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Abstract

Size-based policies have been shown in the literature to effectively balance load and im-

prove performance in cluster environments. Size-based policies assign jobs to servers based

on the job size and their performance improvements are an outcome of separating “short” from

“long” jobs, by avoiding having short jobs waiting behind long jobs for service. In this paper,

we present evidence that performance improvements due to this separation quickly vanish if

the arrival process to the cluster is autocorrelated. Basedon our observations, we devise a new

size-based policy called DEQAL that still strives to separate jobs to servers according to job

size but this separation is now biased by an effort to reduce performance loss due to autocor-

relation in the arrival flows of jobs that are directed to eachserver. As a result of this bias, all

servers may not be equally utilized (i.e., load in the systemmay be “unbalanced”), but perfor-

mance benefits become significant. DEQAL can be used on-line as it does not assume any a

priori knowledge of the incoming workload. Extensive simulations show the effectiveness of

D EQAL under autocorrelated and uncorrelated arrival streams and illustrate that the policy

successfully self-adjusts the degree of load unbalancing based on monitored performance mea-

sures.



1 Introduction

In the past few years, there has been a renewed interest in thedevelopment of load balancing

policies for clustered systems with a single system image, i.e., systems where a set of (homoge-

neous) hosts behaves as a single host. Jobs (or requests) arrive at a dispatcher which then forwards

them to the appropriate server.1 While there exists no central waiting queue at the dispatcher, each

server has a separate waiting queue and a separate processorthat operates under the first-come

first-serve (FCFS) queueing discipline, see Figure 1. The dispatching policy is critical for system

performance and strongly depends on the stochastic characteristics of the jobs as well as on the

performance measures that the system strives to optimize. If job service times are highly variable,

then policies that balance the load in the cluster using as a basic criterion the size of the incoming

job, have been shown to minimize the expected job completiontime and the expected job waiting

time [10, 9]. This broad family of load balancing policies isknown assize-based policies.
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Figure 1: Model of a clustered server.

The basic premise for the success of size-based policies is reduction of variability in the job ser-

vice time distribution at each server. First, it has been demonstrated in the literature that increased

variability in the service process of an M/GI/1 queue results in longer waiting queue lengths [13].

Longer waiting queues imply longer expected job response times (i.e., waiting plus service times)

and longer average job slowdowns (defined as the expected value of the ratio of the job response

time to the job service time). In an M/GI/1 setting, the performance of small jobs that are queued

behind large jobs degrades significantly, which then contributes to longer average job response time

and longer average job slowdown. Size-based policies that direct jobs of similar sizes to the same

1In this paper, we use the terms “jobs” and “requests” interchangeably.
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server aim at reducing the variation in job service times seen by each server and at diminishing the

proportion of small jobs waiting behind long jobs. Defining the intervals of job sizes served by

each server must be done judiciously. If there is a priori knowledge of the job service time distribu-

tion, then splitting the cumulative distribution function(CDF) of job service times in equal parts, as

many as the servers, ensures that all servers are equally utilized (i.e., the system is load balanced)

and that jobs of “similar” size are directed to the same server. The optimality of size-based policies

in homogeneous environments with respect to minimizing theexpected job response time and the

expected job waiting time has been proved in [9].

Not all size-based policies require a priori knowledge of the job service time distribution as the

empirical distribution may be estimated on-the-fly by collecting statistics of the past workload seen

by the system [25]. A required condition though for size-based policies is that upon job arrival at

the dispatcher, an accurate estimate of the job service timeis possible. This condition restricts our

discussion here to systems where accurate estimation of jobservice times is possible.

Several types of clustered systems can take advantage of size-based policies. One example

is locally-distributed Web server clusters where a switch is the initial interface between the cluster

nodes and the Internet [3, 25, 15]. For static requests in Webserver clusters, e.g., transfers of image

or text files, the job service time is analogous to the size of the transferred file. This information

can be immediately used by the dispatcher to assign the request to the appropriate server [25].2

Media-server clusters that provide streaming of audio and video is another example of a centralized

cluster where job size is known a priori and where size-basedpolicies can be used [22, 6]. Storage

systems that use mirroring to improve performance and data availability is yet another case of a

cluster system where load balancing based on the job size is possible.

Here, we focus on the general problem of load balancing in a homogeneous cluster of FCFS

servers depicted in Figure 1, aiming at improving the expected job response time and the expected

job slowdown. In contrast to prior work in size-based policies, which assumes that the arrival

process at the dispatcher is independent and identically distributed (i.i.d.), we examine the perfor-

mance of size-based policies under anautocorrelated arrival process. Autocorrelation in the arrival

2Size-based policies can be adapted for Web server clusters that serve dynamic requests. For details we direct

the reader to [25]. Our focus here is on the more general problem of the effectiveness of size-based policies under

autocorrelated arrivals.
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process implies that there is a dependence structure in the arrival flows. Conventional wisdom has

it that the arrival process in Internet servers is not i.i.d.because of the self-similar nature of network

traffic [20]. Autocorrelated flows have also been observed inmulti-tiered systems [14] and storage

systems [17].

In this paper, we show that the effectiveness of size-based policies diminishes if the workload

arrival process is autocorrelated. We closely examine the performance effects of autocorrelation

under several load balancing policies including ADAPTLOAD, a size-based policy, and several

classic policies includingJoin the Shortest Weighed Queue, Join the Shortest Queue, andRound-

Robin in order to build intuition on the problem. Based on our observations, we propose DEQAL,

a new size-based load balancing policy that reduces performance degradation due to autocorrelation

in each server. DEQAL dynamically distributes work equally addressing autocorrelation and load,

andmay unbalance load in the system in order to benefit performance.If the arrival process to the

cluster is uncorrelated, then the policy loads each server with equal work, i.e., aims at balancing

the load across all servers. If the arrival process to the cluster is autocorrelated, then DEQAL

loads each server with unequal work such that load in the system becomes unbalanced, but overall

system performance increases dramatically. DEQAL does not assume any a priori knowledge of

the job service time distribution nor any knowledge of the autocorrelation structure in the arrival

streams, yet it successfully copes with changing workloadsby observing past arrival and service

characteristics as well as past performance. To the best of our knowledge, this is the first time that

dependence in the arrival process becomes a critical aspectof load balancing.

This paper is organized as follows. Section 2 presents related work. Section 3 gives evidence of

performance deterioration in a single server system due to autocorrelated arrivals and demonstrates

that performance gains of size-based policies in clusters quickly evaporate in the presence of auto-

correlated arrivals. In Section 4 we first present a policy that unbalances the load in a static manner

to improve performance under autocorrelated flows. DEQAL, the proposed on-line size-based

policy, is presented later in the section and its performance is evaluated via detailed simulation.

Section 5 summarizes our contributions.
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2 Related Work

A significant body of research in task scheduling and load balancing has been developed over the

years (see [11, 9] and references within), but only recentlythere has been a consensus that tra-

ditional load balancing policies, i.e., join-the-shortest queue or join-the-least-loaded server, result

in high average job response time and high average job slowdown if job service times are highly

variable and/or heavy-tailed [10]. For workloads with highly variable service times, size-based

policies, which advocate dedicating servers to jobs of similar sizes, have been shown in the lit-

erature to achieve high performance [10, 25]. Assuming thatthere areN servers, the job sizes

are partitioned intoN intervals,[s0 ≡ 0, s1), [s1, s2), . . . , [sN−1, sN ≡ ∞), so that serveri is

responsible for satisfying requests of size betweensi−1 andsi. By dedicating servers to requests of

similar size, these policies reduce the average job slowdown through separation of long and short

jobs. Despite the fact that size-based policies are stateless, i.e., oblivious of the instantaneous load

in each server, they successfully load each server with approximately the same amount of work so

that all servers are equally utilized [10, 9]. The optimality of size-based strategies is proved in [9].

Note that size-based policies are based solely on a priori knowledge of the distribution of the

incoming job sizes and not of the instantaneous load in the servers. Even if the job service time

distributions arenot known a priori, on-line versions of size-based policies have shown to maintain

high performance for workloads that are highly variableacross time, i.e., transient workloads [25].

ADAPTLOAD has been developed as an on-line version of a size-based policy that monitors the

incoming workload and builds a histogram of job size frequency (i.e., builds the empirical distri-

bution histogram) while the system is in operation. Based onthis histogram, it self-adjusts the

interval boundaries according to changes in the operational environment. Rapid fluctuations in job

size frequencies and/or job service times are now reflected in the histogram.

Size-based load balancing policies have been examined under the assumption of i.i.d. arrivals

into the cluster. Nonetheless, there is a significant body ofliterature that shows that dependence

in arrival flows exists, especially in network-related traffic [20]. Autocorrelated flows have been

also observed in multi-tiered systems [14] and storage systems [17]. Even for systems that operate

under low to moderate utilization levels, increased autocorrelation in their arrival process has been

shown detrimental for performance, i.e., the higher the autocorrelation, the longer the expected
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response times [8]. Similar results are reported in [2] where the performance effects of short-range

dependence versus long-range dependence in the arrival streams are examined. In the context

of networking, traffic shaping has been used as a technique toalleviate the negative effects of

autocorrelation, by dropping, reordering, or delaying selected requests [5, 21, 7, 1]. Finally, recent

analytic models of a single queue with autocorrelated inter-arrival and/or service process, have

demonstrated that flows out of the queue are also autocorrelated and propagate to the next queue

that feeds from that departure process [23].

3 Motivation

In this section, we first present data that have been measuredon real systems to confirm the exis-

tence of dependence in arrival streams. Then, we give motivation for this work first by presenting

the performance of a single server under autocorrelated arrivals and second by examining the per-

formance of load balancing policies in a cluster under autocorrelated arrivals.

3.1 Autocorrelation in Systems

Throughout this paper, we use the autocorrelation function(ACF) as a metric of the dependence

structure of a time series (either request arrivals or services) and the coefficient of variation (CV)

as a metric of variability in a time series (either request arrivals or services). CV values less than 1

indicate that the variability of the sample is low. CV valueslarger than 1 indicate high variability.

The exponential distribution has a CV of 1.

Consider a stationary time series of random variables{Xn}, wheren = 0, . . . ,∞, in discrete

time. The autocorrelation function (ACF)ρX(k) and the coefficient of variation (CV) are defined

as follows

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]

σ2
, CV =

σ

µ
,

whereµ is the mean andσ2 is the common variance of{Xn}. The argumentk is called the lag and

denotes the time separation betweenXt andXt+k. The values ofρX(k) may range from -1 to 1.

If ρX(k) = 0, then there is no autocorrelation at lagk. If ρX(k) = 0 for all k > 0 then the time

series is uncorrelated. In most cases, ACF approaches zero as k increases. The ACF essentially
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captures the “ordering” of random values in the time series.Positive ACF values imply that there

is strong temporal locality, i.e., a value of the random variable has a high probability to be followed

by another variable of the same order of magnitude, while negative ACF implies the opposite. The

ACF’s decay rate determines if a process exhibits weak or strong correlation.

Figure 2 presents the ACF of arrivals at several storage systems supporting (dedicatedly) var-

ious applications [16, 17]. The figure shows that the dependence structure in the request arrival

streams to the storage systems differs among the systems that support different applications

This dependence structure is a result of multiple factors including the architecture of the storage

system, the file system, and the resource management policies at all levels of the I/O path. For more

evidence of the existence of autocorrelated flows in storagesystems, see [17].
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Figure 2: ACF of the arrival process at the storage subsystemfor various applications.

3.2 Autocorrelation Effects in a Single Queue

To illustrate the magnitude of the performance effects of autocorrelation in systems, we parame-

terize a simple queueing model of a single server. The arrival process is drawn from a Markov

Modulated Poisson Process (MMPP) [12] that is parameterized such that it results in three levels of

dependence as illustrated in Figure 3(a): NOACF (i.e., arrivals are uncorrelated),ACF1, andACF2.

The probability distribution functions (PDFs) of these three arrival processes are identical (i.e., all

their moments are the same), but what distinguishes them is theorder of sampling from the PDF,

which introduces autocorrelation. The mean inter-arrivaltime in these three processes is equal to

13.28 ms and CV is equal to 5.67, as derived by the arrival process to the storage system of a Web

server presented in [17].
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The service process is drawn from a 2-stage hyperexponential (H2) distribution with mean

service time equal to 3 ms and CV equal to 1.85 and models the disk-level service process for

the Web server storage trace in [17]. Inter-arrival times are scaled so that we examine system

performance under different utilization levels.

Figures 3(b)-(d) present performance measures for the three different arrival processes as a

function of server utilization. The effect of ACF on system performance is tremendous: the higher

the ACF, the worse the system performance, which can worsen by as much as 3 orders of magnitude

when comparing to the case with uncorrelated (NOACF) arrivals. Because of the difference in the

three curves, the performance measures with uncorrelated arrivals look flat. Under uncorrelated

arrivals (i.e., the NOACF curve), queue length, as expected, is equal to 152 for utilization equal to

0.9. This number is dwarfed in comparison to the corresponding values for theACF1 andACF2

curves. The inset plots in Figures 3(b)-(d) illustrate the same performance measures but using

logarithmic scale on they axis. The dramatic effects of autocorrelation are illustrated even for low

to moderate system utilizations, between 25% and 50%, wherethe probability that a job finds the

system idle is higher than 0.5.

It is the burstiness in the arrival stream that results in performance degradation by several orders

of magnitude, even for low to moderate loads. This burstiness is captured by the autocorrelation

metric. Positive ACF values greater than zero for lagk ≥ 1 imply that a small inter-arrival time

has high conditional probability to be followed by a smallk-th inter-arrival, causing the queue to

build up fast. The stronger the dependence, the more the burstiness in the arrival stream, which

causes the waiting queue to build up faster if the arrival stream isACF2 versusACF1. If the arrival

process is uncorrelated, the conditional probabilities are zero, i.e., there is no burstiness in the

process, which implies less waiting queue build up (and consequently better performance) even for

the same server utilization level as Figure 3 illustrates. Although bursty periods are relatively short,

their impact on performance is long-term, as Figure 3 indicates. Moreover, if the goal in the system

is to achieve a certain performance, then the system utilization should be kept at different levels

for arrival processes with the same average behavior (i.e.,mean and CV) but different dependence

structures.
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Figure 3: (a) ACF of the arrival process at the server, (b) average queue length, (c) average response

time, and (d) average slowdown.

3.3 Autocorrelation Effects on Load Balancing Policies

In this section, we use simulation to examine the performance impacts of autocorrelated arrivals in

load balancing policies in the cluster of Figure 1. We assumethat the number of nodes is equal to

four. Experiments with larger number of nodes have been alsodone and results are qualitatively

the same as those reported here.

While the traces in Figure 2 indicate that in a clustered system arrivals have different degrees

of correlation, we do not have a detailed description of the underlying system [16]. This prohibits

us from using those traces to drive our simulation. We opted to use another publicly available trace

measured in a Web server cluster. Specifically, the service process is obtained from traces of the

1998 World Soccer Cup Web site,3 that have been used in several load balancing studies [25, 18,

19]. Trace data were collected during 92 days, from April 26th 1998 to July 26th 1998 [4]. Here,

3Available from the Internet Traffic Archive at http://ita.ee.lbl.gov .
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we use part of the June 24th trace (10 million requests), thatcorresponds to nearly ten hours of

operation and we extract the file size of each transferred request. Because the Web site contained

only static pages, the size of the requested file is a good approximation of the request service

time. The average size of a requested file is 5059 bytes and itsCV is 7.56. High variability in

the file size distribution and file popularities that change dramatically over time, make this trace

particularly challenging for load balancing and an excellent candidate to evaluate the performance

of size-based policies, for more discussion on this trace see [25].

Unfortunately, we cannot use the arrival process of the World Cup trace data because it is

not detailed enough: arrival timestamps of requests are provided in seconds, as a result there are

multiple requests that arrive within one second periods. To examine the effect of autocorrelation in

the arrival process, we use the three arrival processes generated by the MMPP process described in

the previous subsection. Their autocorrelation structureis depicted in Figure 3(a).

We compare the performance of the following policies: ADAPTLOAD, a size-based policy

that uses a histogram of job sizes which is built on-line and has been shown to be effective un-

der changing workload conditions [25],Join the Shortest Weighed Queue (JSWQ) [25],Join the

Shortest Queue (JSQ) [13], andRound-Robin (RR).

• ADAPTLOAD: In a cluster withN server nodes, ADAPTLOAD partitions the possible request

sizes intoN intervals,{[s0 ≡ 0, s1), [s1, s2), . . . [sN−1, sN ≡ ∞)}, so that if the size of a

request falls in thei-th interval, i.e.,[si−1, si), this request is routed to serveri, for 1 ≤ i ≤ N .

These boundariessi for 1 ≤ i ≤ N are determined by constructing the histogram of request

sizes and partitioning it in equal areas, i.e., representing equal work for each server, as shown

by the following equation:

∫ si

si−1

x · dF (x) ≈
S̄

N
, 1 ≤ i ≤ N, (1)

whereF (x) is the cumulative distribution function (CDF) of the request sizes and the amount

of total work is S̄. By sending requests of similar size to the same server, the policy im-

proves average job response time and average job slowdown byavoiding having short jobs

being stuck after long jobs in the queue. For a transient workload, the values of theN − 1

size boundariess1, s2, . . . , sN−1 are critical. ADAPTLOAD self-adjusts these boundaries by
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predicting the incoming workload based on the histogram of the lastK requests. In our

simulations, we set the value ofK equal to10, 000. For a detailed discussion on the policy

sensitivity to this parameter, we direct the interested reader to [25].

• JSWQ: The length of each queue in the system is weighed by the size ofeach queued request,

therefore each incoming request is routed to the least loaded server.

• JSQ: When a request arrives, it is assigned to a server with the smallest waiting queue. If

multiple servers have the same queue length, then a server isselected randomly from this

group of servers.

• RR: In the round-robin algorithm, requests are routed to servers in a rotated order.

ADAPTLOAD is a size-based policy that has been shown in the literature to balance load ef-

fectively in workloads with highly variable service times [25]. Here, we show that if arrivals are

autocorrelated, then ADAPTLOAD’s performance is comparable to that of classic policies that are

well-known to perform poorly.

For all simulation experiments presented in this paper, thearrival process in the cluster is syn-

thetically generated using the three MMPP processes used inthe previous subsection. The service

process directly uses the World Cup trace data of June 24. In all our experiments, we consider

a cluster of four homogeneous back-end servers that serve requests in a FCFS order. We report

on the average job response time, average slowdown, averagequeue length, and average system

utilization. Figure 4 plots performance results for the four load balancing policies. Similar to the

results of Section 3.1, Figure 4 shows that autocorrelationin the arrival process degrades overall

system performance for all four policies. Observe that overall performance under uncorrelated ar-

rivals (NOACF) is two orders of magnitude better than underACF1 inter-arrivals, and three orders

of magnitude better than underACF2 inter-arrivals, despite the fact that average overall system

utilizations are exactly the same for all experiments, i.e., average utilizations are about 62%, see

Figure 4(d). This is consistent with results presented in Section 3.1 for the single queue case.

Per server utilizations, for all experiments, remain the same and equal to about 62%, but are not

reported here due to lack of space. More importantly, the figure also shows that ADAPTLOAD out-

performs all policies under uncorrelated arrivalsonly, see Figures 4(a)-(c). Under correlated arrival
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Figure 4: Performance metrics under four load balancing policies: (a) average response time, (b)

average queue length, (c) average slowdown, and (d) averageutilization.

processes, ADAPTLOAD’s performance is comparable to that of the three other policies, because,

in such conditions, excessive waiting in queue rather than load balancing decisions determine per-

formance.

To better understand this behavior, we examine the autocorrelation of the arrival process ineach

server. Figure 5 shows the ACF of the arrival process at each back-end server, as well as the ACF

of the arrival process at the front-end dispatcher (labeledas “original stream” in the figure). When

there is no autocorrelation in the inter-arrivals at the front-end dispatcher (left column of graphs in

Figure 5), the ACF of inter-arrivals at each back-end serveris almost zero for all policies, except

ADAPTLOAD as captured in Figure 5(a).

The middle column of graphs in Figure 5 shows the ACFs for the experiment with theACF1

structure in the arrival process, and the right column of graphs in Figure 5 shows the ACFs for

the experiment with theACF1 structure in the arrival process. JSWQ and JSQ have the weakest

dependence while RR has the strongest dependence across allservers. The main difference be-

tween ADAPTLOAD and the other three load balancing policies is that, under ADAPTLOAD, the

dependence structure in the arrival streams of different servers is different.

Because ADAPTLOAD is a size-based policy and the workload is heavy-tailed, most requests

are small and are directed to the first two servers. Specifically, the first server receives 88.6% of

jobs, and the second server receives8.7% of jobs. The remaining (large) jobs are sent to the third
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Figure 5: ACF in inter-arrivals at each server, where the arriving requests at the front-end dispatcher

have (a) no dependence (NOACF), (b)ACF1 dependence, and (c)ACF2 dependence.

and fourth servers. Consequently, the first server inheritsthe dependence structure of the entire

arrival stream. The arrivals at the second server are also autocorrelated, but at a lesser degree than

at the first server. ACF in the arrivals of the first two serversdoes not affect their utilization, which

remains almost the same as the rest of the servers. The rest ofperformance measures, however, are

different for different servers, under ADAPTLOAD. Looking at the per-server performance mea-

sures, we observe that, under ADAPTLOAD, the performance of the first server (and proportionally

of the second server) is much worse than the performance of the rest of the servers, negatively

affecting overall performance measures for the entire system. This behavior is consistent with the

single queue performance, see Figure 3, where performance measures for utilization around 60%

differ by several orders of magnitude between arrival processes with different dependence struc-

13



tures. Weak ACFs in the arrival processes of all servers under JSWQ/JSQ help performance, but

because short and long jobs are now served on the same server,performance measures remain low.

The performance of RR suffers from both autocorrelated arrivals and mixing of long with short

jobs on the same server, resulting in the worst performance of the examined policies.

The above observations suggest that in clusters with autocorrelated arrivals, unbalancing the

load while maintaining the property of serving jobs of equalsize in the same server (as under

ADAPTLOAD), may improve performance. Specifically, the only distinction among the servers in

the cluster, under ADAPTLOAD which balances load and work, is the correlation structure of the

arrival streams, which implies that to achieve equal performance among these servers, their load

should be unequal, as Figure 3 indicates. Because under the other three load balancing policies,

the correlation structure of the arrival streams to the servers of the cluster is the same, load unbal-

ancing will not help there to improve performance. In the next sections, we present two policies

that are built on top of ADAPTLOAD, one static and one dynamic, and aim at reducing the load

of the server(s) that admit arrival streams with high autocorrelation in an effort to improve the

performance of individual servers and consequently overall system performance.

4 Unbalancing Load to Improve Performance

First, we present SEQAL, a variation of ADAPTLOAD, where the load of the servers with autocor-

related arrivals is reduced by a static percentage. Then, wepresent DEQAL, a dynamic version of

the same policy, where the degree of load unbalancing is automatically re-adjusted to account for

fluctuations in the incoming workload characteristics and improve policy performance seamlessly.

4.1 S EQAL: Static Policy

Recall that in anN-server cluster, ADAPTLOAD assigns to each serverS̄/N of the work, provided

that the amount of total work is̄S. ADAPTLOAD determines the boundariessi, of job sizes for

each server1 ≤ i ≤ N by constructing the histogram of job sizes and partitioningit in N equal

areas, see Eq. (1). This histogram is built efficiently on-the-fly with only a small space cost for its

storage [25].
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Analysis of per-server performance measures show that equally partitioning the histogram guar-

antees equal utilization of all servers. However, this may hurt performance of jobs that are directed

to servers with correlated arrivals. With ADAPTLOAD, the first server admits 88.6% of the jobs,

thus it inherits the correlation structure of the entire arrival stream to the dispatcher. According to

the single server analysis, this server should operate under a lower utilization level than the rest

of the servers. Work must be shifted away from it, in order to reach similar performance levels

with other servers, whose arrival stream is less correlated. Naturally, the work that is shifted away

from the first server must be redistributed appropriately tothe rest of the cluster. This observation

is the basis of SEQAL, a new policy that still builds the histogram of job sizes as ADAPTLOAD

does, but sets new boundaries,s′i, by weighting the work assigned to each server as a function of

performance degradation due to autocorrelation of the (new) arrival process to each server. That

is, servers that admit autocorrelated arrival streams mustnow be less loaded than those that admit

streams that are uncorrelated.

Aiming at unbalancing the load across servers, we introducea shifting percentage vectorp =

(p1, p2, · · · , pN), so that the work assigned at serveri is now equal to(1+pi)
S̄
N

, for 1 ≤ i ≤ N . The

elements of vectorp can take both negative and positive values. A negativepi makes the amount of

work assigned at serveri less than its equal share ofS̄/N . A positivepi makes the amount of work

assigned at serveri higher than its equal share of̄S/N . Becausep simply shifts work from one

server to another, it should satisfy
∑N

i=1 pi = 0, for 1 ≤ i ≤ N . The following equation formalizes

this new load distribution:

∫ si

si−1

x · dF (x) ≈ (1 + pi)
S̄

N
, 1 ≤ i ≤ N. (2)

Figure 6 gives an illustration of the high level idea of this new policy.

S EQAL statically definespi for 1 ≤ i ≤ N , by letting p1 be equal to a (negative) pre-

determined initial shifting valueR, i.e., p1 = −R. The rest of the shifting percentagespi, for

2 ≤ i ≤ N , are calculated using the algorithm of Figure 7.4 Here, because the majority of the

requests is small and they are directed to the first server, the smaller thei, the less work should be

4We stress that different algorithms can be used to determinehow this shifting of load is done, provided that∑
N

i=1
pi = 0 for 1 ≤ i ≤ N . Finding theoptimal algorithm to set the shifting vectorp is out of the scope of this

paper.
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Figure 6: SEQAL’s high level idea of boundary shifting.

dispatched to serveri. This implies thatp1 is negative. For serveri, for 1 ≤ i < N , the portion

R/2i−1 of its assigned work is equally distributed among serversi + 1 to N . Initially, all shifting

percentagespi for 1 ≤ i ≤ N are initialized to 0 (i.e., no shifting). For server 1,p1 is reduced by

R (see2.a in Figure 7). The work that is shifted from server 1 is now equally distributed among

the remaining servers, i.e.,p2, . . . pN increase by R
N−1

(see2.b in Figure 7) such that the condition
∑N

i=1 pi = 0 is satisfied. For server 2, the work shifted away from this server is now equal toR
2

(see

2.c in Figure 7), sop2 is equal to R
N−1
− R

2
. The algorithm continues to equally distribute all shifted

work from server 2 to the remaining servers. The iteration continues for servers 3, 4,. . . N−1. For

example, if we defineR = 10%, i.e.,p1 = −0.1, then according to SEQAL shifting percentage

vectorp = (−10%,−1.67%, 3.33%, 8.34%).

1. initialize variables

a. initialize a variablemodify modify = R

b. initialize the shifting percentages pi = 0 for all 1 ≤ i ≤ N

2. for i = 1 to N − 1 do

a. reducepi by modify pi ← pi −modify

b. for j = i + 1 to N do

equally distributemodify to the remaining servers pj ← pj + modify

N−i

c. reducemodify to half modify ← modify/2

Figure 7: Setting the shifting percentagespi for S EQAL.
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4.1.1 Weakly correlated arrival process, (ACF1)

First, we evaluate the performance of SEQAL with theACF1 arrival process used in the previous

section. We quantify the performance effect of different shifting vectorsp by presenting the aver-

(a) (b)
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Figure 8: Average slowdown and average response time as a function of the initial shifting valueR

underACF1 inter-arrival times.

age slowdown and average response time of requests under SEQAL for different initial shifting

valuesR. Results are presented in Figure 8.R = 0% corresponds to the original ADAPTLOAD, i.e.,

no boundary shifting. Figure 8(a) shows that the average slowdown of all requests improves asR

increases (i.e., boundaries are shifted to the left). Best average slowdown is achieved forR = 80%

(i.e., p1 = −80%). Figure 8(b) shows that average response time increases for R > 40%. There-

fore, a good initial shifting value isR = 40%, where average slowdown improves by 75.1% and

average response time improves by 41.9% comparing to ADAPTLOAD, i.e.,R = 0%.

We present the per-server performance in Figure 9. Per server utilizations shown in Figure 9(d)

verify that the shifting percentagespi indeed imbalance work across the cluster. AsR increases,

the utilizations of the first two servers decrease while utilizations of the last two servers increase.

The last server’s utilization is now the highest in the cluster. Reducing utilization in the first server

reduces its request slowdown, as shown in Figure 9(a), but the extra work that is now assigned to

servers 3 and 4 does not increase their slowdown significantly for small values ofR. ForR = 90%,

job slowdown at server 4 becomes very high, almost twice as high as for server 1, under ADAPT-

LOAD. Average per-server queue length behaves similarly to average slowdown, see Figure 9(c).

The average response time displayed in Figure 9(b) shows that smallR values decrease average

response time of the first server and increase the response time of the last server. If the portion of

additional requests served by the last server is small, thenthe contribution of the last server per-
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Figure 9: Per server performance measures: (a) average slowdown, (b) average response time, (c)

average queue length and (d) average utilization as a function of the initial shifting valueR with

ACF1 inter-arrival times. The order of bars for each policy reflects server identity.

formance to the overall performance degradation is not significant. AsR increases, more jobs are

assigned to servers with larger index, which counterbalances the benefits of reducing utilization at

the first two servers.
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Figure 10: The CDFs of (a) slowdown and (b) response time under ACF1 inter-arrival times, with

R = 0% (ADAPTLOAD) and40%.

We also evaluate the cumulative distribution functions (CDFs) of slowdown and response time

to better understand how SEQAL works. Figure 10 gives the CDF of slowdown and response

time for all jobs (i.e., 10 million in each experiment). Since a good initial shifting valueR under

ACF1 inter-arrival times is equal to40% (see Figure 8), we compare the CDFs of slowdown and

response time under SEQAL for R = 40% with those of ADAPTLOAD (i.e., R = 0%). With

S EQAL, at least 60% of the jobs have slowdown less than 1000, this percentage reduces to 38%
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Figure 11: CDFs of slowdown and response times for three request size ranges: small [0 - 5,000),

medium [5,000 - 100,000), and large [100,000 - infinity), under ACF1 inter-arrival times.

with ADAPTLOAD, see Figure 10 (a). Figure 10 (b) shows that with ADAPTLOAD only 50% of

jobs have response time less than 1000 seconds while with SEQAL this percentage increases to

79%. Moreover, the figure also shows that SEQAL with R = 40% makes the tail of slowdown

about one order of magnitude shorter than ADAPTLOAD. This happens, because SEQAL focuses

on improving the performance of small jobs at the expense of the performance of large jobs, by

loading heavily the servers that serve large jobs.

We present the performance of SEQAL for three classes of job sizes:small jobs that access

files less than5, 000 bytes,medium jobs that access files with size between5, 000 and100, 000

bytes, andlarge jobs that access files with size greater than100, 000 bytes. For the specific work-

load that drives our simulations,small, medium, and large jobs represent, respectively, 84.5%,

15.4%, and 0.1% of total jobs. Per class CDFs of response times and slowdowns are illustrated in

Figure 11. With ADAPTLOAD, the performance of small and medium jobs suffers in comparison

to S EQAL confirming our speculation that slowdown and response time tails are dominated by

the (bad) performance of small jobs. This phenomenon reduces considerably with SEQAL: after

boundary shifting the tails of slowdowns and response timesare dominated by the deteriorated

performance of large jobs.
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4.1.2 Strongly correlated arrival process, ACF2

(a) (b)
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Figure 12: Average slowdown and average response time as a function of initial shifting valueR

with ACF2 inter-arrival times.
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Figure 13: Per server performance metrics as a function of the initial shifting valueR underACF2

traffic: (a) average slowdown, (b) average response time, (c) average queue length and (d) average

utilization. The order of bars for each policy reflects the server identity.

In this experiment, we evaluate the performance of SEQAL under theACF2 arrival process.

Figure 12 gives the average job slowdown and the average job response time as a function ofR. In

Figure 12, we observe the same trends as in Figure 8, but higher absolute performance values than

under theACF1 experiment. Compared to ADAPTLOAD (i.e.,R = 0%), S EQAL with R = 40%

improves average response time by 49.2% and average slowdown by 67.2%.

Figure 13 illustrates per-server performance measures under ACF2 traffic. Although perfor-

mance trends are similar to theACF1 case, they are more exaggerated. Both average slowdown
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and average response time of the first server reduce asR increases (see Figures 13(a)-(b)), but a

turning point exists where shifting more work to subsequentservers adversely affects slowdown.

CDF graphs, both across all files and for small, medium, and large ranges confirm that, as in the

ACF1 experiment, the tails of the performance measures are now dominated by the deteriorated

performance of large files due to shifting. CDF trends are thesame as in theACF1 experiment and

are not reported here due to lack of space.

(a) NOACF (uncorrelated arrivals), system utilization = 20%

(b) ACF1 arrivals, system utilization = 20%

(c) ACF2 arrivals, system utilization = 20%
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Figure 14: Average slowdown and average response time as a function of initial shifting valueR

when inter-arrivals are (a) uncorrelated (NOACF), (b) having ACF1 dependence, and (c) having

ACF2 dependence. The average system utilization is about20%.

4.1.3 Various system utilizations

In the previous sections, we evaluated the performance of SEQAL for different values ofR in

a system with average utilization equal to about62% and found thatR = 40% is a good shifting
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(a) NOACF (uncorrelated arrivals), system utilization = 80%

(b) ACF1 arrivals, system utilization = 80%

(c) ACF2 arrivals, system utilization = 80%
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Figure 15: Average slowdown and average response time as a function of initial shifting value

R when inter-arrival times are (a) uncorrelated (NOACF), (b)havingACF1 dependence, and (c)

havingACF2 dependence. The average system utilization is about80%.

value for bothACF1 andACF2 experiments. Here, we evaluate SEQAL performance for different

values ofR under lightly loaded and heavily loaded systems.

We use the same arrival processes and the same service process as in the previous subsection,

but we scale the service times to examine system performanceunder different utilization levels.

Figure 14 illustrates the average request slowdown and the average request response time as a

function ofR in a system with average utilization equal to20%. More detailed analysis shows that

under uncorrelated arrivals and low system utilization levels ADAPTLOAD does not always balance

load well. This phenomenon is also identified in [25]. In thiscase, a shifting constant ofR = 50%

corrects this known weakness of ADAPTLOAD. Figure 14 shows that for bothACF1 andACF2

arrivals, the best slowdown and response time is achieved with R = 60%, making it an excellent

initial shifting value in a lightly loaded system.
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We also evaluate performance in a system with average utilization of 80%, see Figure 15.

Under uncorrelated arrivals, SEQAL with R = 20% optimizes slowdown but the best response

time is achieved by ADAPTLOAD. For bothACF1 andACF2, although the slowdown decreases as

R increases up toR = 70%, the lowest response time is achieved forR = 20%. This happens

because forR ≥ 30%, load imbalancing in the cluster becomes extreme, with thelast server

operating nearly in full capacity, i.e., reaches nearly 100% utilization. This dramatically increases

response times of large jobs and, consequently, overall average job response time. We conclude

that the value of the initial shifting valueR should decrease as the load in the system increases.

4.2 D EQAL: On-line Policy

In the previous section, we gave a proof of concept of the performance benefits of load unbalanc-

ing. We also showed that performance improvements depend onthe degree of load unbalancing

determined by the initial shifting valueR. A good choice ofR can result in significant gains, but

an unfortunate choice may also result in poor performance. Here, we present DEQAL, an on-line

version of SEQAL, that continuously monitors the workload such that theeffectiveness of load

unbalancing becomes independent ofR.

D EQAL continuously monitorsC requests that have been just served by the cluster and re-

adjusts the degree of load unbalancing on-the-fly, aiming atimprovingboth average response time

and average slowdown.C must be large enough to allow for performance measures to be sta-

tistically significant but also small enough to allow for quick adaptation to transient workload

conditions. In the experiments presented here,C is set to 300,000. We examined the robustness

of D EQAL with differentC values ranging from 100,000 to 1.000,000 and concluded thatsmall

values of C (around 100,000) are not as effective as larger values of C (more than 200,000). This

is an expected result given that C should capture changes in burstiness behavior of the process.

D EQAL starts by settingR to zero, i.e., no load shifting is proposed beyond the computed

ADAPTLOAD intervals. For every batch ofC requests, we compare the relative performance im-

provement/decline of average slowdown (Avgsld) and average normalized response time (Avgnres)

in comparison to the previous batch ofC requests. The average normalized response time (Avgnres)
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is defined as follows

Avgnres(k) =
average response time in the kth batch

average service time in the kth batch

and aims at comparing fairly the average response times in two consecutive batches. This is partic-

ularly critical if the per-batch average service times differ significantly.

For everyC requests,R, S EQAL’s initial shifting value, is adjusted by a fixed number

0 < D < 100% and interval boundaries are recalculated correspondingly. Figure 16 presents

the D EQAL algorithm that implements a dynamic adjustment ofR as a function of system per-

formance measures. For the first batch ofC requests,R = 0, i.e., all servers are equally loaded and

the system operates using ADAPTLOAD. This is necessary to obtain base-case performance mea-

sures. For the second batch ofC requests,R = D, i.e., D EQAL starts exploring the performance

effects of boundary shifting by decreasing the load of the first servers. In subsequent steps, average

slowdown and average normalized response time of the lastC requests are compared to the batch

of the penultimateC requests. If system performance improves, then boundary shifting is done

in the same direction, i.e., if the last adjustment shifted the work from the small (large) servers to

large (small) servers, then we continue to shift more work from the small (large) servers to large

(small) servers. Otherwise,R is adjusted such that boundaries are shifted in the reverse direction

(see3.b.III, in Figure 16). In our experiments,D is set to 10%.5

Step2.b.II of Figure 16 provides an additional condition to avoiding over-shifting. This condi-

tion is deduced from the performance analysis of SEQAL (see the previous section) which shows

that overloading servers 3 and 4 that serve requests for large files may significantly deteriorate av-

erage response time while maintaining acceptable slowdown. Figure 17 illustrates this behavior by

plotting the average slowdown and average response time as atransient measure (i.e., across time)

of every 10,000 requests. IfR is set appropriately, then average slowdown and average response

times change with similar rate (see Figure 17(a)). An extremely largeR (i.e., load over-shifting)

makes response time to increase much faster than slowdown (see Figure 17(b)). As a result, the

5Finding the ideal value ofD is beyond the scope of this paper. The values used here are based on the experimental

analysis of SEQAL for this specific workload. A large value ofD results in faster load “unbalancing” while a smaller

value results to the opposite. Dynamically adjusting the value ofD using a feedback mechanism could make the policy

more robust and is subject of future work.
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1. initialize variables R← 0, k ← 1, D ← 10%

2. Computepi (1 ≤ i ≤ N) for thek-th batch ofC requests using the algorithm of Figure 7

3. Compute new server boundaries using Eq.(2) and schedule thek-th batch ofC requests

a. computeAvgsld(k) andAvgnres(k) for thek-th batch ofC requests

b. calculateR for the next batch ofC requests

I. if the firstC requests k = 1

then shift (increaseR) adjust← D, go to4.

II. if over-shifting |Avgnres(k)−Avgnres(k−1)|
Avgnres(1)

> |Avgsld(k)−Avgsld(k−1)|
Avgsld(1)

then shift less (decreaseR) adjust← −D, go to4.

III. if performance degrades Avgsld(k) > Avgsld(k − 1) or

Avgnres(k) > Avgnres(k − 1)

then correct last shifting adjust← −adjust, go to4.

else continue last shifting adjust← adjust, go to4.

4. R← R + adjust, k ← k + 1, go to2.

Figure 16: DEQAL dynamically adjustsR.

comparison of slowdown and response time provides a good indication for over-shifting. Since

slowdown and response time are performance measures of different scales, we observe changes in

two consecutive batches (i.e.,|Avgsld(k)−Avgsld(k− 1)| and|Avgnres(k)−Avgnres(k− 1)|) and

normalize them by their respective values of the first batch of C requests when no shifting occurs,

(i.e.,Avgsld(1) andAvgnres(1) with R = 0, the original ADAPTLOAD ) for a fair comparison.

4.2.1 Performance of D EQAL

In this section, we evaluate the effectiveness of DEQAL. We compare ADAPTLOAD, i.e., SEQAL

with R = 0%, S EQAL with various values of its initial shifting valueR, and D EQAL. Note that

D EQAL starts withR = 0, which implies that we rely on the algorithm to find the appropriateR.

Results for various system utilization levels (i.e., 20%, 62%, and 80%) are presented in Figures 18-

20. In all graphs, DEQAL is comparable to the best performing SEQAL. D EQAL manages to
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Figure 17: The average slowdown and average response time ofevery 10,000 requests underACF1

arrivals when (a)R = 30% and (b)R = 90%. The system utilization is 62%.
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Figure 18: Performance effects of autocorrelation under low system utilization (20%). The first

two rows give the average slowdown and the average response time. The third row shows how

the initial shifting valueR is updated as a function of time (measured in processed requests) for

C = 300, 000.
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Figure 19: Performance effects of autocorrelation under medium system utilization (62% utiliza-

tion level). The first two rows give the average slowdown and the average response time. The third

row shows how the initial shifting valueR is updated as a function of time (measured in processed

requests) forC = 300, 000.

adjustR such that both slowdown (see Figures 18-20(a)) and responsetimes (see Figures 18-20(b))

are improved.

Figures 18-20(c) show how the algorithm changesR throughout the duration of the experiment.

With no autocorrelation in the arrival stream,R almost always remains equal to 0, irrespective

of the system utilization level, essentially the policy behaves like ADAPTLOAD. With ACF1 or

ACF2 arrivals,R converges toward the best performing static value as seen inthe analysis of the

performance of SEQAL, see Section 4.1.3.

5 Conclusions

We presented evidence via detailed simulations that size-based policies for load balancing in ho-

mogeneous clusters become ineffective when the arrival process is autocorrelated. If the arrival
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Figure 20: Performance effects of autocorrelation under high system utilization (80% utilization

level). The first two rows give the average slowdown and the average response time. The third

row shows how the initial shifting valueR is updated as a function of time (measured in processed

requests) forC = 300, 000.

process is autocorrelated, then the basic premise of size-based policies, i.e., balancing the load by

keeping each server equally utilized while serving jobs of similar size in each server, may actually

hurt performance as per-server performance is sensitive tonot only its utilization level but most

importantly to the dependence structure in the arrival stream of jobs that it serves.

We propose a new size-based load balancing policy, called DEQAL, that still strives to serve

jobs of similar size in each server but per-server utilization levels depend on the autocorrelation

of the arrival process to that particular server. As a resultof this effort, if there is autocorrelation

in the arrival stream to the cluster, all servers may not be equally utilized (i.e., load in the system

becomes unbalanced) but this imbalance results in significant performance benefits. If there is no

autocorrelation in the arrival stream, then DEQAL seamlessly balances load across all servers as

ADAPTLOAD does (i.e., it behaves like a typical size-based policy). DEQAL does not require

any prior knowledge of the correlation structure of the arrival stream or of the job size distribution.
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Using detailed simulations we show that DEQAL can be used on-line: by monitoring system

performance measures, it self-adjusts its configuration parameters to transient workload conditions

and significantly improves performance under correlated arrivals.
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