Performance-Guided Load (Un)Balancing Under

Autocorrelated Flows

QiZzhand Ningfang Mit Alma Risk& Evgenia Smirri
! Department of Computer Science, College of William and M#ifliamsburg, VA

2 Seagate Research, 1251 Waterfront Place, Pittsburgh, 22215

Abstract

Size-based policies have been shown in the literature ext@fély balance load and im-
prove performance in cluster environments. Size-basedig®lassign jobs to servers based
on the job size and their performance improvements are aomd of separating “short” from
“long” jobs, by avoiding having short jobs waiting behindtpjobs for service. In this paper,
we present evidence that performance improvements duestsdparation quickly vanish if
the arrival process to the cluster is autocorrelated. Baramlir observations, we devise a new
size-based policy called BQAL that still strives to separate jobs to servers accgrdiinjob
size but this separation is now biased by an effort to redecpnance loss due to autocor-
relation in the arrival flows of jobs that are directed to esetver. As a result of this bias, all
servers may not be equally utilized (i.e., load in the systeay be “unbalanced”), but perfor-
mance benefits become significant. HR AL can be used on-line as it does not assume any a
priori knowledge of the incoming workload. Extensive siatidns show the effectiveness of
D_EQAL under autocorrelated and uncorrelated arrival steeand illustrate that the policy
successfully self-adjusts the degree of load unbalancisgdbon monitored performance mea-

sures.

1 Introduction

In the past few years, there has been a renewed interest idettedopment of load balancing
policies for clustered systems with a single system image, systems where a set of (homoge-
neous) hosts behaves as a single host. Jobs (or requestspaa dispatcher which then forwards
them to the appropriate serveWhile there exists no central waiting queue at the dispateizeh
server has a separate waiting queue and a separate protessoperates under the first-come
first-serve (FCFS) queueing discipline, see Figure 1. Thpalching policy is critical for system
performance and strongly depends on the stochastic ckasdics of the jobs as well as on the
performance measures that the system strives to optinfiggh $ervice times are highly variable,
then policies that balance the load in the cluster using @sg loriterion the size of the incoming
job, have been shown to minimize the expected job compleito@ and the expected job waiting
time [10, 9]. This broad family of load balancing policiekisown assize-based policies.

Servers (FCFS)

Arriving jobs ' Front—end !
A . Dispatcher |

,,,,,,,,,,,,,,,

Figure 1: Model of a clustered server.

The basic premise for the success of size-based policiedugtion of variability in the job ser-
vice time distribution at each server. First, it has beenaletrated in the literature that increased
variability in the service process of an M/GI/1 queue resiitlonger waiting queue lengths [13].
Longer waiting queues imply longer expected job respomsedi(i.e., waiting plus service times)
and longer average job slowdowns (defined as the expectad wékhe ratio of the job response
time to the job service time). In an M/GI/1 setting, the periance of small jobs that are queued
behind large jobs degrades significantly, which then cbuates to longer average job response time

and longer average job slowdown. Size-based policies trettgobs of similar sizes to the same

1In this paper, we use the terms “jobs” and “requests” intengfeably.

2

server aim at reducing the variation in job service times$geeach server and at diminishing the
proportion of small jobs waiting behind long jobs. Definingetintervals of job sizes served by
each server must be done judiciously. If there is a priorikedge of the job service time distribu-
tion, then splitting the cumulative distribution functi@@DF) of job service times in equal parts, as
many as the servers, ensures that all servers are equéiltedltii.e., the system is load balanced)
and that jobs of “similar” size are directed to the same seiee optimality of size-based policies
in homogeneous environments with respect to minimizingettgected job response time and the
expected job waiting time has been proved in [9].

Not all size-based policies require a priori knowledge @fjtib service time distribution as the
empirical distribution may be estimated on-the-fly by cdiileg statistics of the past workload seen
by the system [25]. A required condition though for sizedubpolicies is that upon job arrival at
the dispatcher, an accurate estimate of the job serviceisim@ssible. This condition restricts our
discussion here to systems where accurate estimation sgjofice times is possible.

Several types of clustered systems can take advantageesbased policies. One example
is locally-distributed Web server clusters where a switcthe initial interface between the cluster
nodes and the Internet [3, 25, 15]. For static requests ind&eker clusters, e.g., transfers of image
or text files, the job service time is analogous to the sizénefttansferred file. This information
can be immediately used by the dispatcher to assign the setuéhe appropriate server [25].
Media-server clusters that provide streaming of audio atelo/is another example of a centralized
cluster where job size is known a priori and where size-baséidies can be used [22, 6]. Storage
systems that use mirroring to improve performance and datidadility is yet another case of a
cluster system where load balancing based on the job sizesglye.

Here, we focus on the general problem of load balancing inmdgeneous cluster of FCFS
servers depicted in Figure 1, aiming at improving the exgekqib response time and the expected
job slowdown. In contrast to prior work in size-based pe@l&iwhich assumes that the arrival
process at the dispatcher is independent and identicaltyilalited (i.i.d.), we examine the perfor-

mance of size-based policies undelaatocorrelated arrival process. Autocorrelation in the arrival

2Size-based policies can be adapted for Web server clustarserve dynamic requests. For details we direct
the reader to [25]. Our focus here is on the more general prolf the effectiveness of size-based policies under

autocorrelated arrivals.

process implies that there is a dependence structure imkaldlows. Conventional wisdom has
it that the arrival process in Internet servers is not ilbelcause of the self-similar nature of network
traffic [20]. Autocorrelated flows have also been observedutti-tiered systems [14] and storage
systems [17].

In this paper, we show that the effectiveness of size-baskcigs diminishes if the workload
arrival process is autocorrelated. We closely examine #rpnance effects of autocorrelation
under several load balancing policies includings®TLOAD, a size-based policy, and several
classic policies includingoin the Shortest Weighed Queue, Join the Shortest Queue, andRound-
Robinin order to build intuition on the problem. Based on our olsaagons, we propose IEQAL,

a new size-based load balancing policy that reduces pesficendegradation due to autocorrelation
in each server. IEQAL dynamically distributes work eclly addressing@ocorrelation anddad,
andmay unbalance load in the system in order to benefit performdhtee arrival process to the
cluster is uncorrelated, then the policy loads each seritbrequal work, i.e., aims at balancing
the load across all servers. If the arrival process to thstefus autocorrelated, then BQAL
loads each server with unequal work such that load in thesybecomes unbalanced, but overall
system performance increases dramaticalhlEQAL does not assume any a priori knowledge of
the job service time distribution nor any knowledge of théoaarrelation structure in the arrival
streams, yet it successfully copes with changing workldadsbserving past arrival and service
characteristics as well as past performance. To the bestrdfmowledge, this is the first time that
dependence in the arrival process becomes a critical aspleetd balancing.

This paper is organized as follows. Section 2 presentsatiaork. Section 3 gives evidence of
performance deterioration in a single server system duettxarrelated arrivals and demonstrates
that performance gains of size-based policies in clustaikly evaporate in the presence of auto-
correlated arrivals. In Section 4 we first present a poliey tinbalances the load in a static manner
to improve performance under autocorrelated flowsEQAL, the proposed on-line size-based
policy, is presented later in the section and its perforraaaevaluated via detailed simulation.

Section 5 summarizes our contributions.

2 Related Work

A significant body of research in task scheduling and loadriahg has been developed over the
years (see [11, 9] and references within), but only recethidye has been a consensus that tra-
ditional load balancing policies, i.e., join-the-shottggeue or join-the-least-loaded server, result
in high average job response time and high average job slewifgob service times are highly
variable and/or heavy-tailed [10]. For workloads with Hiyglariable service times, size-based
policies, which advocate dedicating servers to jobs of lsinsizes, have been shown in the lit-
erature to achieve high performance [10, 25]. Assuming tiiiate areN servers, the job sizes
are partitioned intaV intervals,[sy = 0, s1), [s1,52), ..., [Sy—1,S8y = 00), SO that servef is
responsible for satisfying requests of size betweenands;. By dedicating servers to requests of
similar size, these policies reduce the average job slowdbvough separation of long and short
jobs. Despite the fact that size-based policies are statdle., oblivious of the instantaneous load
in each server, they successfully load each server withoxppately the same amount of work so
that all servers are equally utilized [10, 9]. The optimatif size-based strategies is proved in [9].

Note that size-based policies are based solely on a priovledge of the distribution of the
incoming job sizes and not of the instantaneous load in theese Even if the job service time
distributions arenot known a priori, on-line versions of size-based policiesehstvown to maintain
high performance for workloads that are highly variadeosstime, i.e., transient workloads [25].
ADAPTLOAD has been developed as an on-line version of a size-basexy plodit monitors the
incoming workload and builds a histogram of job size frequyefr.e., builds the empirical distri-
bution histogram) while the system is in operation. Basedhas histogram, it self-adjusts the
interval boundaries according to changes in the operdt@mndgronment. Rapid fluctuations in job
size frequencies and/or job service times are now refleat#tei histogram.

Size-based load balancing policies have been examined thelassumption of i.i.d. arrivals
into the cluster. Nonetheless, there is a significant boditeriiture that shows that dependence
in arrival flows exists, especially in network-related fiaf20]. Autocorrelated flows have been
also observed in multi-tiered systems [14] and storageesys{17]. Even for systems that operate
under low to moderate utilization levels, increased aut@tation in their arrival process has been

shown detrimental for performance, i.e., the higher th@@utelation, the longer the expected

response times [8]. Similar results are reported in [2] whke performance effects of short-range
dependence versus long-range dependence in the arrigahsrare examined. In the context
of networking, traffic shaping has been used as a techniqadiéeiate the negative effects of

autocorrelation, by dropping, reordering, or delayingstdd requests [5, 21, 7, 1]. Finally, recent
analytic models of a single queue with autocorrelated {ataval and/or service process, have
demonstrated that flows out of the queue are also autoctmtedand propagate to the next queue

that feeds from that departure process [23].

3 Motivation

In this section, we first present data that have been measureghl systems to confirm the exis-
tence of dependence in arrival streams. Then, we give ntmtivéor this work first by presenting
the performance of a single server under autocorrelatedkrand second by examining the per-

formance of load balancing policies in a cluster under aurtetated arrivals.

3.1 Autocorrelation in Systems

Throughout this paper, we use the autocorrelation fund#F) as a metric of the dependence
structure of a time series (either request arrivals or sesyiand the coefficient of variation (CV)
as a metric of variability in a time series (either requesvals or services). CV values less than 1
indicate that the variability of the sample is low. CV vallager than 1 indicate high variability.
The exponential distribution has a CV of 1.

Consider a stationary time series of random variablEs}, wheren = 0,..., oo, in discrete
time. The autocorrelation function (ACh) (k) and the coefficient of variation (CV) are defined
as follows

E[(Xt — ,M)(Xt+k: - :u)] CV = g

o
wherey is the mean and? is the common variance ¢fX,, }. The argument is called the lag and

px(k) = px, x, =

denotes the time separation betweénand X, .. The values opx (k) may range from -1 to 1.
If px(k) = 0, then there is no autocorrelation at laglf px (k) = 0 for all £ > 0 then the time

series is uncorrelated. In most cases, ACF approaches gérmareases. The ACF essentially

6

captures the “ordering” of random values in the time serfiessitive ACF values imply that there
is strong temporal locality, i.e., a value of the randomalale has a high probability to be followed
by another variable of the same order of magnitude, whilatmeg ACF implies the opposite. The
ACF’s decay rate determines if a process exhibits weak ongtcorrelation.

Figure 2 presents the ACF of arrivals at several storagesyssupporting (dedicatedly) var-
ious applications [16, 17]. The figure shows that the depecelstructure in the request arrival
streams to the storage systems differs among the systetsufhort different applications

This dependence structure is a result of multiple factarsigiing the architecture of the storage
system, the file system, and the resource management gaiad levels of the I/0O path. For more

evidence of the existence of autocorrelated flows in stosggeems, see [17].

0.25

0.2

—mail User Accounts

3
0.1 b

<
0.05 7

Software Development
1 1 1 1 1

1 1 1 1
0 100 200 300 400 500 600 700 800 900 :

Lag(k)

-0.05

Figure 2: ACF of the arrival process at the storage subsy&iemarious applications.

3.2 Autocorrelation Effectsin a Single Queue

To illustrate the magnitude of the performance effects ebearrelation in systems, we parame-
terize a simple queueing model of a single server. The dmpnacess is drawn from a Markov
Modulated Poisson Process (MMPP) [12] that is parametsgeh that it results in three levels of
dependence as illustrated in Figure 3(a): NOACF (i.e.yalsiare uncorrelated\CF,, andACF-.
The probability distribution functions (PDFs) of theseaiarrival processes are identical (i.e., all
their moments are the same), but what distinguishes thehe @der of sampling from the PDF,
which introduces autocorrelation. The mean inter-artivaé in these three processes is equal to
13.28 ms and CV is equal to 5.67, as derived by the arrivalgg®to the storage system of a Web

server presented in [17].

The service process is drawn from a 2-stage hyperexpohéHtia distribution with mean
service time equal to 3 ms and CV equal to 1.85 and models 8ielelel service process for
the Web server storage trace in [17]. Inter-arrival times sgaled so that we examine system
performance under different utilization levels.

Figures 3(b)-(d) present performance measures for the ttifeerent arrival processes as a
function of server utilization. The effect of ACF on systearformance is tremendous: the higher
the ACF, the worse the system performance, which can worgsas imuch as 3 orders of magnitude
when comparing to the case with uncorrelated (NOACF) dgivBecause of the difference in the
three curves, the performance measures with uncorrelatedla look flat. Under uncorrelated
arrivals (i.e., the NOACF curve), queue length, as expedseefjual to 152 for utilization equal to
0.9. This number is dwarfed in comparison to the correspanudalues for theACF; and ACF,
curves. The inset plots in Figures 3(b)-(d) illustrate taene performance measures but using
logarithmic scale on thg axis. The dramatic effects of autocorrelation are illustiaeven for low
to moderate system utilizations, between 25% and 50%, wherprobability that a job finds the
system idle is higher than 0.5.

It is the burstiness in the arrival stream that results ifiquarance degradation by several orders
of magnitude, even for low to moderate loads. This burstinesaptured by the autocorrelation
metric. Positive ACF values greater than zero for lag 1 imply that a small inter-arrival time
has high conditional probability to be followed by a smialih inter-arrival, causing the queue to
build up fast. The stronger the dependence, the more théirmss in the arrival stream, which
causes the waiting queue to build up faster if the arrivalestr iSACF, versusACF;. If the arrival
process is uncorrelated, the conditional probabilities zaro, i.e., there is no burstiness in the
process, which implies less waiting queue build up (and eguently better performance) even for
the same server utilization level as Figure 3 illustratdth@ugh bursty periods are relatively short,
their impact on performance is long-term, as Figure 3 inégaMoreover, if the goal in the system
is to achieve a certain performance, then the system utdizahould be kept at different levels
for arrival processes with the same average behaviorifiean and CV) but different dependence

structures.

& 05 8 30000 T T T T T T T T/
0 = 10000 T T T T T T T1_T
[45) i i “— — 10000F -
8 0.4 ; 25000 o000k
5 03l | & 20000 1‘;3:
IS ACF2 S, 15000 1 .y
E 0.2] g 100001 00617 Loy _|
3 01k ACF1 | EI_, "0 01020304050.60.70.80. ACF1
LL NOACE S 5000(7
O [NOAC o} NOACF,
< = o 7
‘ ‘ ‘ ‘ ‘ ‘ o N I O I I I N
-0.1
0 100 200 300 400 500 600 700 0 01 02 03 04 05 06 0.7 0.8 0.9
(@) Lag(k) (b) Utilization
1le+08 I \ [[\ [I \ I
o 120 10(‘)0 ‘\‘ ‘\‘ ‘\‘ ‘\‘ ‘\ I I I 1e+08
\E, 100 100F b 8e+07| 1evo7r]
Q 10F c 1e+06F
g 80 af 7 % 6€+07 ™ 5000t b
= | o1 B S
o 60 oof = det07["% N
[7p] ooopb———1 11101 (@] 1000 I I T I T O
g 40 0 0.10.20.30.40.50.60.7 0.8 0.9 7 n | 0 0.10.20.30.40.50.60.7 0 ACF1 |
Q | ACF1 | 2e+07
g 20 NOACH
Ind NOACH o[7]
or ‘ ‘ ‘ ‘ ‘ | | ‘ | 7 \ \ \ | | | | | \
0 01 02 03 04 05 06 07 08 09 1 0 0.1 0.2 03 04 0.-5 0.6 0.7 0.8 0.9
(©) Utilization (d) Utilization

Figure 3: (a) ACF of the arrival process at the server, (b)jayequeue length, (c) average response

time, and (d) average slowdown.

3.3 Autocorrelation Effectson Load Balancing Policies

In this section, we use simulation to examine the perforraampacts of autocorrelated arrivals in
load balancing policies in the cluster of Figure 1. We asstimaethe number of nodes is equal to
four. Experiments with larger number of nodes have beenddse and results are qualitatively
the same as those reported here.

While the traces in Figure 2 indicate that in a clusteredesysarrivals have different degrees
of correlation, we do not have a detailed description of theeulying system [16]. This prohibits
us from using those traces to drive our simulation. We optedé another publicly available trace
measured in a Web server cluster. Specifically, the servineegs is obtained from traces of the
1998 World Soccer Cup Web sitahat have been used in several load balancing studies [25, 18
19]. Trace data were collected during 92 days, from Aprih2B298 to July 26th 1998 [4]. Here,

3Available from the Internet Traffic Archive at http:/it@.¢bl.gov .

we use part of the June 24th trace (10 million requests),dbaesponds to nearly ten hours of
operation and we extract the file size of each transferregesiq Because the Web site contained
only static pages, the size of the requested file is a goodogppation of the request service
time. The average size of a requested file is 5059 bytes arf@Vts 7.56. High variability in
the file size distribution and file popularities that changantatically over time, make this trace
particularly challenging for load balancing and an exegllsandidate to evaluate the performance
of size-based policies, for more discussion on this traed Zs.

Unfortunately, we cannot use the arrival process of the @VQip trace data because it is
not detailed enough: arrival timestamps of requests areiggd in seconds, as a result there are
multiple requests that arrive within one second periods. To exarhmeffect of autocorrelation in
the arrival process, we use the three arrival processesajeddy the MMPP process described in
the previous subsection. Their autocorrelation strudgsidepicted in Figure 3(a).

We compare the performance of the following policiespA®TLOAD, a size-based policy
that uses a histogram of job sizes which is built on-line aasl heen shown to be effective un-
der changing workload conditions [25)¢in the Shortest Weighed Queue (JSWQ) [25],Join the
Shortest Queue (JSQ) [13], andround-Robin (RR).

e ADAPTLOAD: InaclusterwithV server nodes, BAPTLOAD partitions the possible request
sizes intoN intervals,{[sy = 0, s1), [s1, S2), ... [Sn—1,Sny = 00)}, SO that if the size of a
request falls in the-th interval, i.e.[s;_1, s;), this request is routed to senigfor 1 < i < N.
These boundarieg for 1 <: < N are determined by constructing the histogram of request
sizes and patrtitioning it in equal areas, i.e., represgrgqual work for each server, as shown

by the following equation:
/Sjilx~dF(x)%N, 1 <i<N, 1)

whereF (z) is the cumulative distribution function (CDF) of the requ&iges and the amount
of total work isS. By sending requests of similar size to the same server, alieygm-
proves average job response time and average job slowdowawdiging having short jobs
being stuck after long jobs in the queue. For a transient lwadk the values of thé/ — 1

size boundariesy, s, ..., sy_; are critical. ADAPTLOAD self-adjusts these boundaries by

10

predicting the incoming workload based on the histogramheflast K requests. In our
simulations, we set the value &f equal to10,000. For a detailed discussion on the policy

sensitivity to this parameter, we direct the interestedeeto [25].

¢ JSWQ: The length of each queue in the system is weighed by the seobfqueued request,

therefore each incoming request is routed to the least tbaelver.

¢ JSQ: When a request arrives, it is assigned to a server with théleshavaiting queue. If
multiple servers have the same queue length, then a serseleisted randomly from this

group of servers.
¢ RR: In the round-robin algorithm, requests are routed to senvea rotated order.

ADAPTLOAD is a size-based policy that has been shown in the literatubatance load ef-
fectively in workloads with highly variable service time&5]. Here, we show that if arrivals are
autocorrelated, thenBaPTLOAD’s performance is comparable to that of classic policies dha
well-known to perform poorly.

For all simulation experiments presented in this paperathigal process in the cluster is syn-
thetically generated using the three MMPP processes ugbd previous subsection. The service
process directly uses the World Cup trace data of June 24|l buaexperiments, we consider
a cluster of four homogeneous back-end servers that sequests in a FCFS order. We report
on the average job response time, average slowdown, avquege length, and average system
utilization. Figure 4 plots performance results for therftmad balancing policies. Similar to the
results of Section 3.1, Figure 4 shows that autocorrelatiaghe arrival process degrades overall
system performance for all four policies. Observe that aV@erformance under uncorrelated ar-
rivals (NOACF) is two orders of magnitude better than un®l@F, inter-arrivals, and three orders
of magnitude better than und@CF, inter-arrivals, despite the fact that average overallesyst
utilizations are exactly the same for all experiments, agerage utilizations are about 62%, see
Figure 4(d). This is consistent with results presented ictiGe 3.1 for the single queue case.
Per server utilizations, for all experiments, remain th@asand equal to about 62%, but are not
reported here due to lack of space. More importantly, thediglso shows that BAPTLOAD out-

performs all policies under uncorrelated arrivaty, see Figures 4(a)-(c). Under correlated arrival

11

AdaptLoad===1 JSWQE== JsQ RR ==

10000 ‘ 5 100000

10000F 4

0
]
j=
o
(5]
Q
& £
> F 7 i
E 1000 1 3
= E ER) i]
¥ i 1000]
g 1 8 T N]
I} 100 El 7] r > 1
z :] 100 E
jo) [] E E
10 10
(a) NOACF ACF1 ACF2 (9 NOACF ACF1 ACF2
(%]
5 10000¢ 5 100
5 E i = F
® [1 8 [
= 1000f E st [
5 -
S F] ©
< 100p 4 £ |
S £ q =)
S F %ﬁ E
o F i
O 10 10
(b) NOACF ACF1 ACF2 (d) NOACF ACF1 ACF2

Figure 4: Performance metrics under four load balancingigsk: (a) average response time, (b)

average queue length, (c) average slowdown, and (d) avatgigation.

processes, BAPTLOAD’s performance is comparable to that of the three other jgslibecause,
in such conditions, excessive waiting in queue rather tbad balancing decisions determine per-
formance.

To better understand this behavior, we examine the autelation of the arrival process each
server. Figure 5 shows the ACF of the arrival process at eack-bnd server, as well as the ACF
of the arrival process at the front-end dispatcher (labaetbriginal stream” in the figure). When
there is no autocorrelation in the inter-arrivals at thefrend dispatcher (left column of graphs in
Figure 5), the ACF of inter-arrivals at each back-end seivaimost zero for all policies, except
ADAPTLOAD as captured in Figure 5(a).

The middle column of graphs in Figure 5 shows the ACFs for ttpeement with theACF,
structure in the arrival process, and the right column oplhsain Figure 5 shows the ACFs for
the experiment with th&CF; structure in the arrival process. JSWQ and JSQ have the wieake
dependence while RR has the strongest dependence acrgssvalls. The main difference be-
tween ADAPTLOAD and the other three load balancing policies is that, undexPXLOAD, the
dependence structure in the arrival streams of differanesg s different.

Because AAPTLOAD is a size-based policy and the workload is heavy-tailed,t rezpiests
are small and are directed to the first two servers. Spedyfichk first server receives 88.6% of

jobs, and the second server receige®’ of jobs. The remaining (large) jobs are sent to the third

12

(a) NOACF (b) ACF1 (c) ACF2

ACF at arrival point of each server: AdaptLoad ACF at arrival point of each server: AdaptLoad ACF at arrival point of each server: AdaptLo
0.5 T T T T T T 0.5 T T T T T T 0.5 T T T T T
original stream—— original stream——— original stream————
0.4 9 server 1------ B 0.4 \ 9 server 1------ B 0.4 9 server 1------ B
0.3+ server 2---- 4 0.3 server 2---- 0.3 % server 2---- 4
o) server 3- - - - & R server 3- - - - TS K server 3- - - -
2 02 VAT] 2 020 severd— = 7 g 021 S Severa- -
0.1 R 0.1 0.1f ", TR
O bttt Ry SRR K IO L 0 P armesssbt b e it sty 20ah x yh v warint o
0.1 1 1 1 1 1 1 -0.1 1 1 1 1 1 1 -0.1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300400 500 600 70!
Lag(k) Lag(k) Lag(k)
ACF at arrival point of each server: JISWQ ACF at arrival point of each server: JSWQ ACF at arrival point of each server: JSWQ
0.5 T T T T T 0.5 T T T T T T 0.5 T T T T T
original stream—— original stream—— original stream——
0.4 9 server 1------] 0.4 9 server 1------] 0.4 9 server 1------]
0.3+ server 2---- 4 0.3+ server 2---- 4 03+ server 2---- 4
L server 3- - - - L server 3- - - - L server 3- - - -
2 o02r server 4— — Q o02r server 4— — Q o2 server 4— —
0.1 — 0.1 — 0.1 i
0 0 2 e 0 Lo e e e e e —_
0.1 L L L L L L —0.1 L L L L L L 0.1 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600700
Lag(k) Lag(k) Lag(k)
ACF at arrival point of each server: JSQ ACF at arrival point of each server: JSQ ACF at arrival point of each server: JSQ
0.5 T T T T T T 0.5 T T T T T T 0.5 T T T T T T
original stream—— original stream—— original stream——
0.4 & server 1------ B 0.4 ¢ server 1------ B 0.4 9 server 1------ B
0.3F server 2---- o 0.3F server 2---- o 0.3F server 2---- o
L server 3- - - - [N server 3- - - - 'y server3- - - -
Q o02r server 4— — Q o02r server 4— — Q o02r server 4— —
0.1 1 0.1 1 0.1 N
0 o~ N
0.1 L L L L L L —0.1 L L L L L L 0.1 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600700
Lag(k) Lag(k) Lag(k)
ACF at arrival point of each server: RR ACF at arrival point of each server: RR ACF at arrival point of each server: RR
0.5 T T T T T 0.5 \ T T T T T T 0.5 N T T T T
original stream—— original stream—— original stream——
0.4 9 server 1------ B 0.4 9 server 1------ B 0.4 9 server 1------ B
0.3+ server 2---- o server 2---- o 0.3+ \ server 2---- o
L server 3- - - - L server 3- - - - L \ server 3- - - -
Q o02r server 4— — g server 4— — Q o02r \\ server 4— —
0.1 N Bl 0.1 N !
0 O | - \\hwkv;ﬂ_i,lfﬁ,i
0.1 L L L L L L —0.1 L L L L L L 0.1 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 70
Lag(k) Lag(k) Lag(k)

Figure 5: ACF ininter-arrivals at each server, where theiaig requests at the front-end dispatcher
have (a) no dependence (NOACF), A§})F, dependence, and (&CF, dependence.

and fourth servers. Consequently, the first server inh#résdependence structure of the entire
arrival stream. The arrivals at the second server are alec@uelated, but at a lesser degree than
at the first server. ACF in the arrivals of the first two senawss not affect their utilization, which
remains almost the same as the rest of the servers. The pmtfofmance measures, however, are
different for different servers, underbAPTLOAD. Looking at the per-server performance mea-
sures, we observe that, undepAPTL OAD, the performance of the first server (and proportionally
of the second server) is much worse than the performanceeofest of the servers, negatively
affecting overall performance measures for the entireesysiThis behavior is consistent with the
single queue performance, see Figure 3, where performaaasures for utilization around 60%

differ by several orders of magnitude between arrival psees with different dependence struc-

13

tures. Weak ACFs in the arrival processes of all serversuds&/Q/JSQ help performance, but
because short and long jobs are now served on the same g@Wfermance measures remain low.
The performance of RR suffers from both autocorrelatedragiand mixing of long with short
jobs on the same server, resulting in the worst performahtteeexamined policies.

The above observations suggest that in clusters with aurtdated arrivals, unbalancing the
load while maintaining the property of serving jobs of egsiae in the same server (as under
ADAPTLOAD), may improve performance. Specifically, the only disiimiciamong the servers in
the cluster, under BAPTLOAD which balances load and work, is the correlation structfith®
arrival streams, which implies that to achieve equal perorce among these servers, their load
should be unequal, as Figure 3 indicates. Because undetitaetbree load balancing policies,
the correlation structure of the arrival streams to theessrof the cluster is the same, load unbal-
ancing will not help there to improve performance. In thetrsections, we present two policies
that are built on top of AAPTLOAD, one static and one dynamic, and aim at reducing the load
of the server(s) that admit arrival streams with high autegation in an effort to improve the

performance of individual servers and consequently ovgyatem performance.

4 Unbalancing L oad to Improve Performance

First, we present £QAL, a variation of MAPTLOAD, where the load of the servers with autocor-
related arrivals is reduced by a static percentage. Thepregent DEQAL, a dynamic version of
the same policy, where the degree of load unbalancing israttoally re-adjusted to account for

fluctuations in the incoming workload characteristics angdrove policy performance seamlessly.

4.1 S_EQAL: Static Policy

Recall that in anV-server cluster, AAPTLOAD assigns to each servey N of the work, provided
that the amount of total work i§. ADAPTLOAD determines the boundarigs of job sizes for
each servet < ¢ < N by constructing the histogram of job sizes and partitioning N equal
areas, see Eq. (1). This histogram is built efficiently oe-illy with only a small space cost for its

storage [25].

14

Analysis of per-server performance measures show thatlggaatitioning the histogram guar-
antees equal utilization of all servers. However, this mary performance of jobs that are directed
to servers with correlated arrivals. WithDAPTLOAD, the first server admits 88.6% of the jobs,
thus it inherits the correlation structure of the entirgvatrstream to the dispatcher. According to
the single server analysis, this server should operaterumt®ver utilization level than the rest
of the servers. Work must be shifted away from it, in ordergach similar performance levels
with other servers, whose arrival stream is less correldtedurally, the work that is shifted away
from the first server must be redistributed appropriatelthorest of the cluster. This observation
is the basis of EEQAL, a new policy that still builds the histogram of job ssz&s ADAPTLOAD
does, but sets new boundaries,by weighting the work assigned to each server as a funcfion o
performance degradation due to autocorrelation of the Yaexval process to each server. That
is, servers that admit autocorrelated arrival streams mustbe less loaded than those that admit
streams that are uncorrelated.

Aiming at unbalancing the load across servers, we introdusigfting percentage vectpr =
(p1,p2,- -, pN), SO that the work assigned at servexr now equal td1+pi)%, for1 <i < N.The
elements of vectop can take both negative and positive values. A negatimeakes the amount of
work assigned at servetess than its equal share §f N. A positivep; makes the amount of work
assigned at servérhigher than its equal share 6f/N. Becausep simply shifts work from one
server to another, it should satis@;llp,» =0, for1 <¢ < N. The following equation formalizes

this new load distribution:

/Six-dF(a:)z(1+pi)%, 1<i<N. 2
Figure 6 gives an illustration of the high level idea of thesxnpolicy.

S EQAL statically defineg; for 1 < ¢ < N, by lettingp; be equal to a (negative) pre-
determined initial shifting value, i.e., p; = —R. The rest of the shifting percentages for
2 < i < N, are calculated using the algorithm of Figuré Here, because the majority of the

requests is small and they are directed to the first senesttialler the, the less work should be

4We stress that different algorithms can be used to detertmmethis shifting of load is done, provided that
Zf\;lpi = 0for1 < i < N. Finding theoptimal algorithm to set the shifting vectgr is out of the scope of this

paper.

15

4 Shifted boundaries
to server 1,\>

// N Assume N=4 servers

to \
server\

/' 2 \‘\to server 3

SRS Size

s, =0

Figure 6: SEQAL’s high level idea of boundary shifting.

dispatched to server This implies that, is negative. For server for 1 < ¢ < N, the portion
R/21 of its assigned work is equally distributed among serversl to N. Initially, all shifting
percentageg; for 1 < i < N are initialized to O (i.e., no shifting). For serverj,is reduced by
R (see2.ain Figure 7). The work that is shifted from server 1 is now dlyudistributed among
the remaining servers, i.es;, ... py increase by]% (see2.b in Figure 7) such that the condition
SN p: = Ois satisfied. For server 2, the work shifted away from thigeseis now equal td} (see
2.cin Figure 7), sgs is equal to2; — £. The algorithm continues to equally distribute all shifted
work from server 2 to the remaining servers. The iteratiantionies for servers 3, 4,. N — 1. For
example, if we defind? = 10%, i.e.,p; = —0.1, then according to E£QAL shifting percentage
vectorp = (—10%, —1.67%, 3.33%, 8.34%).

1. initialize variables

a. initialize a variablenodi fy modify = R

b. initialize the shifting percentages p,=0foralll <i< N
2. fori=1toN —1do

a. reducep; by modify i <— pi — modify

b. forj =i+ 1to N do

equally distributenodi fy to the remaining servers pj < pj+ %
c. reducemodify to half modify «— modify/2

Figure 7: Setting the shifting percentagedor S.IEQAL.

16

4.1.1 Weakly correlated arrival process, (ACF;)

First, we evaluate the performance aE®)AL with the ACF, arrival process used in the previous

section. We quantify the performance effect of differenttsty vectorsp by presenting the aver-

7000
6000
5000
4000
3000
2000
1000

0

12000
10000
8000
6000~
4000~
2000

§§§§§@§ ;
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
©) R (%) R (%)

Slowdown
| | | | |

Response Time (seconc

—
O
~

Figure 8: Average slowdown and average response time astdnof the initial shifting valugr

underACF; inter-arrival times.

age slowdown and average response time of requests unB&/A3. for different initial shifting
valuesR. Results are presented in Figure/f8= 0% corresponds to the originalbAPTLOAD, i.e.,

no boundary shifting. Figure 8(a) shows that the averageddan of all requests improves &5
increases (i.e., boundaries are shifted to the left). Bastge slowdown is achieved f& = 80%
(i.e.,p1 = —80%). Figure 8(b) shows that average response time increasés ¥ 40%. There-
fore, a good initial shifting value i& = 40%, where average slowdown improves by 75.1% and
average response time improves by 41.9% comparingi®PAL OAD, i.e., R = 0%.

We present the per-server performance in Figure 9. Perragtilizations shown in Figure 9(d)
verify that the shifting percentages indeed imbalance work across the cluster. /Ascreases,
the utilizations of the first two servers decrease whileaailons of the last two servers increase.
The last server’s utilization is now the highest in the ausReducing utilization in the first server
reduces its request slowdown, as shown in Figure 9(a), lkuttra work that is now assigned to
servers 3 and 4 does not increase their slowdown significeortsmall values of:. For R = 90%,
job slowdown at server 4 becomes very high, almost twice @gis &s for server 1, underohprT-
LoAD. Average per-server queue length behaves similarly tcageeslowdown, see Figure 9(c).
The average response time displayed in Figure 9(b) showsthall R values decrease average
response time of the first server and increase the respaonsefithe last server. If the portion of

additional requests served by the last server is small, ttheigontribution of the last server per-

17

serverl=== server2=== server3s=== server4e——1
12000 T T T T

16000 T T T T
14000
12000
10000
8000
6000
4000
2000

0

Y,

Slowdown
Queue Length (# of jobs)

—~
&
—
K2}

1e+06F
100000f
10000F

=
o
o
o

=
= o
o O

Response Time (seconds)

[

90

—~
(=)
-

Figure 9: Per server performance measures: (a) averagdalow (b) average response time, (c)
average queue length and (d) average utilization as a amofithe initial shifting valueR with

ACF, inter-arrival times. The order of bars for each policy raBeserver identity.

formance to the overall performance degradation is notfssggnt. As R increases, more jobs are
assigned to servers with larger index, which counterbastite benefits of reducing utilization at

the first two servers.

R=0% (AdaptLoady—— .

g eor 4 & 6o :]
[a) [a) & J— /
O 50+] S ool R=40% (S_EQAL)- ;]
40 - — 40 - ! -
30 R=0% (AdaptLoad)—— | 30t]
20 R=40% (S_EQAL) ---] 20]
10 ___ b 10 - -
0 I I I I I I 0 L = !))
1 10 100 1000 10000 100000 le+0@+07 1e+08 001 01 1 10 100 1000 10000 100

slowdown (b) response time (seconds)

@

Figure 10: The CDFs of (a) slowdown and (b) response timeuAGE; inter-arrival times, with

R = 0% (ADAPTLOAD) and40%.

We also evaluate the cumulative distribution functions ESpof slowdown and response time
to better understand how BQAL works. Figure 10 gives the CDF of slowdown and response
time for all jobs (i.e., 10 million in each experiment). Sena good initial shifting valué? under
ACF, inter-arrival times is equal ta0% (see Figure 8), we compare the CDFs of slowdown and
response time under_.BQAL for R = 40% with those of AMAPTLOAD (i.e., R = 0%). With
S_EQAL, at least 60% of the jobs have slowdown less than 1008 percentage reduces to 38%

18

(I) S_EQAL with R = 0% (AdaptLoad)

100 .- 100 —
90 - 90 - 0-5,000——

80 80 5,000-100,000 ---

70k . 70F 100,000-inf

60 0O 60

50

0-5,000——

5,000-100,000 -~~~
100,000~inf

40 -
30
20
10

1 I I I I I I e I I I
0

1 10 100 1000 10000 100000 le+06 leH@A08 0.01 0.1 1 10 100 1000 10000 100C

slowdown (b) response time (seconds)

(1) S_EQAL with R=40%

10—
100
2
80
70
60
50
40
30
20
B 10

0-5,000——
5,000-100,000 -~ -
100,000-inf

CDF
o
=}

CDF

0-5,000——
5,000-100,000 - -~
100,000~inf

Il Il Il Il Il Il Il T ro0” Il Il Il
0
1 10 100 1000 10000 100000 le+0@+07 1e+08 0.01 0.1 1 10 100 1000 10000 100
© slowdown (d) response time (seconds)

Figure 11: CDFs of slowdown and response times for threeesicgize ranges: small [0 - 5,000),
medium [5,000 - 100,000), and large [100,000 - infinity), @ndiCF, inter-arrival times.

with ADAPTLOAD, see Figure 10 (a). Figure 10 (b) shows that withatTLOAD only 50% of
jobs have response time less than 1000 seconds while wHRBL this percentage increases to
79%. Moreover, the figure also shows thaE®AL with R = 40% makes the tail of slowdown
about one order of magnitude shorter thamw&RTLOAD. This happens, becauseERQAL focuses
on improving the performance of small jobs at the expensé®fperformance of large jobs, by
loading heavily the servers that serve large jobs.

We present the performance ofEBBQAL for three classes of job sizesmall jobs that access
files less tharb, 000 bytes,medium jobs that access files with size betweei®00 and 100, 000
bytes, andarge jobs that access files with size greater tha6, 000 bytes. For the specific work-
load that drives our simulationsmall, medium, andlarge jobs represent, respectively, 84.5%,
15.4%, and 0.1% of total jobs. Per class CDFs of responses tamé slowdowns are illustrated in
Figure 11. With AAPTLOAD, the performance of small and medium jobs suffers in corspari
to SEQAL confirming our speculation that slowdown and response tails are dominated by
the (bad) performance of small jobs. This phenomenon redcmesiderably with SEQAL.: after
boundary shifting the tails of slowdowns and response tiaresdominated by the deteriorated

performance of large jobs.

19

4.1.2 Strongly correlated arrival process, ACF,

25000

20000
150001~
10000~

Slowdown

5000

S
=
%%]
; g@@@@@

@

Figure 12: Average slowdown and average response time asctdn of initial shifting valueR

0 10 20 30 40 50 60 70 80 90
R (%)

with ACF, inter-arrival times.

30000

serverl==—= server2===

25000
20000

Slowdown

15000 6000

10000 4000

5000 2000 SZ‘ E

0 o st Ezyﬁ Bl
0 20

(@ (0)
(%2}
2 1le+06f 100]
S [
§ 100000 s 8of =N
2 10000¢ = 60 ;EE |
= 1000f b= gg
© f N A0S
2 100H = =2
S Il =) P
g 10f 2012
£ v 0 ﬁ 590
(b) (d)

Response Time (seconc

—~
O
~

Queue Length (# of jobs)

14000
12000
10000
8000
6000

4000

2000

o

S
12000

FEFIEEEL

0 10 20 30 40 50 60 70 80 90
R (%)

erver3e==3 server4e—sd

10000
8000

Figure 13: Per server performance metrics as a functioneoiikial shifting valueR underACF,
traffic: (a) average slowdown, (b) average response timayv@rage queue length and (d) average

utilization. The order of bars for each policy reflects theveeidentity.

In this experiment, we evaluate the performance QAL under theACF, arrival process.
Figure 12 gives the average job slowdown and the averageggonse time as a function Bf In
Figure 12, we observe the same trends as in Figure 8, butrradiselute performance values than
under theACF, experiment. Compared toRPTLOAD (i.e., R = 0%), S EQAL with R = 40%
improves average response time by 49.2% and average slowao@/7.2%.

Figure 13 illustrates per-server performance measuresrukckF, traffic. Although perfor-

mance trends are similar to tW€F, case, they are more exaggerated. Both average slowdown

20

and average response time of the first server redude iasreases (see Figures 13(a)-(b)), but a
turning point exists where shifting more work to subseqeemnvers adversely affects slowdown.
CDF graphs, both across all files and for small, medium, argkleanges confirm that, as in the
ACF, experiment, the tails of the performance measures are nowndted by the deteriorated
performance of large files due to shifting. CDF trends arestime as in th&CF; experiment and

are not reported here due to lack of space.

(a) NOACF (uncorrelated arrivals), system utilization = 20%

3

slowdown
=
(%2}
T
o = N
g = 00N O
T T T T T

response time (seconds)

S
NS
§§§§§@§

0 10 20 30 40 50 60 70 80 90
R (%)

o

(b) ACF1 arrivals, system utilization = 20%

2500 —

160

2000
1500~

slowdown

1000
500

response time (seconds)

=

]

§

\\ 1

0 10 20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
R (%) R (%)

(c) ACF2 arrivals, system utilization = 20%

8000
7000
6000
5000
4000
3000
2000
1000

600
500
400
300
200
100

-

]

SN

S

B R @ﬁﬁﬁm@ 0

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
R (%) (%)

slowdown
T T T T T 7T
| | | | | | |
|

response time (seconds)

Figure 14: Average slowdown and average response time asctdn of initial shifting valueR
when inter-arrivals are (a) uncorrelated (NOACF), (b) hgACF; dependence, and (c) having

ACF, dependence. The average system utilization is ab@at

4.1.3 Varioussystem utilizations

In the previous sections, we evaluated the performance BOQAL for different values ofR in

a system with average utilization equal to ab62f6 and found that = 40% is a good shifting

21

(a) NOACF (uncorrelated arrivals), system utilization = 80%

2000 T 35000
30000
25000
20000
15000~
100001~

600 § §
400
5000~
208 M eaeama 5] E§§ E§3 0 I L == E§3 E§
0

10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
R (%) R (%)

slowdown
P
o
o
o
T T T 1 T 1T
response time (seconds)

(b) ACF1 arrivals, system utilization = 80%

14000
120001
100001~
8000
6000~

40000
35000
30000
25000
20000

slowdown
T T T T T 7T
| | | | | | |

|
response time (seconds)

S| 15000 ==
40001 7 10000 §
2000+ E
i EESEISSISIE o000 o A
10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
RO6) R (%)

(c) ACF2 arrivals, system utilization = 80%
@

45000 T T T T T
40000
35000
30000
25000
20000
15000

=
SIS S
\§§§§§§SS§ ﬁ%@@@@@S\

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
R (%) R (%)

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

slowdown
T T T T T 17T
I I I I I S

response time (second:

Figure 15: Average slowdown and average response time asctidn of initial shifting value
R when inter-arrival times are (a) uncorrelated (NOACF), l{aying ACF, dependence, and (c)

havingACF, dependence. The average system utilization is ak@t

value for bothACF; andACF, experiments. Here, we evaluateER) AL performance for different
values ofR under lightly loaded and heavily loaded systems.

We use the same arrival processes and the same servicegasdesthe previous subsection,
but we scale the service times to examine system performamier different utilization levels.
Figure 14 illustrates the average request slowdown andvwemge request response time as a
function of R in a system with average utilization equabt@bo. More detailed analysis shows that
under uncorrelated arrivals and low system utilizatiorls\ADAPTL OAD does not always balance
load well. This phenomenon is also identified in [25]. In ttése, a shifting constant & = 50%
corrects this known weakness oDAPTLOAD. Figure 14 shows that for bothCF; and ACF,
arrivals, the best slowdown and response time is achievidRvi= 60%, making it an excellent

initial shifting value in a lightly loaded system.

22

We also evaluate performance in a system with average attdiz of 80%, see Figure 15.
Under uncorrelated arrivals, BEQAL with R = 20% optimizes slowdown but the best response
time is achieved by AAPTLOAD. For bothACF; andACF,, although the slowdown decreases as
R increases up t&® = 70%, the lowest response time is achieved for= 20%. This happens
because forR > 30%, load imbalancing in the cluster becomes extreme, withldkeserver
operating nearly in full capacity, i.e., reaches nearly%0Qfilization. This dramatically increases
response times of large jobs and, consequently, overalhgegob response time. We conclude

that the value of the initial shifting valug should decrease as the load in the system increases.

42 D_EQAL: On-line Policy

In the previous section, we gave a proof of concept of theoperdnce benefits of load unbalanc-
ing. We also showed that performance improvements depertdeodegree of load unbalancing
determined by the initial shifting valuB. A good choice ofRR can result in significant gains, but
an unfortunate choice may also result in poor performaneee Hve present [EQAL, an on-line
version of SEQAL, that continuously monitors the workload such that effectiveness of load
unbalancing becomes independentiof

D_EQAL continuously monitor€’ requests that have been just served by the cluster and re-
adjusts the degree of load unbalancing on-the-fly, aimingnptovingboth average response time
and average slowdownC' must be large enough to allow for performance measures tdabe s
tistically significant but also small enough to allow for gkiiadaptation to transient workload
conditions. In the experiments presented hétes set to 300,000. We examined the robustness
of D_EQAL with differentC' values ranging from 100,000 to 1.000,000 and concludedsthat|
values of C (around 100,000) are not as effective as lardaesaf C (more than 200,000). This
is an expected result given that C should capture changesstiiess behavior of the process.

D_EQAL starts by setting? to zero, i.e., no load shifting is proposed beyond the coegput
ADAPTLOAD intervals. For every batch @ requests, we compare the relative performance im-
provement/decline of average slowdowtv(,;;) and average normalized response tided,,,...)

in comparison to the previous batch@fequests. The average normalized response tine,(..)

23

is defined as follows

average response time in the k' batch

Avgnres(k) -

average service time in the k" batch

and aims at comparing fairly the average response timesamcdwsecutive batches. This is partic-
ularly critical if the per-batch average service timesetifignificantly.

For everyC' requests,R, S EQAL's initial shifting value, is adjusted by a fixed number
0 < D < 100% and interval boundaries are recalculated correspondinigure 16 presents
the D_.EQAL algorithm that implements a dynamic adjustmenfioés a function of system per-
formance measures. For the first batcldalequestsi = 0, i.e., all servers are equally loaded and
the system operates usin@APTLOAD. This is necessary to obtain base-case performance mea-
sures. For the second batchfequestsk = D, i.e., D EQAL starts exploring the performance
effects of boundary shifting by decreasing the load of tist §ervers. In subsequent steps, average
slowdown and average normalized response time of the&lastjuests are compared to the batch
of the penultimate”’ requests. If system performance improves, then boundaitynghis done
in the same direction, i.e., if the last adjustment shifteselwork from the small (large) servers to
large (small) servers, then we continue to shift more wooknfithe small (large) servers to large
(small) servers. Otherwisé; is adjusted such that boundaries are shifted in the revemsetidn
(see3.b.l11, in Figure 16). In our experiments) is set to 109%.

Step2.b.I1 of Figure 16 provides an additional condition to avoidingoeshifting. This condi-
tion is deduced from the performance analysis & QAL (see the previous section) which shows
that overloading servers 3 and 4 that serve requests far fdeg may significantly deteriorate av-
erage response time while maintaining acceptable slowdbBiguare 17 illustrates this behavior by
plotting the average slowdown and average response timgasséent measure (i.e., across time)
of every 10,000 requests. R is set appropriately, then average slowdown and averagemss
times change with similar rate (see Figure 17(a)). An exélgrtargeR (i.e., load over-shifting)

makes response time to increase much faster than slowdesri~{gure 17(b)). As a result, the

SFinding the ideal value ab is beyond the scope of this paper. The values used here aré bashe experimental
analysis of SEQAL for this specific workload. A large value @f results in faster load “unbalancing” while a smaller
value results to the opposite. Dynamically adjusting tHaevaf D using a feedback mechanism could make the policy

more robust and is subject of future work.

24

1. initialize variables R+—0, k<1, D+ 10%

11%
~

2. Computep; (1 < i < N) for the k-th batch ofC' requests using the algorithm of Figur
3. Compute new server boundaries using Eq.(2) and schedulketthbatch ofC' requests
a. computedvgy,(k) andAvg,,..s(k) for the k-th batch ofC requests
b. calculateR for the next batch of’ requests
I. if the firstC requests k=1

then shift (increaser) adjust — D, go to4.

‘Avgnres (k/’)*Avgnres (kil)‘ > ‘Avgsld(k’,)fAvgsld(kfl)‘
Avgnres(l) Avgsld(l)

then shift less (decreasB) adjust — —D, go to4.

Il. if over-shifting

I11. if performance degrades Avggq(k) > Avggq(k — 1) or
Avgnres(k) > Avgnres(k — 1)
then correct last shifting adjust — —adjust, go to4.
else continue last shifting adjust < adjust, Qo to4.

4. R +— R+ adjust, k— k+1, goto2

Figure 16: DEQAL dynamically adjustsz.

comparison of slowdown and response time provides a goddaition for over-shifting. Since
slowdown and response time are performance measures @fatiffscales, we observe changes in
two consecutive batches (i.Avggq(k) — Avgga(k — 1) and| Avgpres(k) — Avgnres(k —1)]) and
normalize them by their respective values of the first batafi cequests when no shifting occurs,

(i.e., Avggq(1) and Avg,,.s(1) with R = 0, the original ADAPTLOAD) for a fair comparison.

421 Performanceof D_.EQAL

In this section, we evaluate the effectiveness dEQAL. We compare AAPTLOAD, i.e., SEQAL
with R = 0%, S.LEQAL with various values of its initial shifting valug, and DEQAL. Note that
D_EQAL starts withR = 0, which implies that we rely on the algorithm to find the appraie .
Results for various system utilization levels (i.e., 20%/&% and 80%) are presented in Figures 18-
20. In all graphs, DEQAL is comparable to the best performingERQAL. D_EQAL manages to

25

16000 B 4000
14000 S 3500
< 12000 & 3000
£ '500 1B oo]
é eooo ’H $ 1500 Il
40004 | S 1000 |
2000 9 500
0 1 1 1 1 1 1 1 1 1 = 0 1 1 1 1 I I 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 :
Monitoring window (every 10,000 jobs) Monitoring window (every 10,000 jobs)
(b) R = 90% .
5000 B 40000
iggg S 35000
c 3500 & 30000
2 3000 @ 25000
T 2500 £ 20000
5 2000 & 15000f
1500 | 1 I 5 10000+
10004 .-
500 & 5000
0 1 1 1 1 1 1 1 1 1 = 0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 :
Monitoring window (every 10,000 jobs) Monitoring window (every 10,000 jobs)

Figure 17: The average slowdown and average response tiavegf 10,000 requests und&CF,
arrivals when (a)R = 30% and (b)R = 90%. The system utilization is 62%.

I.NOACF 1. ACF1 III ACFZ
100 T T T T T T 8000
| i i 7000(- B
. < 6000 B
Z 60F R] § 5000+ 4
E S 4000+]
S 4o 7 1 < 3000F E
20k § i i 2000+ B
§ §§ § == == 10001 @ =1k
0 @ === === 0
70 D_EQAL 0 10 30 50 70 D_EQAL 70 D_EQAL
(| _a) correctlve constam (R%) (| | _a) corrective constant (R%) (| Lla) correcuve constant (R%)
= o= o
2 10 ‘ ‘ 8 160 \ \ 2 600 \ \
S S 1401 4 8 L i
o L i o 500
g B 8 1201 1 8
o 6k 4 @ 100f 1 g 400p 7
£ £ sof 4 = 300 R
g 1 & eor 1 £ 200F .
5] S 40 4 8
AN @@@@’%m §§ & §§§’
o o [B o
= 0 = 0 0
0 10 5 70 D_EQAL 50 70 D_EQAL 30 50 70 D_EQAL
(| .b) correctlve constant (R%) (| | b) correctlve constant (R%) (| 1 .b) corrective constant (R%)
@ 100 T T T T X 100 T T T T & 100 T T T T
g g g
2 8or 1 3 3
g > >
o 60 - o e
£ £ £
= 4or 105 5
8 20 ’—\J_LL‘ b g g
= £ =
= 0 ‘_L\ ’_L‘ \’_L‘ ’_L\ | | | - 0 | | | - 0 | | |
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 10
(| .C) Monitoring window (every 10K requests) (| | .C) Monitoring window (every 10,000 jobs) (| 11 .C) Monitoring window (every 10,000 jobs)

Figure 18: Performance effects of autocorrelation underdgstem utilization (20%). The first
two rows give the average slowdown and the average response The third row shows how
the initial shifting valueR is updated as a function of time (measured in processed stxjuer

C = 300, 000.

26

I1.ACF1 111. ACF2
100p 7000 T T T T T T
< 6000 [E B
2 c 50001 B
H 2 i
3 S 40001 E
"
3 3000 =B R 4
© 2000F RS § g §
s ~1 B =P B
10 0 =
0 10 30 50 70 D_EQAL 0 10 30 50 70 D_EQAL 0 10 30 50 70 D_EQAL
(| ’a) corrective constant (R%) (| | .a) corrective constant (R%) (| 1 .a) corrective constant (R%)
) P S
£10000g ‘ ‘ < 6000 ‘ ‘ ‘
o F |- - =}
g F g 5000~ B
© 1000 B | > 4000f g
E E 3 4 8
= F | = | = 30008 .
2 100k L 1 & 2000+ g
a E ~ g
H a1 [] RRE ~
= o
10 0
0 10 30 50 70 D_EQAL 50 70 D_EQAL
(| .b) corrective constant (R%) (| | .b) corrective constant (R%) (| 11 .b) corrective constant (R%)
g 100 : & 100 : Z 100 ‘
[}
RS 41 3 sof 41 2 eof
[] >
> >
> 60F 1 o 60f 4 2 60F
j=4 =4 F=
£ £ £
£ 40F 4 E aof & 40r
0 [-
g 20f 41 8 20t 1 £ 20p
£ ﬂ m m H 1 ﬂ m = 1 1 1 1 - 1 1 1 1
0 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 10
(| .C) Monitoring window (every 10,000 jobs) (| | .C) Monitoring window (every 10,000 jobs) (| 1 .C) Monitoring window (every 10,000 jobs)

Figure 19: Performance effects of autocorrelation undetiome system utilization (62% utiliza-
tion level). The first two rows give the average slowdown dredaverage response time. The third
row shows how the initial shifting valug is updated as a function of time (measured in processed
requests) fo” = 300, 000.

adjustR such that both slowdown (see Figures 18-20(a)) and respiomsg (see Figures 18-20(b))
are improved.

Figures 18-20(c) show how the algorithm changasroughout the duration of the experiment.
With no autocorrelation in the arrival streart, almost always remains equal to O, irrespective
of the system utilization level, essentially the policy aeés like AbAPTLOAD. With ACF; or
ACF, arrivals, R converges toward the best performing static value as sethreianalysis of the

performance of EQAL, see Section 4.1.3.

5 Conclusions

We presented evidence via detailed simulations that sasedpolicies for load balancing in ho-

mogeneous clusters become ineffective when the arrivalgsois autocorrelated. If the arrival

27

1. ACF1 I11. ACF2
1000 14000 T T T 50000 T T T
3 L i 450001 g
12000 400001 R
< g 100001 |55 1 g 35000- *
L 9 4 300001 B
§ 100 E § 8000 SIS §25000— B
3 F 1 g 6ooor 7 & 20000 4
@ ¥ 1 © 4000F § 4 15000/ .
[Il = SIS ISP B
10 0 0
0 10 30 50 70 D_EQAL 0 10 30 50 70 D_EQAL 0 10 30 50 70 D_EQAL
corrective constant (R%, corrective constant (R%, corrective constant (R%;
(.2) (11.2) (1L1.2)
$100000 T T 3 825000 T T T 25000
o £ 3 o 8
(53 F B o |- - |- -
& 10000¢ =] g 20000 = $ 20000
~ E ERRd —
() [(4] - — - -
2 ook g 15000 £ 15000
9 E D 1 g 10000- 1 810000 b
= L 1 s 15}
g 100 @ 1 2 so00f = 4 2 s000f- b
E 1 [
A SRR AESISIS N | ¢
0 30 50

=
o

10 70 D_EQAL 0 10 30 50 70 D_EQAL 0 10 30 50 70 D_EQAL
corrective constant (R%) (| | .b) corrective constant (R%) (| 11 .b) corrective constant (R%)

100 ‘ & 100 \

401 R 40+
I I 1 I O 1 [| | | | | | |

0 L 0
200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 10
Monitoring window (every 10,000 jobs) (| | .C) Monitoring window (every 10,000 jobs) (| 11 .C) Monitoring window (every 10,000 jobs)

=
o
o

80~ b

o]
o
T
I

60~ b

ey
o
T
Il
Initial Shifting Value

N
o
T
I

o

—~ e
O Initial Shifting Value (R) &
(2]
o
o T
Il
Initial Shifting Value (R)
(2]
o
T
Il

Figure 20: Performance effects of autocorrelation undgh lsiystem utilization (80% utilization
level). The first two rows give the average slowdown and theraye response time. The third
row shows how the initial shifting valug is updated as a function of time (measured in processed
requests) fo” = 300, 000.

process is autocorrelated, then the basic premise of sigeelpolicies, i.e., balancing the load by
keeping each server equally utilized while serving jobsimilar size in each server, may actually
hurt performance as per-server performance is sensitimet@nly its utilization level but most
importantly to the dependence structure in the arrivabstref jobs that it serves.

We propose a new size-based load balancing policy, call&dIAL, that still strives to serve
jobs of similar size in each server but per-server utilatievels depend on the autocorrelation
of the arrival process to that particular server. As a resiuthis effort, if there is autocorrelation
in the arrival stream to the cluster, all servers may not h&kyutilized (i.e., load in the system
becomes unbalanced) but this imbalance results in signifaformance benefits. If there is no
autocorrelation in the arrival stream, thenEHQAL seamlessly balances load across all servers as
ADAPTLOAD does (i.e., it behaves like a typical size-based policy)EQAL does not require

any prior knowledge of the correlation structure of thevalrstream or of the job size distribution.

28

Using detailed simulations we show thatEBBQAL can be used on-line: by monitoring system
performance measures, it self-adjusts its configuratioarpaters to transient workload conditions

and significantly improves performance under correlatedais.

Acknowledgments

We thank the anonymous reviewers whose comments significamproved this presentation. This work
was partially supported by the National Science Foundatimater grants ITR-0428330 and CNS-0720699,
and by Seagate Research. A preliminary version of this pameeared at the6t™" International Conference
on Distributed Computer Systems, (ICDCS’06), Lisboa, &gat, July 2006 [24].

References

[1] D. Abendroth and U. Killat. Intelligent Shaping: Well 8ped Throughout the Entire Network? In
Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communi cations Societies
(INFOCOM 2002), volume 2, pages 912-919, New York City, NY, June 2002.

[2] A. M. Adas and A. Mukherjee. On Resource Management an8 Qoarantees for Long Range
Dependent Traffic. IrfProceedings of the 14th Annual Joint Conference of the IEEE Computer and
Communication Societies (INFOCOM 1995), volume 2, pages 779—-787, Boston, MA, April 1995.

[3] M. Andreolini, M. Colajanni, and R. Morselli. Performea Study of Dispatching Algorithms in Multi-
tier Web ArchitecturesACM S GMETRICS Performance Evaluation Review, 30(2):10-20, September
2002.

[4] M. Arlitt and T. Jin. Workload Characterization of the 9®World Cup Web Site. Technical Report
HPL-1999-35R1, Hewlett-Packard Laboratories, Septerh89.

[5] D. Bushmitch, S. S. Panwar, and A. Pal. Thinning, Stgpamd Shuffling: Traffic Shaping and Trans-
port Techniques for Variable Bit Rate Video. Bnoceedings of the IEEE Global Telecommunications
Conference (GLOBECOM 2002), volume 2, pages 1485-1491, Taipei, November 2002.

[6] L. Cherkasova, W. Tang, and S. Singhal. An SLA-Orienteap&xity Planning Tool for Streaming
Media Services. IfProceedings of the 2004 International Conference on Dependable Systems and
Networks (DSN 2004), pages 743—-752, Florence, Italy, June 2004.

[7] K.J.Christensen and V. Ballingam. Reduction of Selifarity by Application-Level Traffic Shaping.
In Proceedings of the 22nd Annual |EEE Conference on Local Computer Networks (LCN 1997), pages
511-518, Minneapolis, MA, November 1997.

[8] A. Erramilli, O. Narayan, and W. Willinger. Experimeht@ueueing Analysis with Long-Range De-
pendent Packet Traffi¢EEE/ACM Transactions on Networking, 4(2):209-223, April 1996.

[9] H. Feng, M. Visra, and D. Rubenstein. Optimal State-F&re-aware Dispatching for Heterogeneous
M/G/-type SystemsPerformance Evaluation Journal, 62(1-4):475-492, November 2005.

[10] M. Harchol-Balter, M. Crovella, and C. D. Murta. On Clsirng a Task Assignment Policy for a
Distributed Server Systendournal of Parallel and Distributed Computing, 59(2):204—228, November
1999.

29

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Harchol-Balter and A. Downey. Exploiting Procesdgdtime Distributions for Dynamic Load Bal-
ancing. ACM Transactions on Computer Systems, 15(3):253-285, August 1997.

D. Heyman and D. Lucantoni. Modeling Multiple IP Traffgtreams with Rate LimitsIEEE/ACM
Transactions on Networking, 11(6):948-958, December 2003.

L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley, 1975.

N. Mi, Q. Zhang, A. Riska, and E. Smirni. Performance &ugs of Autocorrelation in TPC-W. IRro-
ceedings of the 26th International Symposium on Computer Performance, Modeling, Measurements,
and Evaluation (Performance 2007), Cologne, Germany, October 2007.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. DruschelZWaenepoel, and E. Nahum. Locality-
aware Request Distribution in Cluster-based Network $eria Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
VIII), pages 205-216, San Jose, CA, October 1998.

A. Riska and E. Riedel. Disk Drive Level Workload Charxzation. InProceedings of the USENIX
Annual Technical Conference, pages 97-102, Boston, MA, June 2006.

A. Riska and E. Riedel. Long-Range Dependence at thi& Dig/e Level. InProceedings of the
3rd International Conference on the Quantitative Evaluation of Systems (QEST 2006), pages 41-50,
September 2006.

Y. M. Teo and R. Ayani. Comparison of Load Balancing 8gies on Cluster-based Web Servers.
Transactions of the Society for Modeling and Smulation, 77(5-6):185-195, November 2001.

V. Ungureanu, B. Melamed, P. G. Bradford, and M. KatetakClass-Dependent Assignment in
Cluster-based Servers. Bnoceedings of the 2004 ACM symposium on Applied computing (SAC 2004),
pages 1420-1425, Nicosia, Cyprus, March 2004.

U. Vallamsetty, K. Kant, and P. Mohapatra. Characegion of E-Commerce Traffic. IRroceedings of
the 4th |EEE International Workshop on Advanced | ssues of E-Commerce and Web-Based I nformation
Systems (WECWIS 2002), pages 137-144, Newport Beach, California, 2002.

F. Xue and S. J. B. Yoo. Self-similar Traffic Shaping at tadge Router in Optical Packet-switched
Networks. InProceedings of IEEE International Conference on Communications (ICC 2002), vol-
ume 4, pages 2449-2453, April 2002.

Q. Zhang, L. Cherkasova, and E. Smirni. FlexSplit: A Woad-Aware, Adaptive Load Balancing
Strategy for Media Clusters. IRAroceedings of Multimedia Computing and Networking (MMCN'’ 06),
San Jose, CA, January 2006.

Q. Zhang, A. Heindl, and E. Smirni. Characterizing thelBP/MAP/1 Departure Process via the
ETAQA Truncation.Sochastic Models, 21(2-3):821-846, 2005.

Q. Zhang, N. Mi, A. Riska, and E. Smirni. Load Unbalargcio Improve Performance under Autocor-
related Traffic. InProceedings of the 26th |EEE International Conference on Distributed Computing
Systems (ICDCS 2006), Lisboa, Portugal, June 2006.

Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo. Woakl-Aware Load Balancing for Clustered
Web ServerslEEE Transactions on Parallel and Distributed Systems, 16(3):219-233, March 2005.

30

