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Abstract—Size-based policies have been shown in the literature to effectively balance load and improve performance in cluster

environments. Size-based policies assign jobs to servers based on the job size and their performance improvements are an outcome of

separating “short” from “long” jobs, by avoiding having short jobs waiting behind long jobs for service. In this paper, we present evidence

that performance improvements due to this separation quickly vanish if the arrival process to the cluster is autocorrelated. Based on our

observations, we devise a new size-based policy called D_EQAL that still strives to separate jobs to servers according to job size but this

separation is now biased by an effort to reduce performance loss due to autocorrelation in the arrival flows of jobs that are directed to

each server. As a result of this bias, all servers may not be equally utilized (i.e., load in the system may be “unbalanced”), but

performance benefits become significant. D_EQAL can be used on-line as it does not assume any a priori knowledge of the incoming

workload. Extensive simulations show the effectiveness of D_EQAL under autocorrelated and uncorrelated arrival streams and illustrate

that the policy successfully self-adjusts the degree of load unbalancing based on monitored performance measures.

Index Terms—Load balancing, autocorrelated arrivals, highly variable service times, self adaptive policies.
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1 INTRODUCTION

IN the past few years, there has been a renewed interest in
the development of load balancing policies for clustered

systems with a single system image, i.e., systems where a
set of (homogeneous) hosts behaves as a single host. Jobs (or
requests) arrive at a dispatcher which then forwards them
to the appropriate server.1 While there exists no central
waiting queue at the dispatcher, each server has a separate
waiting queue and a separate processor that operates under
the first-come first-serve (FCFS) queueing discipline, see
Fig. 1. The dispatching policy is critical for system
performance and strongly depends on the stochastic
characteristics of the jobs as well as on the performance
measures that the system strives to optimize. If job service
times are highly variable, then policies that balance the load
in the cluster using as a basic criterion the size of the
incoming job, have been shown to minimize the expected
job completion time and the expected job waiting time [10],
[9]. This broad family of load balancing policies is known as
size-based policies.

The basic premise for the success of size-based policies is
reduction of variability in the job service time distribution at
each server. First, it has been demonstrated in the literature

that increased variability in the service process of an M/GI/
1 queue results in longer waiting queue lengths [13]. Longer
waiting queues imply longer expected job response times
(i.e., waiting plus service times) and longer average job
slowdowns (defined as the expected value of the ratio of the
job response time to the job service time). In an M/GI/1
setting, the performance of small jobs that are queued
behind large jobs degrades significantly, which then
contributes to longer average job response time and longer
average job slowdown. Size-based policies that direct jobs
of similar sizes to the same server aim at reducing the
variation in job service times seen by each server and at
diminishing the proportion of small jobs waiting behind
long jobs. Defining the intervals of job sizes served by each
server must be done judiciously. If there is a priori
knowledge of the job service time distribution, then
splitting the cumulative distribution function (CDF) of job
service times in equal parts, as many as the servers, ensures
that all servers are equally utilized (i.e., the system is load
balanced) and that jobs of “similar” size are directed to the
same server. The optimality of size-based policies in
homogeneous environments with respect to minimizing
the expected job response time and the expected job waiting
time has been proved in [9].

Not all size-based policies require a priori knowledge of
the job service time distribution as the empirical distribu-
tion may be estimated on-the-fly by collecting statistics of
the past workload seen by the system [25]. A required
condition though for size-based policies is that upon job
arrival at the dispatcher, an accurate estimate of the job
service time is possible. This condition restricts our
discussion here to systems where accurate estimation of
job service times is possible.

Several types of clustered systems can take advantage of
size-based policies. One example is locally-distributed Web
server clusters where a switch is the initial interface
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between the cluster nodes and the Internet [3], [25], [15]. For
static requests in Web server clusters, e.g., transfers of
image or text files, the job service time is analogous to the
size of the transferred file. This information can be
immediately used by the dispatcher to assign the request
to the appropriate server [25].2 Media-server clusters that
provide streaming of audio and video is another example of
a centralized cluster where job size is known a priori and
where size-based policies can be used [22], [6]. Storage
systems that use mirroring to improve performance and
data availability is yet another case of a cluster system
where load balancing based on the job size is possible.

Here, we focus on the general problem of load balancing
in a homogeneous cluster of FCFS servers depicted in Fig. 1,
aiming at improving the expected job response time and the
expected job slowdown. In contrast to prior work in size-
based policies, which assumes that the arrival process at
the dispatcher is independent and identically distributed
(i.i.d.), we examine the performance of size-based policies
under an autocorrelated arrival process. Autocorrelation in
the arrival process implies that there is a dependence
structure in the arrival flows. Conventional wisdom has it
that the arrival process in Internet servers is not i.i.d.
because of the self-similar nature of network traffic [20].
Autocorrelated flows have also been observed in multi-
tiered systems [14] and storage systems [17].

In this paper, we show that the effectiveness of size-
based policies diminishes if the workload arrival process is
autocorrelated. We closely examine the performance effects
of autocorrelation under several load balancing policies
including ADAPTLOAD, a size-based policy, and several
classic policies including Join the Shortest Weighed Queue,
Join the Shortest Queue, and Round-Robin in order to build
intuition on the problem. Based on our observations, we
propose D_EQAL, a new size-based load balancing policy
that reduces performance degradation due to autocorrela-
tion in each server. D_EQAL dynamically distributes work
equally addressing autocorrelation and load, and may
unbalance load in the system in order to benefit perfor-
mance. If the arrival process to the cluster is uncorrelated,
then the policy loads each server with equal work, i.e., aims
at balancing the load across all servers. If the arrival process

to the cluster is autocorrelated, then D_EQAL loads each
server with unequal work such that load in the system
becomes unbalanced, but overall system performance
increases dramatically. D_EQAL does not assume any a
priori knowledge of the job service time distribution nor
any knowledge of the autocorrelation structure in the
arrival streams, yet it successfully copes with changing
workloads by observing past arrival and service character-
istics as well as past performance. To the best of our
knowledge, this is the first time that dependence in the
arrival process becomes a critical aspect of load balancing.

This paper is organized as follows: Section 2 presents
related work. Section 3 gives evidence of performance
deterioration in a single server system due to autocorrelated
arrivals and demonstrates that performance gains of size-
based policies in clusters quickly evaporate in the presence of
autocorrelated arrivals. In Section 4, we first present a policy
that unbalances the load in a static manner to improve
performance under autocorrelated flows. D_EQAL, the
proposed on-line size-based policy, is presented later in the
section and its performance is evaluated via detailed
simulation. Section 5 summarizes our contributions.

2 RELATED WORK

A significant body of research in task scheduling and load
balancing has been developed over the years (see [11], [9]
and references within), but only recently there has been a
consensus that traditional load balancing policies, i.e., join-
the-shortest queue or join-the-least-loaded server, result in
high average job response time and high average job
slowdown if job service times are highly variable and/or
heavy-tailed [10]. For workloads with highly variable
service times, size-based policies, which advocate dedicat-
ing servers to jobs of similar sizes, have been shown in the
literature to achieve high performance [10], [25]. Assuming
that there are N servers, the job sizes are partitioned into N
intervals, ½s0 � 0; s1Þ, ½s1; s2Þ, . . . , ½sN�1; sN � 1Þ, so that
server i is responsible for satisfying requests of size between
si�1 and si. By dedicating servers to requests of similar size,
these policies reduce the average job slowdown through
separation of long and short jobs. Despite the fact that size-
based policies are stateless, i.e., oblivious of the instanta-
neous load in each server, they successfully load each
server with approximately the same amount of work so that
all servers are equally utilized [10], [9]. The optimality of
size-based strategies is proved in [9].

Note that size-based policies are based solely on a priori
knowledge of the distribution of the incoming job sizes and
not of the instantaneous load in the servers. Even if the job
service time distributions are not known a priori, on-line
versions of size-based policies have shown to maintain high
performance for workloads that are highly variable across
time, i.e., transient workloads [25]. ADAPTLOAD has been
developed as an on-line version of a size-based policy that
monitors the incoming workload and builds a histogram of
job size frequency (i.e., builds the empirical distribution
histogram) while the system is in operation. Based on this
histogram, it self-adjusts the interval boundaries according
to changes in the operational environment. Rapid fluctua-
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Fig. 1. Model of a clustered server.

2. Size-based policies can be adapted for Web server clusters that serve
dynamic requests. For details, we direct the reader to [25]. Our focus here is
on the more general problem of the effectiveness of size-based policies
under autocorrelated arrivals.



tions in job size frequencies and/or job service times are
now reflected in the histogram.

Size-based load balancing policies have been examined
under the assumption of i.i.d. arrivals into the cluster.
Nonetheless, there is a significant body of literature that
shows that dependence in arrival flows exists, especially in
network-related traffic [20]. Autocorrelated flows have been
also observed in multitiered systems [14] and storage
systems [17]. Even for systems that operate under low to
moderate utilization levels, increased autocorrelation in
their arrival process has been shown detrimental for
performance, i.e., the higher the autocorrelation, the longer
the expected response times [8]. Similar results are reported
in [2] where the performance effects of short-range
dependence versus long-range dependence in the arrival
streams are examined. In the context of networking, traffic
shaping has been used as a technique to alleviate the
negative effects of autocorrelation, by dropping, reorder-
ing, or delaying selected requests [5], [21], [7], [1]. Finally,
recent analytic models of a single queue with autocorrelated
inter-arrival and/or service process, have demonstrated
that flows out of the queue are also autocorrelated and
propagate to the next queue that feeds from that departure
process [23].

3 MOTIVATION

In this section, we first present data that have been measured
on real systems to confirm the existence of dependence in
arrival streams. Then, we give motivation for this work first
by presenting the performance of a single server under
autocorrelated arrivals and second by examining the perfor-
mance of load balancing policies in a cluster under auto-
correlated arrivals.

3.1 Autocorrelation in Systems

Throughout this paper, we use the autocorrelation function
(ACF) as a metric of the dependence structure of a time
series (either request arrivals or services) and the coefficient
of variation (CV) as a metric of variability in a time series
(either request arrivals or services). CV values less than 1
indicate that the variability of the sample is low. CV values
larger than 1 indicate high variability. The exponential
distribution has a CV of 1.

Consider a stationary time series of random variables
fXng, where n ¼ 0; . . . ;1, in discrete time. The autocorrela-
tion function (ACF) �XðkÞ and the coefficient of variation
(CV) are defined as follows:

�XðkÞ ¼ �Xt;Xtþk ¼
E½ðXt � �ÞðXtþk � �Þ�

�2
; CV ¼ �

�
;

where � is the mean and �2 is the common variance of fXng.
The argument k is called the lag and denotes the time
separation between Xt and Xtþk. The values of �XðkÞ may
range from -1 to 1. If �XðkÞ ¼ 0, then there is no autocorrela-
tion at lag k. If �XðkÞ ¼ 0 for all k > 0 then the time series is
uncorrelated. In most cases, ACF approaches zero as k
increases. The ACF essentially captures the “ordering” of
random values in the time series. Positive ACF values imply
that there is strong temporal locality, i.e., a value of the
random variable has a high probability to be followed by
another variable of the same order of magnitude, while
negative ACF implies the opposite. The ACF’s decay rate
determines if a process exhibits weak or strong correlation.

Fig. 2 presents the ACF of arrivals at several storage
systems supporting (dedicatedly) various applications [16],
[17]. The figure shows that the dependence structure in the
request arrival streams to the storage systems differs among
the systems that support different applications This depen-
dence structure is a result of multiple factors including the
architecture of the storage system, the file system, and the
resource management policies at all levels of the I/O path. For
more evidence of the existence of autocorrelated flows in
storage systems, see [17].

3.2 Autocorrelation Effects in a Single Queue

To illustrate the magnitude of the performance effects of
autocorrelation in systems, we parameterize a simple
queueing model of a single server. The arrival process is
drawn from a Markov Modulated Poisson Process (MMPP)
[12] that is parameterized such that it results in three levels
of dependence as illustrated in Fig. 3a: NOACF (i.e., arrivals
are uncorrelated), ACF1, and ACF2. The probability
distribution functions (PDFs) of these three arrival pro-
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Fig. 2. ACF of the arrival process at the storage subsystem for various

applications.

Fig. 3. (a) ACF of the arrival process at the server, (b) average queue

length, (c) average response time, and (d) average slowdown.



cesses are identical (i.e., all their moments are the same), but
what distinguishes them is the order of sampling from the
PDF, which introduces autocorrelation. The mean inter-
arrival time in these three processes is equal to 13.28 ms and
CV is equal to 5.67, as derived by the arrival process to the
storage system of a Web server presented in [17].

The service process is drawn from a 2-stage hyperexpo-
nential (H2) distribution with mean service time equal to
3 ms and CV equal to 1.85 and models the disk-level service
process for the Web server storage trace in [17]. Inter-arrival
times are scaled so that we examine system performance
under different utilization levels.

Figs. 3b, 3c, and 3d present performance measures for
the three different arrival processes as a function of server
utilization. The effect of ACF on system performance is
tremendous: the higher the ACF, the worse the system
performance, which can worsen by as much as 3 orders of
magnitude when comparing to the case with uncorrelated
(NOACF) arrivals. Because of the difference in the three
curves, the performance measures with uncorrelated
arrivals look flat. Under uncorrelated arrivals (i.e., the
NOACF curve), queue length, as expected, is equal to 152
for utilization equal to 0.9. This number is dwarfed in
comparison to the corresponding values for the ACF1 and
ACF2 curves. The inset plots in Figs. 3b, 3c, and 3d illustrate
the same performance measures, but using logarithmic
scale on the y axis. The dramatic effects of autocorrelation
are illustrated even for low to moderate system utilizations,
between 25 percent and 50 percent, where the probability
that a job finds the system idle is higher than 0.5.

It is the burstiness in the arrival stream that results in
performance degradation by several orders of magnitude,
even for low to moderate loads. This burstiness is captured
by the autocorrelation metric. Positive ACF values greater
than zero for lag k � 1 imply that a small interarrival time
has high conditional probability to be followed by a small
kth interarrival, causing the queue to build up fast. The
stronger the dependence, the more the burstiness in the
arrival stream, which causes the waiting queue to build up
faster if the arrival stream is ACF2 versus ACF1. If the
arrival process is uncorrelated, the conditional probabilities
are zero, i.e., there is no burstiness in the process, which
implies less waiting queue build up (and consequently
better performance) even for the same server utilization
level as Fig. 3 illustrates. Although bursty periods are
relatively short, their impact on performance is long-term,
as Fig. 3 indicates. Moreover, if the goal in the system is to
achieve a certain performance, then the system utilization
should be kept at different levels for arrival processes with
the same average behavior (i.e., mean and CV), but different
dependence structures.

3.3 Autocorrelation Effects on Load Balancing
Policies

In this section, we use simulation to examine the perfor-
mance impacts of autocorrelated arrivals in load balancing
policies in the cluster of Fig. 1. We assume that the number
of nodes is equal to four. Experiments with larger number
of nodes have been also done and results are qualitatively
the same as those reported here.

While the traces in Fig. 2 indicate that in a clustered
system arrivals have different degrees of correlation, we do
not have a detailed description of the underlying system
[16]. This prohibits us from using those traces to drive our
simulation. We opted to use another publicly available trace
measured in a Web server cluster. Specifically, the service
process is obtained from traces of the 1998 World Soccer
Cup Web site,3 that have been used in several load
balancing studies [25], [18], [19]. Trace data were collected
during 92 days, from 26 April 1998 to 26 July 1998 [4]. Here,
we use part of the 24 June trace (10 million requests), that
corresponds to nearly ten hours of operation and we extract
the file size of each transferred request. Because the Web
site contained only static pages, the size of the requested file
is a good approximation of the request service time. The
average size of a requested file is 5059 bytes and its CV is
7.56. High variability in the file size distribution and file
popularities that change dramatically over time, make this
trace particularly challenging for load balancing and an
excellent candidate to evaluate the performance of size-
based policies, for more discussion on this trace see [25].

Unfortunately, we cannot use the arrival process of the
World Cup trace data because it is not detailed enough:
arrival timestamps of requests are provided in seconds, as a
result there are multiple requests that arrive within one
second periods. To examine the effect of autocorrelation in
the arrival process, we use the three arrival processes
generated by the MMPP process described in the previous
subsection. Their autocorrelation structure is depicted in
Fig. 3a.

We compare the performance of the following policies:
ADAPTLOAD, a size-based policy that uses a histogram of
job sizes which is built online and has been shown to be
effective under changing workload conditions [25], Join the
Shortest Weighed Queue (JSWQ) [25], Join the Shortest Queue
(JSQ) [13], and Round-Robin (RR).

. ADAPTLOAD: In a cluster with N server nodes,
ADAPTLOADpartitions the possible request sizes into
N intervals, f½s0 � 0; s1Þ; ½s1; s2Þ; . . . ½sN�1; sN � 1Þg,
so that if the size of a request falls in the i-th interval,
i.e., ½si�1; siÞ, this request is routed to server i, for
1 � i � N . These boundaries si for 1 � i � N are
determined by constructing the histogram of request
sizes and partitioning it in equal areas, i.e., represent-
ing equal work for each server, as shown by the
following equation:

Z si

si�1

x � dF ðxÞ �
�S

N
; 1 � i � N; ð1Þ

where F ðxÞ is the cumulative distribution function
(CDF) of the request sizes and the amount of total
work is �S. By sending requests of similar size to the
same server, the policy improves average job
response time and average job slowdown by avoid-
ing having short jobs being stuck after long jobs in
the queue. For a transient workload, the values of
the N � 1 size boundaries s1; s2; . . . ; sN�1 are critical.
ADAPTLOAD self-adjusts these boundaries by pre-
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dicting the incoming workload based on the histo-
gram of the last K requests. In our simulations, we
set the value of K equal to 10; 000. For a detailed
discussion on the policy sensitivity to this para-
meter, we direct the interested reader to [25].

. JSWQ: The length of each queue in the system is
weighed by the size of each queued request, there-
fore each incoming request is routed to the least
loaded server.

. JSQ: When a request arrives, it is assigned to a
server with the smallest waiting queue. If multiple
servers have the same queue length, then a server is
selected randomly from this group of servers.

. RR: In the round-robin algorithm, requests are
routed to servers in a rotated order.

ADAPTLOAD is a size-based policy that has been shown
in the literature to balance load effectively in workloads
with highly variable service times [25]. Here, we show that
if arrivals are autocorrelated, then ADAPTLOAD’s perfor-
mance is comparable to that of classic policies that are well-
known to perform poorly.

For all simulation experiments presented in this paper,
the arrival process in the cluster is synthetically generated
using the three MMPP processes used in the previous
subsection. The service process directly uses the World Cup
trace data of June 24. In all our experiments, we consider a
cluster of four homogeneous back-end servers that serve
requests in a FCFS order. We report on the average job
response time, average slowdown, average queue length,
and average system utilization. Fig. 4 plots performance
results for the four load balancing policies.

Similar to the results of Section 3.1, Fig. 4 shows that
autocorrelation in the arrival process degrades overall
system performance for all four policies. Observe that
overall performance under uncorrelated arrivals (NOACF)
is two orders of magnitude better than under ACF1

interarrivals, and three orders of magnitude better than
under ACF2 interarrivals, despite the fact that average
overall system utilizations are exactly the same for all
experiments, i.e., average utilizations are about 62 percent,
see Fig. 4d. This is consistent with results presented in
Section 3.1 for the single queue case. Per server utilizations,
for all experiments, remain the same and equal to about 62
percent, but are not reported here due to lack of space. More
importantly, the figure also shows that ADAPTLOAD

outperforms all policies under uncorrelated arrivals only,
see Figs. 4a, 4b, and 4c. Under correlated arrival processes,

ADAPTLOAD’s performance is comparable to that of the
three other policies, because, in such conditions, excessive
waiting in queue rather than load balancing decisions
determine performance.

To better understand this behavior, we examine the
autocorrelation of the arrival process in each server. Fig. 5
shows the ACF of the arrival process at each back-end
server, as well as the ACF of the arrival process at the front-
end dispatcher (labeled as “original stream” in the figure).
When there is no autocorrelation in the interarrivals at the
front-end dispatcher (left column of graphs in Fig. 5), the
ACF of interarrivals at each back-end server is almost zero
for all policies, except ADAPTLOADas captured in Fig. 5a.

The middle column of graphs in Fig. 5 shows the ACFs
for the experiment with the ACF1 structure in the arrival
process, and the right column of graphs in Fig. 5 shows the
ACFs for the experiment with the ACF1 structure in the
arrival process. JSWQ and JSQ have the weakest depen-
dence while RR has the strongest dependence across all
servers. The main difference between ADAPTLOAD and the
other three load balancing policies is that, under ADAPT-

LOAD, the dependence structure in the arrival streams of
different servers is different.

Because ADAPTLOAD is a size-based policy and the
workload is heavy-tailed, most requests are small and are
directed to the first two servers. Specifically, the first server
receives 88.6 percent of jobs, and the second server receives
8.7 percent of jobs. The remaining (large) jobs are sent to the
third and fourth servers. Consequently, the first server
inherits the dependence structure of the entire arrival
stream. The arrivals at the second server are also auto-
correlated, but at a lesser degree than at the first server.
ACF in the arrivals of the first two servers does not affect
their utilization, which remains almost the same as the rest
of the servers. The rest of performance measures, however,
are different for different servers, under ADAPTLOAD.
Looking at the per-server performance measures, we
observe that, under ADAPTLOAD, the performance of the
first server (and proportionally of the second server) is
much worse than the performance of the rest of the servers,
negatively affecting overall performance measures for the
entire system. This behavior is consistent with the single
queue performance, see Fig. 3, where performance mea-
sures for utilization around 60 percent differ by several
orders of magnitude between arrival processes with
different dependence structures. Weak ACFs in the arrival
processes of all servers under JSWQ/JSQ help performance,
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average utilization.



but because short and long jobs are now served on the same
server, performance measures remain low. The perfor-
mance of RR suffers from both autocorrelated arrivals and
mixing of long with short jobs on the same server, resulting
in the worst performance of the examined policies.

The above observations suggest that in clusters with
autocorrelated arrivals, unbalancing the load while main-
taining the property of serving jobs of equal size in the same
server (as under ADAPTLOAD), may improve performance.
Specifically, the only distinction among the servers in the
cluster, under ADAPTLOAD which balances load and work,
is the correlation structure of the arrival streams, which
implies that to achieve equal performance among these
servers, their load should be unequal, as Fig. 3 indicates.
Because under the other three load balancing policies, the
correlation structure of the arrival streams to the servers of
the cluster is the same, load unbalancing will not help there
to improve performance. In the next sections, we present
two policies that are built on top of ADAPTLOAD, one static
and one dynamic, and aim at reducing the load of the
server(s) that admit arrival streams with high autocorrela-
tion in an effort to improve the performance of individual
servers and consequently overall system performance.

4 UNBALANCING LOAD tO IMPROVE PERFORMANCE

First, we present S_EQAL, a variation of ADAPTLOAD,
where the load of the servers with autocorrelated arrivals is

reduced by a static percentage. Then, we present D_EQAL,
a dynamic version of the same policy, where the degree of
load unbalancing is automatically re-adjusted to account for
fluctuations in the incoming workload characteristics and
improve policy performance seamlessly.

4.1 S_EQAL: Static Policy

Recall that in an N-server cluster, ADAPTLOAD assigns to
each server �S=N of the work, provided that the amount of
total work is �S.

ADAPTLOAD determines the boundaries si, of job sizes
for each server 1 � i � N by constructing the histogram of
job sizes and partitioning it in N equal areas, see (1). This
histogram is built efficiently on-the-fly with only a small
space cost for its storage [25].

Analysis of per-server performance measures show that
equally partitioning the histogram guarantees equal utiliza-
tion of all servers. However, this may hurt performance of
jobs that are directed to servers with correlated arrivals.
With ADAPTLOAD, the first server admits 88.6 percent of
the jobs, thus it inherits the correlation structure of the
entire arrival stream to the dispatcher. According to the
single server analysis, this server should operate under a
lower utilization level than the rest of the servers. Work
must be shifted away from it, in order to reach similar
performance levels with other servers, whose arrival stream
is less correlated. Naturally, the work that is shifted away
from the first server must be redistributed appropriately to
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Fig. 5. ACF in interarrivals at each server, where the arriving requests at the front-end dispatcher have (a) no dependence (NOACF), (b) ACF1

dependence, and (c) ACF2 dependence.



the rest of the cluster. This observation is the basis of
S_EQAL, a new policy that still builds the histogram of job
sizes as ADAPTLOAD does, but sets new boundaries, s0i, by
weighting the work assigned to each server as a function of
performance degradation due to autocorrelation of the
(new) arrival process to each server. That is, servers that
admit autocorrelated arrival streams must now be less
loaded than those that admit streams that are uncorrelated.

Aiming at unbalancing the load across servers, we
introduce a shifting percentage vector p ¼ ðp1; p2; � � � ; pNÞ,
so that the work assigned at server i is now equal to
ð1þ piÞ �S

N , for 1 � i � N . The elements of vector p can take
both negative and positive values. A negative pi makes the
amount of work assigned at server i less than its equal share
of �S=N . A positive pi makes the amount of work assigned at
server i higher than its equal share of �S=N . Because p

simply shifts work from one server to another, it should
satisfy

PN
i¼1 pi ¼ 0, for 1 � i � N . The following equation

formalizes this new load distribution:

Z si

si�1

x � dF ðxÞ � ð1þ piÞ
�S

N
; 1 � i � N: ð2Þ

Fig. 6 gives an illustration of the high level idea of this new
policy.

S_EQAL statically defines pi for 1 � i � N , by letting p1

be equal to a (negative) predetermined initial shifting value
R, i.e., p1 ¼ �R. The rest of the shifting percentages pi, for
2 � i � N , are calculated using the algorithm of Fig. 7.4

Here, because the majority of the requests is small and they
are directed to the first server, the smaller the i, the less
work should be dispatched to server i. This implies that p1

is negative. For server i, for 1 � i < N , the portion R=2i�1 of
its assigned work is equally distributed among servers iþ 1
to N . Initially, all shifting percentages pi for 1 � i � N are
initialized to 0 (i.e., no shifting). For server 1, p1 is reduced
by R (see 2.a in Fig. 7). The work that is shifted from server
1 is now equally distributed among the remaining servers,
i.e., p2; . . . pN increase by R

N�1 (see 2.b in Fig. 7) such that the
condition

PN
i¼1 pi ¼ 0 is satisfied. For server 2, the work

shifted away from this server is now equal to R
2 (see 2.c in

Fig. 7), so p2 is equal to R
N�1� R

2 . The algorithm continues to
equally distribute all shifted work from server 2 to the

remaining servers. The iteration continues for servers 3, 4,
. . .N � 1. For example, if we define R ¼ 10 percent, i.e.,
p1 ¼ �0:1, then according to S_EQALshifting percentage
vector p ¼ ð�10 percent, �1:67 percent, 3:33 percent, 8:34
percent).

4.1.1 Weakly Correlated Arrival Process, (ACF1)

First, we evaluate the performance of S_EQAL with the
ACF1 arrival process used in the previous section.

We quantify the performance effect of different shifting
vectors p by presenting the average slowdown and average
response time of requests under S_EQALfor different initial
shifting values R. Results are presented in Fig. 8. R ¼ 0
percent corresponds to the original ADAPTLOAD, i.e., no
boundary shifting. Fig. 8a shows that the average slow-
down of all requests improves as R increases (i.e.,
boundaries are shifted to the left). Best average slowdown
is achieved for R ¼ 80 percent (i.e., p1 ¼ �80 percent). Fig.
8b shows that average response time increases for R > 40
percent. Therefore, a good initial shifting value is R ¼ 40
percent, where average slowdown improves by 75.1 percent
and average response time improves by 41.9 percent
comparing to ADAPTLOAD, i.e., R ¼ 0 percent.

We present the per-server performance in Fig. 9. Per
server utilizations shown in Fig. 9d verify that the shifting
percentages pi indeed imbalance work across the cluster. As
R increases, the utilizations of the first two servers decrease
while utilizations of the last two servers increase. The last
server’s utilization is now the highest in the cluster.
Reducing utilization in the first server reduces its request
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4. We stress that different algorithms can be used to determine how this
shifting of load is done, provided that

PN
i¼1 pi ¼ 0 for 1 � i � N . Finding

the optimal algorithm to set the shifting vector p is out of the scope of this
paper.

Fig. 6. S_EQAL’s high level idea of boundary shifting.

Fig. 7. Setting the shifting percentages pi for S_EQAL.

Fig. 8. Average slowdown and average response time as a function of

the initial shifting value R under ACF1 interarrival times.



slowdown, as shown in Fig. 9a, but the extra work that is
now assigned to servers 3 and 4 does not increase their
slowdown significantly for small values of R. For R ¼ 90

percent, job slowdown at server 4 becomes very high,
almost twice as high as for server 1, under ADAPTLOAD.
Average per-server queue length behaves similarly to
average slowdown, see Fig. 9c. The average response time
displayed in Fig. 9b shows that small R values decrease
average response time of the first server and increase the
response time of the last server. If the portion of additional
requests served by the last server is small, then the
contribution of the last server performance to the overall
performance degradation is not significant. As R increases,
more jobs are assigned to servers with larger index, which
counterbalances the benefits of reducing utilization at the
first two servers.

We also evaluate the cumulative distribution functions
(CDFs) of slowdown and response time to better under-
stand how S_EQAL works. Fig. 10 gives the CDF of
slowdown and response time for all jobs (i.e., 10 million
in each experiment). Since a good initial shifting value R

under ACF1 interarrival times is equal to 40 percent (see
Fig. 8), we compare the CDFs of slowdown and response
time under S_EQAL for R ¼ 40 percent with those of
ADAPTLOAD (i.e., R ¼ 0 percent). With S_EQAL, at least 60
percent of the jobs have slowdown less than 1,000; this
percentage reduces to 38 percent with ADAPTLOAD, see
Fig. 10a. Fig. 9b shows that with ADAPTLOAD only 50
percent of jobs have response time less than 1,000 seconds
while with S_EQAL this percentage increases to 79 percent.
Moreover, the figure also shows that S_EQAL with R ¼ 40
percent makes the tail of slowdown about one order of
magnitude shorter than ADAPTLOAD. This happens,
because S_EQAL focuses on improving the performance

of small jobs at the expense of the performance of large jobs,
by loading heavily the servers that serve large jobs.

We present the performance of S_EQAL for three classes
of job sizes: small jobs that access files less than 5; 000 bytes,
medium jobs that access files with size between 5; 000 and
100; 000 bytes, and large jobs that access files with size
greater than 100; 000 bytes. For the specific workload that
drives our simulations, small, medium, and large jobs
represent, respectively, 84.5 percent, 15.4 percent, and 0.1
percent of total jobs. Per class CDFs of response times and
slowdowns are illustrated in Fig. 11. With ADAPTLOAD, the
performance of small and medium jobs suffers in compar-
ison to S_EQAL confirming our speculation that slowdown
and response time tails are dominated by the (bad)
performance of small jobs. This phenomenon reduces
considerably with S_EQAL: after boundary shifting the
tails of slowdowns and response times are dominated by
the deteriorated performance of large jobs.

4.1.2 Strongly Correlated Arrival Process, ACF2

In this experiment, we evaluate the performance of S_EQAL
under the ACF2 arrival process. Fig. 12 gives the average
job slowdown and the average job response time as a
function of R. In Fig. 12, we observe the same trends as in
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Fig. 9. Per server performance measures: (a) average slowdown, (b) average response time, (c) average queue length, and (d) average utilization

as a function of the initial shifting value R with ACF1 interarrival times. The order of bars for each policy reflects server identity.

Fig. 10. The CDFs of (a) slowdown and (b) response time under ACF1

interarrival times, with R ¼ 0 percent (ADAPTLOAD) and 40 percent.

Fig. 11. CDFs of slowdown and response times for three request size

ranges: small [0 - 5,000), medium [5,000 - 100,000), and large [100,000

- infinity), under ACF1 interarrival times.



Fig. 8, but higher absolute performance values than under
the ACF1 experiment. Compared to ADAPTLOAD (i.e., R ¼
0 percent), S_EQAL with R ¼ 40 percent improves average
response time by 49.2 percent and average slowdown by
67.2 percent.

Fig. 13 illustrates per-server performance measures
under ACF2 traffic. Although performance trends are
similar to the ACF1 case, they are more exaggerated. Both
average slowdown and average response time of the first
server reduce as R increases (see Figs. 13a and 13b), but a
turning point exists where shifting more work to subse-
quent servers adversely affects slowdown. CDF graphs,
both across all files and for small, medium, and large ranges
confirm that, as in the ACF1 experiment, the tails of the
performance measures are now dominated by the deterio-
rated performance of large files due to shifting. CDF trends
are the same as in the ACF1 experiment and are not
reported here due to lack of space.

4.1.3 Various System Utilizations

In the previous sections, we evaluated the performance of
S_EQAL for different values of R in a system with average
utilization equal to about 62 percent and found that R ¼ 40
percent is a good shifting value for both ACF1 and ACF2

experiments. Here, we evaluate S_EQAL performance for
different values of R under lightly loaded and heavily
loaded systems.

We use the same arrival processes and the same service
process as in the previous subsection, but we scale the
service times to examine system performance under
different utilization levels. Fig. 14 illustrates the average
request slowdown and the average request response time as
a function of R in a system with average utilization equal to
20 percent. More detailed analysis shows that under

uncorrelated arrivals and low system utilization levels

ADAPTLOAD does not always balance load well. This

phenomenon is also identified in [25]. In this case, a shifting

constant of R ¼ 50 percent corrects this known weakness of

ADAPTLOAD. Fig. 14 shows that for both ACF1 and ACF2

arrivals, the best slowdown and response time is achieved

with R ¼ 60 percent, making it an excellent initial shifting

value in a lightly loaded system.
We also evaluate performance in a system with average

utilization of 80 percent, see Fig. 15. Under uncorrelated

arrivals, S_EQAL with R ¼ 20 percent optimizes slowdown

but the best response time is achieved by ADAPTLOAD. For

both ACF1 and ACF2, although the slowdown decreases as

R increases up to R ¼ 70 percent, the lowest response time

is achieved for R ¼ 20 percent. This happens because for
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Fig. 12. Average slowdown and average response time as a function of

initial shifting value R with ACF2 interarrival times.

Fig. 13. Per server performance metrics as a function of the initial shifting value R under ACF2 traffic: (a) average slowdown, (b) average response

time, (c) average queue length, and (d) average utilization. The order of bars for each policy reflects the server identity.

Fig. 14. Average slowdown and average response time as a function of

initial shifting value R when interarrivals are (a) uncorrelated (NOACF),

(b) having ACF1 dependence, and (c) having ACF2 dependence. The

average system utilization is about 20 percent.



R � 30 percent, load imbalancing in the cluster becomes
extreme, with the last server operating nearly in full
capacity, i.e., reaches nearly 100 percent utilization. This
dramatically increases response times of large jobs and,
consequently, overall average job response time. We
conclude that the value of the initial shifting value R

should decrease as the load in the system increases.

4.2 D_EQAL: Online Policy

In the previous section, we gave a proof of concept of the
performance benefits of load unbalancing. We also showed
that performance improvements depend on the degree of

load unbalancing determined by the initial shifting valueR. A

good choice of R can result in significant gains, but an

unfortunate choice may also result in poor performance.

Here, we present D_EQAL, an online version of S_EQAL, that

continuously monitors the workload such that the effective-

ness of load unbalancing becomes independent of R.
D_EQAL continuously monitors C requests that have

been just served by the cluster and readjusts the degree of
load unbalancing on-the-fly, aiming at improving both
average response time and average slowdown. C must be
large enough to allow for performance measures to be
statistically significant, but also small enough to allow for
quick adaptation to transient workload conditions. In the
experiments presented here, C is set to 300,000. We
examined the robustness of D_EQAL with different C
values ranging from 100,000 to 1.000,000 and concluded that
small values of C (around 100,000) are not as effective as
larger values of C (more than 200,000). This is an expected
result given that C should capture changes in burstiness
behavior of the process.
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Fig. 15. Average slowdown and average response time as a function of

initial shifting value R when interarrival times are (a) uncorrelated

(NOACF), (b) having ACF1 dependence, and (c) having ACF2

dependence. The average system utilization is about 80 percent.

Fig. 16. D_EQAL dynamically adjusts R.

Fig. 17. The average slowdown and average response time of every

10,000 requests under ACF1 arrivals when (a) R ¼ 30 percent and (b)

R ¼ 90 percent. The system utilization is 62 percent.



D_EQAL starts by settingR to zero, i.e., no load shifting is

proposed beyond the computed ADAPTLOAD intervals. For

every batch of C requests, we compare the relative perfor-

mance improvement/decline of average slowdown (Avgsld)

and average normalized response time (Avgnres) in compar-

ison to the previous batch of C requests. The average

normalized response time (Avgnres) is defined as follows:

AvgnresðkÞ ¼
average response time in the kth batch

average service time in the kth batch

and aims at comparing fairly the average response times in

two consecutive batches. This is particularly critical if the

per-batch average service times differ significantly.
For every C requests, R, S_EQAL’s initial shifting value,

is adjusted by a fixed number 0 < D < 100 percent and

interval boundaries are recalculated correspondingly.

Fig. 16 presents the D_EQAL algorithm that implements a

dynamic adjustment of R as a function of system

performance measures. For the first batch of C requests,

R ¼ 0, i.e., all servers are equally loaded and the system
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Fig. 18. Performance effects of autocorrelation under low system utilization (20 percent). The first two rows give the average slowdown and the

average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in processed requests) for

C ¼ 300; 000.

Fig. 19. Performance effects of autocorrelation under medium system utilization (62 percent utilization level). The first two rows give the average

slowdown and the average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in

processed requests) for C ¼ 300; 000.



operates using ADAPTLOAD. This is necessary to obtain
base-case performance measures. For the second batch of C
requests, R ¼ D, i.e., D_EQAL starts exploring the perfor-
mance effects of boundary shifting by decreasing the load of
the first servers. In subsequent steps, average slowdown
and average normalized response time of the last C requests
are compared to the batch of the penultimate C requests. If
system performance improves, then boundary shifting is
done in the same direction, i.e., if the last adjustment shifted
the work from the small (large) servers to large (small)
servers, then we continue to shift more work from the small
(large) servers to large (small) servers. Otherwise, R is
adjusted such that boundaries are shifted in the reverse
direction (see 3.b.III, in Fig. 16). In our experiments, D is set
to 10 percent.5

Step 2.b.II of Fig. 16 provides an additional condition to
avoiding over-shifting. This condition is deduced from the
performance analysis of S_EQAL (see the previous section)
which shows that overloading servers 3 and 4 that serve
requests for large files may significantly deteriorate average
response time while maintaining acceptable slowdown. Fig.
17 illustrates this behavior by plotting the average slowdown
and average response time as a transient measure (i.e., across
time) of every 10,000 requests. If R is set appropriately, then
average slowdown and average response times change with
similar rate (see Fig. 17a). An extremely large R (i.e., load
overshifting) makes response time to increase much faster
than slowdown (see Fig. 17b). As a result, the comparison of
slowdown and response time provides a good indication for
overshifting. Since slowdown and response time are perfor-
mance measures of different scales, we observe changes in

two consecutive batches (i.e., jAvgsldðkÞ �Avgsldðk� 1Þj and
jAvgnresðkÞ �Avgnresðk� 1Þj) and normalize them by their
respective values of the first batch of C requests when no
shifting occurs, (i.e., Avgsldð1Þ and Avgnresð1Þwith R ¼ 0, the
original ADAPTLOAD) for a fair comparison.

4.2.1 Performance of D_EQAL

In this section, we evaluate the effectiveness of D_EQAL.
We compare ADAPTLOAD, i.e., S_EQAL with R ¼ 0
percent, S_EQALwith various values of its initial shifting
value R, and D_EQAL. Note that D_EQALstarts with R ¼ 0,
which implies that we rely on the algorithm to find the
appropriate R. Results for various system utilization levels
(i.e., 20 percent, 62 percent, and 80 percent) are presented in
Figs. 18, 19, and 20. In all graphs, D_EQAL is comparable to
the best performing S_EQAL. D_EQAL manages to adjust R
such that both slowdown (see Figs. 18a, 19a, and 20a) and
response times (see Figs. 18b, 19b, and 20b) are improved.

Figs. 18c, 19c, and 20c show how the algorithm changes
R throughout the duration of the experiment. With no
autocorrelation in the arrival stream, R almost always
remains equal to 0, irrespective of the system utilization
level, essentially the policy behaves like ADAPTLOAD. With
ACF1 or ACF2 arrivals, R converges toward the best
performing static value as seen in the analysis of the
performance of S_EQAL, see Section 4.1.3.

5 CONCLUSIONS

We presented evidence via detailed simulations that size-
based policies for load balancing in homogeneous clusters
become ineffective when the arrival process is autocorre-
lated. If the arrival process is autocorrelated, then the basic
premise of size-based policies, i.e., balancing the load by
keeping each server equally utilized while serving jobs of
similar size in each server, may actually hurt performance
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5. Finding the ideal value of D is beyond the scope of this paper. The
values used here are based on the experimental analysis of S_EQAL for this
specific workload. A large value of D results in faster load “unbalancing”
while a smaller value results to the opposite. Dynamically adjusting the
value of D using a feedback mechanism could make the policy more robust
and is subject of future work.

Fig. 20. Performance effects of autocorrelation under high system utilization (80 percent utilization level). The first two rows give the average

slowdown and the average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in

processed requests) for C ¼ 300; 000.



as per-server performance is sensitive to not only its
utilization level, but most importantly to the dependence
structure in the arrival stream of jobs that it serves.

We propose a new size-based load balancing policy, called
D_EQAL, that still strives to serve jobs of similar size in each
server but per-server utilization levels depend on the
autocorrelation of the arrival process to that particular server.
As a result of this effort, if there is autocorrelation in the
arrival stream to the cluster, all servers may not be equally
utilized (i.e., load in the system becomes unbalanced), but this
imbalance results in significant performance benefits. If there
is no autocorrelation in the arrival stream, then D_EQAL
seamlessly balances load across all servers as ADAPTLOAD

does (i.e., it behaves like a typical size-based policy).
D_EQALdoes not require any prior knowledge of the
correlation structure of the arrival stream or of the job size
distribution. Using detailed simulations we show that
D_EQAL can be used online: by monitoring system perfor-
mance measures, it self-adjusts its configuration parameters
to transient workload conditions and significantly improves
performance under correlated arrivals.
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