject to:

/* preliminary definitions/
eq. (2),(3),(4),(13),(16);
Cr(j) = Q%

m(ng, k) > SO0 wl (ng, k), if g > 1,0 # g
m(ng, k) > St 7 (ny, k), if g > 1,0 # j;
w7 (ng, h) =0, if n; =0;
77 (nj, h) =0, if h# k;
Wf(ni,h)—o, ifn, =N,i# 7,
7 (ng, h) =0, ifn; >1;

/* exact characterizatioty
ed. (5), (6), (7). (8), (9), (10), (15), (17), (18);

/* reduction constraintg/
eq. (12), (14);

/* feasibility of results/
7 (ni, h) >0,
75 (ni, h) > 0,

for all 7} (ni, h) € 7.
for all 75 (n:, h) € .

Figure 6: Linear program determining a lower bound on an
arbitrary linear performance index fezact = f(Tezact). For

instance,fexqct Can be either a mean index such as a throughput or a more

detailed descriptor such as a marginal probabiﬁ}'}(ni, h).

so that the linear functiofi(r) is a bound on a performance metric
fezact = f(Tezact), Wheremzqc: is the set of exact equilibrium
probabilities of the MAP network. In the case of lower bounds
fmin < fexact, the values of the marginal probabilitiesancan

be determined using linear programming [6] as follows.

PropPoOsSITION1 (LR LOWERBOUND). The program in Fig-
ure 6 returns a lower boundnin < f(Tezact)-

PrROOF All the relations in the linear program are exact as we
have proved in the previous sections; therefere= 7w°“*“! is a
feasible solution. Since linear programming always retun op-
timum

min f(7w) = min{f ()| feasible 7},

we conclude thatin f(7) < f(mw®**) becauser®**! is a fea-
sible value ofr.
|

The last proposition generalizes immediately if the lingagram
is reformulated to compute an upper bound (LR Upper Bound)
fmaz = max f(m) > f(mezact); therefore the same constraints

in Figure 6 can be used both for upper and lower bounds and only

the objective function has to be modified.

The accuracy of the LR bounds is validated in the Section 6.
The computational costs of the LR technique are indeedtkasi
for practical applications, e.g., we have solved the lirgragram
for a model with10 MAP(2) queues andV = 50 jobs using
an interior point solver in approximately four minutes; r =
100 the solution of the same model is found in approximately ten
minutes suggesting good scalability. In general, the ceri
of computing bounds with the linear program in Figure 6 grows
as O(Ip(M?* Koz + MN, K2,..M?>N)), wherelp(r, ¢) is the
computational cost of solving a linear program withows andc
columns. The number of rows is either dominated by the number
possible marginal balances for the case> 1 that isO(M N) or
by the number of inequalities (17) which grows@&M?> K az);

total states total states
M N  Kmaez || marginal spaces original space
3 50 2 1.84-103 5.30 - 103
3 100 2 3.64 - 103 2.06 - 104
3 200 2 7.24 - 103 8.12-10%
5 50 2 5.10 - 103 1.27 - 106
5 100 2 1.01 - 104 1.84 - 107
5 200 2 2.01 - 10% 2.80 - 108
10 50 2 2.04 - 10 5.03 - 1010
10 100 2 4.04 - 10* 1.71 - 1013
10 200 2 8.04 - 10 7.04 - 1015

Table 2. State Space Reduction EffectivenessComparison of the
total number of states in the marginal state spaces with tiighal state
space of the queueing network. All queues have MAP servinegtiwith
Kmaz phases. The number of states in the marginal state spaocss gro
linearly in the population size, whereas the growth for thigioal state
space is combinatorial.

the number of columns i©(K?Z,,M?N) because the cardinality
of 7 is upper bounded bgK?2,,. M>2N.

To appreciate the reduction of the state space, Table 2 cespa
the number of states in the marginal state spaces with thaati
state space size in models with larger population and number
queues. The reduced spaces have cardinality that can belseve
orders of magnitude smaller than the original state space.

5.1 Discussion

The balances obtained in the Section 4 provide a rich charac-
terization of the underlying Markov process of the MAP natwo
However, the number of exact relations remains much snthier
the number of the marginal probabilitie$ (n;, k) and 7 (ni, h).
We stress that our exact characterization is in generalrdets-
mined and describesfamily of possible equilibria for the under-
lying Markov process, among which we cannot distinguishréad
one. The linear programming approach allows to select thé eq
librium that provides a worst-case or best-case bound owengi
performance metric.

Because of the complexity of the feasibility region desedityy
(2)-(18), it is also very hard to establish the relative imipoce of
each equation with respect to the others, as well as detemgnin
analytical linear independence conditions among the balagua-
tions. In our experiments, we have frequently observedrdmbv-
ing either equation (7) or (18) reduces significantly theliguaf
the bounds. Conversely, we have found that (9) and (10) ivepro
accuracy only on certain models. Standard sensitivityyaigbf
linear programs [6] may be used as a tool for investigatieg &t
ative importance of a certain balance for the model undetysitu
order to minimize the size of the linear program.

6. ACCURACY VALIDATION

We assess the accuracy of the LR bounds using the following
methodology. We use both randomly-generated models amd-rep
sentative case studies, see Table 3 for a description oftpioged
input parameters. In order to assess the accuracy of the uRisp
we evaluate their maximal relative error with respect to¢Ract
solution of the MAP network computed by global balance. Due t
the state space explosion, the experimentation using epalotl
balance solutions is often prohibitive for MAP networkshwitore
than three queues and populatidh> 100. Given its mean{CV,
skewness, and autocorrelation decay ratea MAP(2) is gener-
ated using the exact moment and autocorrelation matchimgufo
las in [11].



Network Param. | Case Studies = Random Models

M 2-3 3
Dij variable randonfo, 1]
N 10,25,100  allin [10, 1000)
# of nonren. MAPs 1,2,3 1
MAP(2) Param. | Case Studies = Random Models

mean variable randonjo, 1]
Ccv 0.5,2,4,8 random[0.5, 10]
skewness 30 random(2, 250]
Y2 [.00,.99] random[.00, .99]

Table 3: Input parameters used in the validation study.

For each model, we use the linear program in Figure 6 to com-
pute upper and lower limitX,,,,, and X,;» on the mean through-
put f(m) = X. Then, using Little’s Law we get the response time
boundsRmin = N/Xmaz @Nd Rmaz = N/Xmin Which are used
to compute absolute relative errors from the exact resptimse

bound andi2.6% for the lower bound. We have inspected care-
fully these cases and found that models with more tha{ error

in at least one of the two bounds account for only tfgof the to-

tal number of experiments. The burstiness in these casesaiges
the response times at the autocorrelated station in a wayana

not be easily captured. Furthermore, the lower bound seefbs t
more sensitive to increased variability and autocorretethan the
upper bound, where the worst case error is for a MAP with mod-
erate burstiness. The difference in sensitivity to MAP paaters

is a positive property of the LR bounds, because large imaces

in one bound can be compensated by the relative accuracy of th
other. Detailed numerical sensitivity of the two boundshwéspect

to the model parameters supporting these intuitions isudsed in
the next subsection.

6.2 Representative Case Studies

We consider six representative case studies illustratiegat-
curacy properties of the LR bounds; the results presentekisn
sections are typical of the actual bound accuracy as we tevers

R. We do not report errors on other measures due to lack of space in the random model validation section.

but we remark that they are typically in the same range agtbbs
response time. We used the GNU Linear Programming Kit [19] to
solve the linear program on an Intel Xeon 3.73Ghz using an AMP
specification [18] of the linear program in Figure 6. The AMPL
specification is available for download at [15].

6.1 Random Models

In order to evaluate the general quality of the LR bounds, we
evaluatel0,000 random models. The models are generated ac-
cording to the specifications in Table 3. Each random model is
solved for all feasible populations and the following abselvalue
of the maximal relative error is computed

Rbnd(N) - Rezact(N)
Rewact(N) ’

Abnd = max
N

where Rezqct(N) is the response time of the exact solution com-
puted for the network considered with populatidnand Ry,q (V)

is the LR bound evaluated with the same population, eithet. (N)
or Rmin (IN). We stress that thA error function is a conservative
estimator since it returns theaximumerror of Ry,,,4 over all eval-
uated populations. The converge of the bounds to the exatias
totic value is not accounted by this metric and only the wosste
error is measured.

We see that the variability in the routing matrix makes it-pos
sible to evaluate different levels of balancing in the meanvise
demand at the queues. Table 4 indicates that the proposedou
perform extremely well also for this class of models. The mea
error is1 — 2% for both bounds with a standard deviation0of2;
the median is less than the mean, indicating that the asyrpmet
of the error distribution is more concentrated on smallmstrdhe
maximum error is found to b&4.2% for the response time upper

Maximal Relative ErroA

M mean stddev median max
Rmaz 3 0.013 0.021 0.004 0.141
Ruin 3 0.022 0.020 0.019 0.126

Table 4: Results of Random ExperimentsAbsolute maximal rela-
tive error 0 = 0%, 1 = 100%) over 10, 000 random queueing networks
for the response tim& = N/X (R,in=lower LR bound,Rm«.=upper
LR bound). E.g., the mean of the erréris 1.3% for Ry and2.2% for
R’min-

Depending on the experiment, the MAP can be either an Erlang-
2 (E»), arenewal two-phase hyperexponentidb, a Poisson pro-
cess (1), or a nonrenewal MAP(2)N/ AP). As we show in Case
3, the bounding is more difficult for increasing value<X3f; there-
fore we consider thé’; process withCV < 1 only in Casel. To
focus on the effects on accuracy of the most important masent
(i.e., mean and’V), we also fix in the case studies the skewness
to 30. In the random experiments, we have spanned all feasible
skewness values for the considered MAPs (rd2g250]).

6.2.1 Case 1: Sensitivity to Renewal and Nonrenewal
Service Processes

The network is composed by two queues in series. The service
process can bé&,, M, H, or M AP. For all processes, the mean
rate is 1 at the bottleneck queug, 2 = 2 at the non-
bottleneck queu@. The MAP hasCV = 5 and autocorrelation
decay rate{> = 0.5); the H> has the same moments of the MAP,
but being renewap,, = 0, for all lagsk > 1.

Results.Table 5 reports the maximal relative error on response
times for all possible combinations of service procesdés found
that: (1) nonrenewal models are significantly more difficolkeval-
uate than renewal models, e.g., on the most difficult renease,
the H»/ H; model, the LR bounds progressively converge to the ex-
act asN increases, while on the MAP/MAP case the error remains
at 10% also for N = 100; (2) hyper-exponential CVs are typi-
cally more difficult to approximate than hypo-exponentissC(3)
the error ofR,,.i», is No greater than% and is quite insensitive to
the service process type; (B).... iS more sensitive to nonrenewal
service where it achieves a worst-case erroriéh.

6.2.2 Case 2: Sensitivity to Network Routing

We evaluate the impact on accuracy of network routing, show-
ing the counter-intuitive fact that nonrenewal balancetivoeks
are difficult to approximate. We consider the three queueahiod
Figure 3 with the mean service rates considered in [8], j.e.&=
1/0.028, u2 = 1/0.04, andus = 1/0.28. We evaluate the accu-
racy of the LR response time bounds in the case where the retwo
is perfectlybalanced(p:,1 = 0.2, p1,2 = 0.7, p1,1 = 0.1), par-
tially unbalanced(i.e., queues is bottleneck, queug and queue
are balancedy:,1 = 0.1, p1,2 = 0.7, p1,1 = 0.2, this case corre-
sponds to Balbo’s model in [8]), ambalancedqueues is bottle-
neck, queue is slower than queug, p1,1 = 0.33, p1,2 = 0.33,
p1,3 = 0.34). The MAP queu& hasCV = 4 andv2 = 0.5.



Service [ N=10 | N=25 | N=100
renewal service processes only
bnk nonbnk Amin Amaw Amin Amaw A'nzin Amaw
E> E> 0.01 0.00 | 0.01 0.00 | 0.00 0.00
E-> Hoy 0.01 0.08 | 0.02 0.05 | 0.02 0.00
Ho E> 0.01 0.00 | 0.00 0.00 | 0.00 0.00
Ho Ho 0.01 0.09 | 0.01 0.06 | 0.01 0.01
at least one nonrenewal service process
bnk nonbnk A'm'Ln A71‘Laz A111211 A'ma,:v A'mzn A11’Laz
MAP Eo> 0.01 0.00 | 0.01 0.00 [ 0.00 0.00
MAP Ho 0.01 0.09 | 0.01 0.06 | 0.01 0.01
E-> MAP [ 0.00 0.11 | 0.00 0.11 [ 0.00 0.10
Hoy MAP [ 0.00 0.05 | 0.00 0.05 [ 0.00 0.06
MAP MAP 0.00 0.11 | 0.00 0.11 | 0.00 0.10

Table 5. Case 1 - Sensitivity to Renewal/Nonrenewal Service
Processes. Absolute value of the maximal relative errdd & 0%,

1 = 100%) on the response tim& = N/X of two queues networks
(A nin=lower bound errorA .4 =upper bound error).

Results.Figure 7 shows the LR bounds on response times and
queue3 utilization in the balanced and partially unbalanced cases
the utilization bounds follows immediately from the resperime
bounds by Little’s Law and the Utilization Law [22] and arestid
to evaluate the LR bound accuracy as a function of the bettlen
gueue congestion level. We have found that the unbalancadisa
extremely similar to the partially unbalanced and themfsrnot
plotted. Itis found that: (1) the LR bounds of both utilizatiand
response times are very close to the exact value on mostgopul
tions; (2) both bounds progressively converge to the asgtigpt
exact, a feature that is not always found in standard bouods f
gueueing networks (e.g., the ABA lower utilization boundrere
converges asymptotically it/ > 2); (3) the slower asymptotic
convergence in the balanced case makes the approximaticen mo
challenging, but the maximal error remains less tha# of re-
sponse time antl2% of bottleneck utilization.

6.2.3 Case 3: Sensitivity to Service Variability and
Autocorrelations

We consider the nonrenewal MAP/MAP model in the last row of
Table 5 and we vary th€V and the autocorrelation decay rate
for the two identical MAPs.

Results.Table 6 reports the maximal relative error on response
times. Itis found that: (1) the error @,,., is loosely sensitive to
CV and~s; (2) the error ofR .. is proportional to bottCV and
~2, but decreases with the population size; (3) the maximuuar err
of Rimaz (13%) is compensated by the minimum error Bf,;r,
(0%). Note that the errors are higher than in the random models
since we are now considering two MAPs instead of one.

6.2.4 Case 4: Applicability to Real Workloads

We illustrate the applicability to real workloads evaluatithe
model in Figure 3 using Balbo’s partially unbalanced confgu
tion (p1,1 = 0.1, p12 = 0.7, p1,1 = 0.2) and considering at
queue3 the nonrenewal MMPP(16) fitted in [1] from the classic
long-range-dependent (LRD) Bellcore-pAug89 trace of [Zdjis
trace is often considered in the literature as represgatafimany
long-range dependent processes found in modern compotar, ¢

N =10 N =25 N =100
CvV 2 Amin Amaw Amin Amaw A'nzin Amaw
2 0.000f 0.00 0.01 [ 0.00 0.01 | 0.00 0.00
2 0.250| 0.00 0.02 | 0.00 0.01 | 0.00 0.00
2 0.500( 0.00 0.02 | 0.00 0.01 | 0.00 0.00
2 0.750| 0.00 0.02 | 0.00 0.02 | 0.00 0.01
2 0.990| 0.00 0.02 | 0.00 0.02 | 0.00 0.02
4 0.000f 0.00 0.05 [ 0.01 0.03 |0.01 0.00
4 0.250| 0.00 0.05 | 0.01 0.04 | 0.01 o0.01
4 0.500( 0.00 0.06 | 0.00 0.04 | 0.01 0.02
4 0.750( 0.00 0.06 | 0.00 0.05 | 0.01 0.03
4 0.990| 0.00 0.06 | 0.00 0.06 | 0.00 0.06
8 0.000( 0.00 0.12 [ 0.01 0.10 | 0.02 0.04
8 0.250| 0.00 0.12 | 0.01 0.10 | 0.02 0.05
8 0.500( 0.00 0.12 | 0.01 0.11 | 0.02 0.07
8 0.750( 0.00 0.12 | 0.00 0.12 | 0.01 0.09
8 0.990| 0.00 0.13 | 0.00 0.13 | 0.00 0.13

Table 6: Case 3 - Sensitivity to Burstiness and Autocorrelations.
Absolute value of the maximal relative err@r € 0%, 1 = 100%) on the

response tim&? = N/X for a MAP/MAP network (A, =lower bound

error, A,z =upper bound error).

N Amin Amaw
1 0.00 0.00
2 0.05 0.03
10 [ 0.03 0.02
25| 0.01 0.01
50 [ 0.00 0.01

Table 7. Case 4 - Applicability to Real LRD Workloads. We
use the Bellcore-Aug89 trace [23] fitted in [1] by a MMPP(18)solute
value of the maximal relative errob (= 0%, 1 = 100%) on the response
time R = N/X for the network in Figure 3 with the MMPP(16) at queue
3 (Amin=lower bound errorA..-=upper bound error).

is prohibitively expensive in the second case. The resuntiEate
that: (1) the maximal error is d3% and the accuracy improves
with the population size. This result is consistent withalkeuracy
levels in the other case studies and indicates the apityadfithe
LR bounds also with models of real workloads; (2) becaus@ef t
large order of the MMPP, the experiment also illustrates|die
sensitivity of accuracy to changes in the number of phases.

6.2.5 Case 5: Sensitivity to Multiple MAP Queues

We consider a closed network with three queues in series. The
mean service rate at queilis u; = ¢. Service is either exponential
or MAP(2) withCV = 4 and~, = 0.5. During thei-th exper-
iment,0 < ¢ < 3, the firsti queues are exponential, while the
remainingM — i are MAP(2).

Results. Table 8 reports results of the four experiments. It is
found that: (1) the worst case error bf% is achieved when all
three queues are MAP(2); (2) both LR bounds are sensitivieeto t
increase in the number of MAP queues; (3) with zero or one N2AP(
the bounds yet converge asymptotically to the exact valdjethe
same conclusion is not immediate for the other cases, bupgbm
iNg Rmin and Rmq, for N = 250, 500 reveals (not shown in the
table) that afV = 250 the gap between the boundsig,a. / Rmin —

1 ~ 11%, while for N = 500 it drops to~ 6% suggesting conver-

munication, and multimedia systems. We scale the mean of the gence.

MMPP(16) so thajs = 1/0.28; CV, skewness and autocorrela-
tions are unchanged (see [1] for details on this MMPP(16)iend
autocorrelationgy,).

Results.Table 7 illustrates results for different populations. We
considerN = 50 instead of N = 100 because global balance

6.2.6 Case 6: Sensitivity to Network Size

In general, we have observed that for large models with dense
routing matrices the linear constraining of the inevitalgyy small
marginal probabilities may lead to numerically difficulioptems.
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Figure 7: Case 2 - Sensitivity to Network Routing. Analysis of utilization and response time in the balanced partially unbalanced cases of the
network in Figure 3. The unbalanced case (not depicted)abtgtively similar to the partially unbalanced, but shaguicker convergence to the saturation.

MAPs N Amin Amaw MAPs N Amin Amaw
03 2 0.00 0.00 23 2 0.00 0.10
0/3 10 0.03 0.00 2/3 10 0.04 0.11
0/3 25 0.01 0.00 2/3 25 0.05 0.09
0/3 100 0.00 0.00 2/3 100 0.09 0.03
113 2 0.00 0.05 33 2 0.00 0.13
1/3 10 0.03 0.02 3/3 10 0.04 0.15
1/3 25 0.02 0.00 3/3 25 0.07 0.12
1/3 100 0.00 0.00 3/3 100 0.11 0.04

Table 8 Case 5 - Sensitivity to Multiple MAP Queues. Absolute
value of the maximal relative errob (= 0%, 1 = 100%) on the response
time R = N/X for the MAP/MAP network in Table 54,,;,=lower
bound errorA .« =upper bound error). The notatidry3, k = 0, 1, 2, 3,
used in the MAPs column indicates the number of nonexpasleltAPs
used in the model; the remainidg — k queues have exponential service.

In these cases, interior point algorithms perform bett@n the sim-
plex algorithm [6], but the numerical corrections of theekim solver
can inflate computational times. However, if the model igésaind
the routing is sparse, the numerical conditioning is uguallich

improved, and models up to 15-20 queues and hundreds of jobs

can be evaluated efficiently.

In this example, we study a distributed system composed by a

farm of J Web servers. Each Web server serves directly static ob-
jectrequests (e.g., pictures) and communicates with adiatabase

for the generation of HTML pages. Each local subsystem of Web
server and database server is modeled as shown in Figure-8 sim
larly to the model of a real J2EE Web application defined artd va
idated in [21]. We use the values found in [21] for the parariet
zation of the service times at the Web serverg'¢ = 12.98ms),

at the DB serversy(;}; = 10.64ms), and for the local commu-
nication (i's  pu_comm = 1-12ms). The ratio between static
object requests and Web pages requests is et %o: 1 as mea-
sured in [3]. We fix the routing probability from the commugaic
tion link to each subsystem tb/J. We use the median file size
measured in [3] which is approximately three packets. Tharme
variance, skewness and lagautocorrelation of inter-arrival times
between packets is set as in the real workload used in Sextoh
With these parameters, the fitted MAP at the communicatiaksli

is a MAP(2) with rates)y;?, = 0.8074, vyl, = 0.2107, uy.,
14.5809, uy2, = 0.0, uyt, = 0.0, anduy?, = 131.7814.

Results. Since, due to the state space explosion, exact global
balance solutions are prohibitive fad > 4, we report in Table
9 the relative gapRmaz/Rmin — 1 between LR upper and lower
response time bounds for different value bf According to the

In/Out Traffic (Net)

MAP

Web Server j DB Server |

@

WS-DB Comm j

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8: Case 6: Distributed Web System. Web farm composed
by J Web servers. Bursty inbound/outbound traffic is modeled bAd
server with temporal dependent service. Incoming requestslispatched
to a given Web server with fixed probability/ .J.

model definition, the number of queu&sis equal t3J+1, where
the additional queue is representative of inbound/outbdrafic.
As J increases, there is little impact on the accuracy of the atkth
which remains acceptable on all populations. In particwdarthe
population increases the error decreases b&&on models with
large populations.

To summarize, we have provided numerical evidence that e L
bounds provide accurate estimates using an extensive egpef-
iments. Sensitivity analysis to the different parametexs been
conducted to identify the major sources of inaccuracy ferltR
bounds.

7. CONCLUSIONS AND FUTURE WORK

Recent workload characterizations have shown that nowadne
service processes are good abstractions of real systemdbads,
especially of those found in storage systems and Web seg24ers
25, 31]. We have shown that existing queueing network models
which always consider renewal service processes and docrot a
count for nonrenewal features such as autocorrelation rivicge
times, grossly overestimate or underestimate actualreygeafor-
mance.

We have presented a solution to this problem by studying a new
class of MAP closed networks that supports nonrenewal crvi
We have introduced a class of exact state space reductianarth



M | N bndgap|| M | N bndgap
10 | 10 0.187 || 13| 10 0.189
10 | 25 0.141 || 13| 25 0.143
10 | 100 0.098 |[ 13 | 100  0.097
10 | 250 0.089 |[ 13 | 250 0.088
16 | 10 0.181 || 19 | 10 0.180
16 | 25 0.137 || 19| 25 0.138
16 | 100 0.089 |[ 19 | 100  0.089
16 | 250 0.085 || 19 | 250 0.080

Table & Case 6 - Sensitivity to Network Size. Relative gap
Rmaz/Rmin — 1 of upper and lower bound$ (= 0%, 1 = 100%) on
the response tim& = N/X (Rm:in=lower bound,R,..=upper bound).

computationally tractable and allow the efficient compotatof
upper and lower linear reduction (LR) bounds on arbitrary MA
network performance indexes, such as utilizations, thiputs, re-
sponse times, and queue-lengths. To the best of our knowjledg
this is the first time that bounds for queueing networks withRM
service are obtained. The LR bounds AMPL specification tugyet
with additional resources on MAP queueing networks ardaiviai
athttp://ww. cs. wn edu/ MAPQV . Experiments indicate
that the LR bounds are extremely accurate, showing on awexag
2% relative error on the response time with a maximum error of
14% (for 99% of the random models the maximum error is also
found to be less thah0%). We also remark that if the objective
function f used in the program in Figure 6 is a nonlinear function
of 7, our result immediately generalizes to the nonlinear case p

vided that the results are global optima.

An important extension of this work is the optional inclusiof
delay servers into the MAP network. Since the service rates o
delay are load-dependent, this requires a generalizationravork
to the load-dependent case. It may be also interesting éméxhe
presented class of MAP networks to include additional sehed
ing disciplines or multiclass workloads in order to fullybslue the
class of product-form queueing networks. Finally, it mayitter-
esting to compare our bounds with standard diffusion or asgtic

approximations.

Acknowledgement

This work was supported by the National Science Foundaticieu
grants ITR-0428330 and CNS-0720699. The authors thank-Gian
franco Balbo, Jeff Buzen, Larry Dowdy, Giuseppe Serazzirrisiu
Woodside, Qi Zhang, and the SIGMETRICS reviewers for dedhil
comments which greatly helped in improving the quality dsth

paper.

8. REFERENCES

[1] A.T. Andersen and B. F. Nielsen. A Markovian approach for
modeling packet traffic with long-range dependenE&E JSAC
16(5):719-732, 1998.

[2] M. F. Arlitt and C. L. Williamson. Web server workload
characterization: The search for invariantsPhoc. of ACM
SIGMETRICSpp. 126-137, 1996.

[3] M. Arlitt and T. Jin. Workload characterization of the9®world
cup web site. TR HPL-1999-35R1, HP Labs, 1999.

[4] S. Asmussen and F. Koole. Marked point processes asliofit
Markovian arrival streamsl. App. Proh.30:365-372, 1993.

[5] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacioge@
closed, and mixed networks of queues with different clas$es
customersJACM, 22(2):248-260, 1975.

[6] D. Bertsimas and J. Tsitsiklisntroduction to Linear Optimizatian

Athena, 1997.
[7] G. Bolch, S. Greiner, H. de Meer, and K. S. TriveQiueueing
Networks and Markov ChaingViley, 1998.

[8] A.B. Bondi and W. Whitt. The influence of service-time idility
in a closed network of queueBerf. Eval, 6:219-234, 1986.

[9] G. Casale, N. Mi, and E.Smirni. Bound analysis of closaduging
networks with nonrenewal workloads. TR WM-CS-2008-03,
College of William and Mary, 2008.

[10] G. Casale. An efficient algorithm for the exact analysfisnulticlass
queueing networks with large population sizesPceedings of
joint ACM SIGMETRICS/IFIP Performance 2QQgages 169-180.
ACM Press, 2006.

[11] G. Casale, E.Z. Zhang, and E. Smirni. Interarrival Tsme
Characterization and Fitting for Markovian Traffic AnalysTR
WM-CS-2008-02, College of William and Mary, 2008.

[12] K. M. Chandy, U. Herzog, and L. Woo. Parametric analydis
queueing networkdBM J. Res. Dey.19(1):36—-42, 1975.

[13] P.J. Courtois. Decomposability, instabilities, aatlsation in
multiprogramming system&€ACM 18(7):371-377, 1975.

[14] D.R. Cox and P.A.W. LewisThe Statistical Analysis of Series of
Events John Wiley and Sons, New York, 1966.

[15] MAP Queueing Networks Webpage.
http://ww. cs. wn edu/ MAPQV .

[16] D. L. Eager, D.J. Sorin, and M. K. Vernon. AMVA technicutor
high service time variability. IfProc. of ACM SIGMETRIC$p.
217-228. ACM Press, 2000.

[17] W. Fischer and K. S. Meier-Hellstern. The Markov- Moatgd
Poisson Process (MMPP) cookbodterf. Eval, 18(2):149-171,
1993.

[18] R. Fourer and D.M. Gay and B.W. Kernigha®MPL — A Modeling
Language for Mathematical Programming8pringer-Verlag, 1995.

[19] GNU GLPK 4.8ht t p: / / ww. gnu. or g/ sof t war e/ gl pk/ .

[20] A. Horvath and M. Telek. Markovian modeling of real dataffic:
Heuristic phase type and MAP fitting of heavy tailed and fiblike
samples. IrPerformance Evaluation of Complex Systems:
Techniques and Tools, IFIP Performance 2002, LNCS Tutorial
Series Vol 245%ages 405-434, 2002.

[21] S. Kounev and A. Buchmann. Performance modeling antliatian
of large-scale J2EE applications. Pmoc. of the 29th International
Conference of the Computer Measurement Group (C\&ges
273-283, 2003.

[22] E. D. Lazowska, J. Zahorjan, G. Graham, and K. C. Sevcik.
Quantitative System Performand®rentice-Hall, 1984.

[23] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilso@n the
self-similar nature of ethernet traffitEEE/ACM T. Networking
2(1):1-15, 1994.

[24] Z. Liu. Long range dependence and heavy tail distrdndi(special
issue).Perf. Eval, 61(2-3):91-93, 2005.

[25] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Penfiance
impacts of autocorrelated flows in multi-tiered systeRexf. Eval,
64(9-12):1082-1101, 2007.

[26] J. Morrison and P.R. Kumar. New linear program perfanoe
bounds for closed queueing networkiscrete Event Dynamic
Systems: Theory and Applicatiqrisl:291-317, 2001.

[27] R. R. Muntz and J. W. Wong. Asymptotic properties of elds
queueing network models. Proc. Ann. Princeton Conf. on Inf. Sci.
and Sys.pp. 348-352, 1974.

[28] M. F. Neuts.Structured Stochastic Matrices of M/G/1 Type and
Their Applications Marcel Dekker, NY, 1989.

[29] M. Reiser. A queueing network analysis of computer camivation
networks with window flow controllEEE T. Comm).
27(8):1199-1209, 1979.

[30] M. Reiser and S. S. Lavenberg. Mean-value analysisasfed
multichain queueing network§ACM, 27(2):312—-322, 1980.

[31] A. Riska and E. Riedel. Long-range dependence at theditige
level. InProc. of 3rd Conf. on Quantitative Eval. of Systems (QEST)
pp. 41-50, IEEE Press, 2006.

[32] J. Zahorjan, E. D. Lazowska, and R. L. Garner. A decoritioos
approach to modelling high service time variabiliBerf. Eval,
3:35-54, 1983.

[33] Q. Zhang, N. Mi, A. Riska, and E. Smirni Performance-¢&ad Load
(Un)Balancing Under Autocorrelated FlowEEE T. on Parall. and
Distrib. Sys, 19(5):652—665, May 2008.



