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Abstract—As wireless devices and sensors are increasingly
deployed on people, researchers have begun to focus on wireless
body-area networks. Applications of wireless body sensor net-
works include healthcare, entertainment, and personal assistance,
in which sensors collect physiological and activity data from
people and their environments. In these body sensor networks,
quality of service is needed to provide reliable data communica-
tion over prioritized data streams. This paper proposes BodyQoS,
the first running QoS system demonstrated on an emulated body
sensor network. BodyQoS adopts an asymmetric architecture, in
which most processing is done on a resource rich aggregator,
minimizing the load on resource limited sensor nodes. A virtual
MAC is developed in BodyQoS to make it radio-agnostic, allowing
a BodyQoS to schedule wireless resources without knowing
the implementation details of the underlying MAC protocols.
Another unique property of BodyQoS is its ability to provide
adaptive resource scheduling. When the effective bandwidth of
the channel degrades due to RF interference or body fading
effect, BodyQoS adaptively schedules remaining bandwidth to
meet QoS requirements. We have implemented BodyQoS in NesC
on top of TinyOS, and evaluated its performance on MicaZ
devices. Our system performance study shows that BodyQoS
delivers significantly improved performance over conventional
solutions in combating channel impairment.

I. INTRODUCTION

In the last few years commercial sensor network applica-
tions have emerged that require pervasive sensing of people
and the environment, e.g., assisted living [1] [2] [3] and
smart homes [4] [5] [6]. For these applications, it is essential
to be able to reliably collect physiological readings from
humans via Body Sensor Networks (BSN). Such networks
could benefit from Quality of Service (QoS) mechanisms that
support prioritized data streams, especially when the channel is
impaired by interference or fading. For example, heart activity
readings (e.g., EKG waveforms) are often considered more
important than body temperature readings, and hence can be
assigned a higher priority in the system. In another example, a
glucose data stream might be assigned a low priority when the
readings are in normal range, but a higher priority might be re-
assigned to the data stream by user applications when readings
indicate hyper- or hypo-glycemia. QoS support is needed to

∗ Other names and brands may be claimed as the property of others.

ensure reliable data collection for high priority data streams
and to dynamically reallocate bandwidth as conditions change,
especially when the effective channel bandwidth is reduced by
interference or fading.

QoS research is not new; prior research has focused on
managing and reserving resources [7] [8] [9] [10] in the
Internet, wireless networks, and ad hoc networks. However,
for body sensor networks, three new QoS challenges arise:
(1) A body sensor network consists of two levels of devices:
multiple simple sensor nodes and a more powerful aggregator.
A sensor node can be very resource constrained. For example,
a sweat sensor can be designed as a Band-Aid, which uses a
film battery and is attached to the wrist to obtain sweat levels.
In contrast, an aggregator is comparatively more powerful. An
aggregator might be a cell phone or an electronic watch that
includes a 32-bit processor and rechargeable batteries. This
asymmetric, star-shaped architecture requires an asymmetric
QoS solution, not typical of prior QoS research. (2) Existing
medical sensor devices often use different radio technologies,
such as CC1000 [11], IEEE 802.15.4 [12], or Bluetooth [13].
There is a need for a radio-agnostic QoS solution, which
can be easily ported from one radio platform to another.
(3) Low power radios are susceptible to channel fading and
interference. This issue is especially evident in BSN due to
human body factor. A number of studies [14] [15] [16] [17]
showed that the human body presents various adverse fading
effects to wireless communication channels that are dependent
on body size and posture. As a result, the communication
channel characteristics in a BSN are highly variable and
difficult to predict. Furthermore, when co-existing networks or
RF emitting devices such as microwaves are present, packets
may be lost due to interference, reducing the effective channel
bandwidth [18]. In both cases, the QoS software needs to
re-allocate resources from lower priority streams to higher
priority streams. Adaptive QoS scheduling is thus needed to
provide statistical bandwidth guarantees, which are essential
for reliable data collection in body sensor networks.

Driven by these new challenges, we propose BodyQoS,
an adaptive and radio-agnostic QoS solution for body sensor
networks. The main contributions of this work are:
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• Prioritized Data Stream Service: Through well-defined
interfaces, applications submit their QoS requirements for
each stream, assigning a specific priority according to the
data type and level of criticality. If the available wireless
resource is not sufficient to serve all QoS reservations,
the higher priority streams are served first.

• Asymmetric QoS framework: Most admission control
functions and resource scheduling computations in
BodyQoS are managed by the aggregator, while little
processing is required at sensor nodes.

• Radio Agnostic QoS: A virtual MAC is implemented in
BodyQoS to represent and schedule channel resources. It
separates the QoS scheduler from the underlying MAC
implementation. The virtual MAC design allows the QoS
system to be ported from one radio platform to another
(less than 100 lines of modified code, in one instance).

• Adaptive Bandwidth Scheduling: Besides conventional
RSVP-Light [19] QoS scheduling, we also implement
and evaluate adaptive QoS scheduling in BodyQoS that
provides statistical bandwidth guarantees.

• Testbed Implementation: BodyQoS has been implemented
in TinyOS [20] and evaluated on the MicaZ [21] platform.
Our evaluation shows that BodyQoS exhibits improved
performance compared to conventional solutions.

The rest of the paper is organized as follows. In section II
we present an overview of the BodyQoS architecture. We then
explain design details of the BodyQoS components: the Virtual
MAC in section III, the QoS scheduler in section IV and
admission control in section V. The performance of a TinyOS
implementation of BodyQoS is evaluated in section VI. Sec-
tion VII describes related work. Finally, in section VIII, we
present conclusions and future work.

II. BODYQOS OVERVIEW

A BSN is a collection of small, low power sensing devices
(such as EKG, pulse oximeter, temperature, sweat) wirelessly
connected to a resource-rich aggregation device (such as a
watch or cell phone), all within one communication hop
of each other. BodyQoS is a set of software modules that
sits between the transport and the MAC layers. BodyQoS
receives QoS and data transmission requests from the transport
layer and uses the underlying MAC protocol to transmit
data. BodyQoS consists of three components: Admission Con-
trol, QoS Scheduler and Virtual MAC (VMAC). BodyQoS
adopts an asymmetric architecture. The Admission Control and
Scheduler components are implemented as a master and slave
module on the aggregator and sensor nodes respectively. As
shown in Figure 1, the slave admission control and slave QoS
scheduler execute on the sensor motes, while the main part
of admission control and the QoS scheduler execute on the
aggregator.

The admission control module has two main functions. The
first function is to accept or reject new QoS reservations.
The decision is based on the requested bandwidth, time delay
requirement, and priority, as well as the available wireless
resources, previously accepted reservations, and the effective

channel bandwidth. The second function is to continuously
monitor and estimate the effective bandwidth, which varies
according to interferences in the environment and body fading
effect. QoS reservations are dynamically adjusted as necessary.

TransportTransport Admission ControlSlave QoS Schduler VMACVMAC

Sensor Motes Aggregator
QoS SchedulerSlave Admission Control
AppApp

Real MACReal MAC datapoll
Fig. 1. BodyQoS Architecture

The main function
of the QoS scheduler
is to control use of
the channel such that
reservation requirements
are attained. It schedules
wireless resource for all
admitted streams and
provides admission control
signaling between sensor
nodes and the aggregator.
The scheduler also
allocates unused wireless
resources for best-effort
communications. The
QoS scheduler is also
responsible for measuring
the effective channel
bandwidth at runtime and
for reporting it to the
admission control module.
Finally, the QoS scheduler
can schedule a sensor node
to sleep if it predicts a
lull in the communication
schedule.

The VMAC isolates BodyQoS from the details of a specific
MAC protocol. The VMAC design is challenging because
it must control and reserve the wireless resource to support
QoS scheduling, while abstracting away the details of the
underlying MAC, including both CSMA-based and TDMA-
based MACs. To achieve this goal, the VMAC exposes an
abstract representation of wireless resource. It also provides an
interface for the QoS scheduler to schedule wireless resource.

As illustrated in Figure 1, both admission control and
the QoS scheduler consist of two parts that are distributed
across sensor nodes and the aggregator. The aggregator makes
admission control decisions, computes the communication
schedule, and polls individual sensor nodes for data. Use of
polling simplifies resource scheduling and supports an efficient
asymmetric QoS design. Polling also simplifies coordination
among multiple aggregators, allowing co-existing body sensor
networks (future work).

III. VMAC DESIGN

Today, several different radio platforms are available for
sensor devices, e.g., the CC1000 [11], the CC2420 [22] or
Bluetooth [13]. In some cases, multiple radio platforms may
exist within a single system. To prevent QoS scheduling from
being tied to a specific radio implementation, a virtual MAC
design is required.
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Fig. 2. VMAC Abstraction

The VMAC design is particularly challenging. We first
identify three MAC features that are essential for QoS support
and commonly available in most MAC protocols. First, a MAC
should be able to send a packet when requested. It should
return control of the radio back to the scheduler when the
packet is either transmitted successfully or fails after exceeding
the maximum number of backoffs or retransmissions. As a
result, there is a maximum time period for a MAC to handle
a packet transmission request, after which the MAC should
return control back to the QoS scheduler. Second, when a
packet is received, the MAC should notify the QoS scheduler
with the received packet. Third, it should track the time and
energy overhead for transitioning between sleeping/waking
states, to allow efficient sleep scheduling for sensor nodes.

Figure 2 presents our VMAC abstraction for representing
and scheduling wireless resources. Time in VMAC is divided
into intervals. Within each interval, VMAC is able to send out
a certain number of packets with the specified data payload
length, each within a specified time period. The following
parameters are essential for the VMAC abstraction, and their
values should be configured according to measurements of
underlying MAC implementations.
• Tinterval: the length of each interval in seconds.
• Npkt: the maximum number of packets that the QoS

scheduler can transmit or receive within each time in-
ternal, assuming a clean channel.

• Spkt: the effective data payload size in bytes.
• TminPkt: the minimum time duration for the MAC to

transmit a packet assuming a clean channel, i.e., the
minimum MAC response time for handling a packet
transmission request, after which the MAC returns radio
control to the QoS scheduler.

• TmaxPkt: the maximum time duration for the underlying
MAC to transmit a packet or report giving up after
exceeding the maximum backoffs or number of retrans-
missions. This is the maximum MAC response time for
handling a packet transmission request, after which the
MAC returns radio control to the QoS scheduler.

• TminSleep: the minimum sleep duration for radio duty
cycling, taking into account the delay to transition the
radio between sleep and normal mode, as well as a user
specified value to account for other energy costs.

The above parameters define a virtual MAC that the QoS

Requested to send D packets within time T

D ≥ 1 and

time left ≤ TmaxPkt?
End

Call real MAC to send one packet;

N

Update time left

D=D-1

Y

Wait for real MAC returns: 

success/failure

Fig. 3. Packet Transmission in VMAC

scheduler can directly use for scheduling wireless resource.
Setting these parameter values, however, is not trivial and is
MAC dependent1. For example, Spkt is the actual data payload
length used in the underlying MAC. Likewise, TmaxPkt needs
to account for both the worst-case backoff time and the maxi-
mum number of MAC-layer retransmissions. One could obtain
these values either analytically or experimentally. Once the
above parameters are configured, VMAC is able to represent
and reserve the wireless resource regardless of the underlying
MAC implementation.

Figure 3 presents the packet transmission process in VMAC.
In each interval, the VMAC attempts to transmit D packets
iteratively within the time period T , until either all packets
have been sent or the remaining time is less than TmaxPkt.

VMAC design is generic, refraining from functions that are
only available in a specific MAC. For example, overhearing is
possible in CC1000 and IEEE 802.15.4, but not in Bluetooth.
This design choice allows the QoS implementation to be
ported from one radio platform to another with minimum code
modification. Researchers from U.C. Berkeley have developed
a virtual MAC [23], in which priorities and reliability can be
configured for a set of underlying MAC protocols. However,
this solution is designed for general use, without specific
features for QoS reservation. Specifically, there is no support
for bandwidth specification or reservation in their solution. In
our BodyQoS design, as we will discuss later in Section IV and
V, users’ high level bandwidth specification can be translated
into low level VMAC parameter configuration, which as shown
in Figure 3 can be enforced regardless of the underlying real
MAC implementation.

IV. QOS SCHEDULER DESIGN

The QoS scheduler is the core of BodyQoS. We first
describe the basic scheduling framework that BodyQoS uses to
reserve the channel for different types of data traffic. Then we

1Notice that the MAC dependency is encapsulated entirely in the VMAC.
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Fig. 4. QoS Traffic Scheduling

describe a mechanism to measure the effective bandwidth in a
radio-agnostic manner. Finally, we present two QoS scheduling
algorithms: RSVP-Light [19] QoS scheduling and adaptive
QoS scheduling. We also consider the impact of different delay
requirements on scheduling.

A. Basic Scheduling Framework

There are three types of traffic in our system: (1)
reserved aggregator→mote communication, (2) reserved
mote→aggregator communication, and (3) best-effort commu-
nication. Each QoS reservation has a delay requirement that is
either high or low sensitivity. A reservation that has low delay
sensitivity is only scheduled once for communication within
an interval. For a reservation with high delay sensitivity, a data
communication slot is scheduled KmaxFre times within each
interval, where KmaxFre is a system-wide parameter2.

The average scheduling delay for a low delay sensitivity
reservation is Tinterval

2 , and the worst case scheduling delay
is Tinterval. For a high delay sensitivity reservation, the
average scheduling delay is Tinterval

2×KmaxF re
, and the worst case

scheduling delay is Tinterval

KmaxF re
. Depending on delay sensitivity

requirements, an interval can be divided into either 1 or
KmaxFre periods. Within each period, each high delay sensi-
tivity reservation is scheduled once for data communication.
For ease of explanation, assume that an interval consists of
Kfre periods, which can be either 1 or KmaxFre.

For a mote→aggregator QoS reservation, the aggregator
generates polling packets to poll each sensor mote for data
within each time interval. If the number of packets returned
for each poll is too small, the control overhead will be high.
Hence, we aggregate multiple short polling packets into a
larger one. However, the requested number of packets can
not be arbitrarily large within a single polling packet because
losing such a polling packet leads to significant wireless band-
width loss. In BodyQoS, a dynamically configurable parameter
PL is used to set the maximum number of packets requested
within a single polling packet.

To take advantage of polling aggregation, we group all QoS
reservations that request mote→aggregator traffic, as shown
in Figure 4. Within each period, the wireless bandwidth is
first assigned to aggregator→motes traffic. If the requested
data packets are successfully delivered before the assigned
bandwidth is consumed, the unused bandwidth is used for

2In the current implementation, KmaxFre is configured during system
initialization. In the future, we plan to configure it dynamically during runtime.

scheduling motes→aggregator traffic. The remaining band-
width is used for best-effort communication.

For each QoS reservation Ri, the aggregator knows how
many QoS reservations remain to be scheduled before serving
the best-effort traffic. Thus, the aggregator can assign reser-
vation Ri a sleep period Tsleep, during which Ri will not be
scheduled for data communication and the corresponding radio
can be scheduled for sleeping. The Tsleep value is piggybacked
in each polling packet to notify corresponding sensor motes.
Each sensor mote checks all of its QoS reservations for the
overlapping sleep period. If the overlapping period is greater
than the configured sleep overhead TminSleep, the radio is put
into sleep mode for the overlapping period.

B. Measuring Effective Bandwidth

In order for BodyQoS to perform efficient QoS scheduling,
it is essential to measure the effective bandwidth that the
QoS system can use during runtime. Conventional wisdom
for measuring effective bandwidth usually depends on un-
derlying MAC functions. For example, in CODA [24], each
node samples the channel load periodically to compute how
busy the channel is. This scheme works for radios that have
the carrier sense ability, and may not work for frequency
hopping spread spectrum radios such as Bluetooth [13]. The
effective bandwidth can also be measured through utilizing
ACK packets such as in B-MAC [25] or the RTS-CTS-DATA-
ACK handshake in IEEE 802.11b [26].

In BodyQoS, we propose a radio-agnostic method to mea-
sure effective bandwidth by taking advantage of the global
knowledge of the QoS scheduler. In BodyQoS, if QoS reserva-
tion Ri requests bandwidth bi, the QoS scheduling algorithm,
discussed later in this section, interprets the request as: within
each time interval, request VMAC to send/receive Di packets
within time Ti ×Di, where Ti is the time for MAC to send
a packet. The Di and Ti information is included in a polling
packet and sent from the aggregator to a mote. When the mote
receives this packet, it continues sending the requested Di

packets until the specified time period Ti×Di expires. When
the requested reservation has no packet to send, a “NoData”
packet is returned, which ensures that the mote tries its best
to send back Di packets within the time period Ti ×Di.

On the aggregator side, after a polling packet is sent out, it
waits for the mote response for a time period of Ti × Di +
TmaxPkt, where TmaxPkt is used to account for the maximum
backoff or retransmissions of the polling packet. The effective
bandwidth computation needs to consider three possible cases:

1) If the aggregator receives Di packets within time Ti ×
Di + TmaxPkt, it stops waiting for more packets, and
records the actual wait time TwaitT ime. The number of
packets received is Di, and the effective bandwidth is
BWeffective = Di∗Bytes perPacket+Polling Packet Size

TwaitT ime
,

within the recorded actual waiting time.
2) If the aggregator does not receive Di replies, it

continues waiting for packets until the specified
time period Ti × Di + TmaxPkt expires. Then
it records the actual number of received packets
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to compute the effective bandwidth within the
time period Ti × Di + TmaxPkt as BWeffective =
Num of Recived Packet ∗Bytes Per Packet+Polling Packet Size

Ti×Di+TmaxP kt

3) If the aggregator does not receive any packets before the
time period Ti × Di + TmaxPkt expires, it knows that
either the polling packet was lost, or all replies were lost.
The aggregator assumes that the single polling packet
was lost (since this is far more likely), and the effective
bandwidth is 0 within the time period TmaxPkt.

As discussed above, whenever a polling packet is trans-
mitted, the aggregator gets a chance to measure the effective
bandwidth almost for free. Even though these bandwidth
measurements are only samples of the channel when polling
occurs, they are accurate enough for the QoS support since
the time interval is relatively short (2 seconds in our system).

The aforementioned is a direct way to compute the ef-
fective bandwidth in BodyQoS. To reduce the processing
load, we propose a second, simpler, and indirect scheme:
BWeffective = BWideal ∗ Num of Delivered Packet

Num of Requested Packet . For each
polling packet, the QoS scheduler knows the number of
requested packets. The number of delivered packets can also
be easily obtained at the aggregator. The ideal bandwidth can
be computed as follows:

BWideal =
Npkt × Spkt × 8

Tinterval
(1)

In our performance evaluation, we use this indirect scheme
to compute effective bandwidth, and also to maintain a moving
average of effective bandwidth with the decay factor of δ:

BWmovAvg(i + 1) = δ ×BWeffective

+(1− δ)×BWmovAvg(i) (2)

C. Advanced Scheduling Algorithms

Next, we describe a way to compute Ti and Di values
at runtime. In BodyQoS, we provide two algorithms for
computing these values: RSVP-Light QoS scheduling and
adaptive QoS scheduling.

1) RSVP-Light QoS Scheduling: In the standard RSVP [19]
protocol, an audio/video stream reservation consists of a fixed
bandwidth and time for data communication, and lost pack-
ets are not retransmitted. This is reasonable for audio/video
streams because it does not make sense to play late or
unordered portions of audio/video data. BodyQoS supports this
conventional wisdom, by reserving a fixed wireless bandwidth
according to the QoS reservation, disregarding the current
channel condition and measured effective bandwidth.

If a QoS reservation Ri requests bi Kbps bandwidth, the
number of bits sent within each time interval Tinterval is bi ∗
Tinterval. Since the effective application data payload size for
each VMAC packet is Spkt bytes, the number of data packets
that should be scheduled for Ri is:

Di = dbi ∗ Tinterval

Spkt × 8
e (3)

In section III, we defined TminPkt as the minimum time
period for the real MAC to send out a packet when the channel

is clean. For VMAC to send out Di packets, BodyQoS should
reserve a time period of TminPkt ×Di

2) Adaptive QoS Scheduling: To cope with channel im-
pairment, it is essential for the QoS system to manage wire-
less resources adaptively, based on channel conditions. For
example, an EKG sensor continuously samples heart activities
and places data into a limited size buffer in a sensor mote.
During times of channel impairment, the effective bandwidth
reduces and packets are lost. The lost packets should receive
more opportunities to be retransmitted. The question is how
much time should the lost packets get for retransmission.
For example, if the packet needs 4ms to be sent when the
effective bandwidth is 100%, then 40ms is needed to service
the reservation when the effective bandwidth reduces to 10%.

Now we must determine how to allocate the 40ms. One
approach is to give the MAC more time for retransmis-
sion. However, MAC protocols typically limit the number
of backoffs and retransmissions. Radio control is returned to
QoS scheduler after time TmaxPkt. If the scheduler waited
any longer, the radio would remain idle, wasting precious
resources. Instead, a portion of the bandwidth should be given
to the transport layer so that the transport layer can retransmit
the lost packet. Traditional transport layers do not ask for more
resources when packets are lost. For example, communication
failure in TCP is considered a result of congestion. TCP
actually backs off and uses less bandwidth when packets are
lost. However, packet losses in a BSN are mainly due to
channel impairment, rather than congestion, since the radio
range is small and BSNs typically have a single use. As a
result, transport layer retransmissions make sense in BSN.
Without the adaptive bandwidth provision, buffer space in
sensor motes may be depleted and data samples could be lost.

In order to schedule adaptive bandwidth, we need to
compute Di and Ti values dynamically, according to the
effective bandwidth BWmovAvg from Formula 2. For ease of
explanation, we denote the dynamically computed new values
of Di and Ti as D?

i and T ?
i . Di and Ti are used to denote

the values obtained in the ideal case when there is no channel
impairment. Therefore, Ti in the ideal case is the minimum
time for the MAC to send out a packet, that is, TminPkt. When
there is channel impairment and the effective bandwidth is
BWmovAvg , the MAC needs to increase the time for sending
one packet to T ?

i :

T ?
i = min{TminPkt × BWideal

BWmovAvg
, TmaxPkt} (4)

Where BWideal is computed according to Formula 1.
When the channel degrades to the point at which the

maximum MAC retransmissions fails to deliver most packets,
some additional time must be allocated so that the transport
layer can retransmit lost packets. The total time assigned to
both the transport and MAC layers should be the adaptive
bandwidth the reservation requests under the current channel
condition. In the ideal case, the time assigned to the reservation
is Di × Ti. When there is channel impairment, the time
assigned to it should be D?

i × T ?
i . So we have the following
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equation:

D?
i × T ?

i

Di × Ti
=

BWideal

BWmovAvg

From this equation, we can obtain the following formula:

D?
i = Di × BWideal/BWmovAvg

T ?
i /TminPkt

(5)

3) High Delay Sensitivity: Thus far we have only consid-
ered QoS reservations that require low delay sensitivity. For
high delay sensitivity QoS reservations, the algorithms are
slightly different.

For RSVP-Light QoS scheduling, we modify Formula 3 and
calculate Di as follows:

Di = max{dbi × Tinterval

Spkt × 8
e,KmaxFre} (6)

For adaptive QoS scheduling, we can still use Formula 3
to compute Di, and use Formula 5 to compute D?

i . However,
the minimum allowable value for D?

i is now KmaxFre.

V. ADMISSION CONTROL DESIGN

This section discusses three important aspects of admission
control: (1) Computing the required bandwidth, including both
data and signaling bandwidth for new QoS reservations; (2)
Making decisions to admit/reject new QoS reservations. The
same algorithm is used to adjust existing reservations when
the effective bandwidth is reduced as a result of channel
impairment; and (3) Coordinating slave admission control
modules on the motes from a master module on the aggregator.

A. Computing Bandwidth Requirements

For each QoS reservation, the requested data bandwidth is
directly obtained from its QoS specification. We also compute
the control overhead that is needed for scheduling reservations,
which varies depending on the type of QoS reservation.

For aggregator→mote QoS reservations, no polling packets
are needed. The required data bandwidth is given by:

DAM =
∑

i

Di, where Di = dbi × Tinterval

Spkt × 8
e (7)

For mote→aggregator QoS reservations with low delay
sensitivity, the required data bandwidth is given by:

DMAL =
∑

i

Di (8)

For mote→aggregator QoS reservations with high delay
sensitivity, the required data bandwidth is given by:

DMAH =
∑

i

max{Di,KmaxFre} (9)

For mote→aggregator QoS reservations, regardless of the
delay requirements, polling packets are needed. As discussed
in Section IV, neither long polls nor short polls are optimal
in terms of bandwidth efficiency. As a result, a standard
polling length PL is used, which denotes the standard packet
size that is desired to be polled for each polling. Since all

Effective BW BWmovAvg sd

1KHKL0

Fig. 5. Water Mark and Admission Decision

mote→aggregator traffic is grouped together for scheduling,
the (polling) overhead bandwidth3 can be computed as:

P = Kfre × d (DMAH + DMAL)/Kfre

PL
e (10)

Combining all aforementioned data and polling overhead
bandwidths together, the total required bandwidth for all QoS
reservations is:

Drequired = DAM + DMAL + DMAH + P (11)

B. Admission Decisions

As shown in Figure 5, a high water mark KH and a low
water mark KL are set within the resource range [0, 1], where
1 corresponds to the effective bandwidth BWmovAvg . If the
total required bandwidth, including the new reservation, is no
greater than the low water mark KL × BWmovAvg , then the
new reservation is accepted.

The total required bandwidth may also fall between the low
water mark and the high water mark KH × BWmovAvg . In
this case, if the new QoS reservation’s priority is no less than
the highest priority among all admitted reservations, this new
reservation is admitted. Otherwise, it is rejected.

Finally, if the required bandwidth is greater than the high
water mark, BodyQoS considers removing existing, lower
priority reservations to make room for the new reservation.
If enough bandwidth can be reclaimed by removing lower
priority requests, the new reservation is admitted. Otherwise, it
is rejected. By removing existing reservations, the total band-
width requirement may be pushed below the high water mark,
which can prevent thrashing when the effective bandwidth
oscillates. When less important reservations are removed, they
are temporarily treated as best-effort communication, and the
requesting applications are notified of the QoS termination.
Applications can choose to resubmit their request with differ-
ent QoS requirements, perhaps setting a higher priority or a
lower bandwidth requirement.

The ejection policy is now described in more detail. First,
admission control decides how much bandwidth to reclaim.
Then, it sorts all admitted reservations in increasing priority
order. When two QoS reservations tie in priority, the one
with the higher bandwidth requirement is considered first.
The sorted list is then evaluated from head to tail. As the
reservation list is processed, three situations may occur:

3We assume in this paper the resources consumed by polling and data
packets is roughly the same, at a first order approximation. We are aware that
large data packets do exist, and we will consider an additional variable for
controling packet size in future work.
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1) If the aggregated bandwidth of all QoS reservations
to be removed, including the current reservation being
checked, is greater than the bandwidth that is needed
to be reclaimed, then the current reservation is ignored;
admission control checks the next reservation in the list.

2) If the aggregated bandwidth of all QoS reservations
to be removed, including the current reservation being
checked, is smaller than the bandwidth that is needed to
be reclaimed, then the current reservation is removed;
admission control checks the next reservation.

3) If the aggregated bandwidth of all QoS reservations
to be removed, including the current reservation being
checked, is equal to the bandwidth that is needed to
be reclaimed, then the current reservation in the list is
removed and the algorithm stops.

Once admission control determines which QoS reservations
to remove, it notifies the QoS scheduler to stop reserving
resources for each.

The above algorithm executes when a new reservation
request is received and when the effective bandwidth drops
below the amount needed for admitted QoS reservations.

C. Admission Control Signaling

Because the BodyQoS design is based on an asymmetric
architecture, admission control is split between the master and
slave modules on the aggregator and sensor nodes. Signaling
between the master and slave is needed in three cases: when a
new reservation request is submitted by an application, when
the application must be notified of a stopped reservation,
and when an application requests the removal of an existing
reservation. Signaling is required between master and slave
modules to notify each of application requests and changes in
the set of admitted reservations. Details of admission control
signaling is omitted due to space constraints.

VI. PERFORMANCE EVALUATION

We have implemented BodyQoS in TinyOS [20] with the
CC2420 IEEE 802.15.4 [12] radio. The VMAC implemen-
tation, which is the only MAC-dependent component in the
QoS system, has less than 100 lines of code while the whole
BodyQoS system has about 3700 lines of code. As a result,
porting the QoS system from one radio platform to another
should be relatively straightforward, requiring modification of
less than 3% of the code.

Our experimental setup mimics a typical on-body sensor
network, in which sensors measure a person’s physiological
parameters. A MicaZ mote [21] is configured to report heart
activity readings from an EKG sensor to the aggregator. A
second MicaZ mote is configured to report a patient’s location
information, and a third MicaZ mote is configured to report
body temperature readings. The aggregator is emulated by a
MicaZ mote that is connected to a serial port of a laptop for
data collection. Within the body sensor network, we compare
the performance of three solutions: adaptive QoS that we
propose in BodyQoS, conventional RSVP-Light QoS that we
also implement in BodyOoS, and best-effort communication

(no resource reservations). In our experiments, the EKG data
stream uses adaptive QoS, the location data stream uses RSVP-
Light QoS, and the temperature reading data stream requests
best-effort communication. For a fair comparison, all three
motes generate data at 4 Kbps.

Four metrics are used for performance evaluation. First, we
measure the ratio of delivered bandwidth over requested band-
width, demonstrating the reliability of data collection. Second,
we measure the average time delay of data communication,
which starts when a packet is fetched from a sensor’s data
buffer and ends when the packet is delivered to the aggragator.
Third, we compare the rate at which sampled data is removed
from the transmission buffer, reflecting an ability to preserve
the limited storage space of sensor nodes. Finally, we measure
the energy consumption per delivered data byte.

To evaluate BodyQoS’s ability to cope with channel im-
pairment, the level of interference is varied over the course of
each experiment. In the first time period, 0s∼135s, there is no
explicit noise. In the second time period, 135s∼225s, a MicaZ
node is used to generate noise signals. It broadcast a packet
every 30ms. In the third time period, 225s∼315s, the noise
level is increased to one packet every 25ms. In the fourth time
period, 315∼400s, the noise level is again increased to one
packet every 20ms. The experiments were repeated over 10
times, and similar results were obtained in each trial. Figure 6
presents a representative result from one trial.

As presented in Figure 6(a), in the first time period (before
interference is introduced), all three solutions maintain 100%
bandwidth delivery ratio. However, in the face of interference,
both RSVP-Light QoS and best-effort communication suffer
severe packet loss and reduced bandwidth delivery ratios. For
example, the bandwidth delivery ratio of RSVP-Light QoS
decreases to about 90% in the second time period, to about
80% in the third time period, and finally to about 60% in
the fourth time period. Similarly, the bandwidth delivery ratio
of best-effort communication decreases to 45∼90% in the
second time period, and 0∼30% in the third and fourth time
periods. The performance of RSVP-Light QoS is decreased
because it always reserves a fixed level of wireless resources,
regardless of existing interference. As a result, the higher
the interference level, the more the performance degrades.
For best-effort communication, the performance decreases for
two reasons. First, when interference increases, more wireless
resources are allocated to adaptive QoS and less to best-
effort communication. Second, it relies on the MAC layer to
recover lost packets, but it does not benefit from the adaptive
bandwidth scheduling, in which a collaborative effort from
both the MAC and transport layers is made.

Note that, even when different interference levels are present
in time periods 2∼4, the adaptive QoS solution still maintains
close to 100% bandwidth delivery ratio. Even though the
bandwidth delivery ratio varies with time, which is due to the
adaptation to interference, statistically speaking, the delivered
bandwidth meets the requested bandwidth. This performance
is mainly due to adaptive QoS’s novel bandwidth schedul-
ing. When the BSN suffers from channel impairment due
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(a) Delivered Bandwidth
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(b) Average Channel Access Delay
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(c) Data Buffer Overflow
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(d) Energy Consumption Per Byte

Fig. 6. Performance Evaluation with MiicaZ Devices

to RF interference or human body fading effect [14], the
QoS scheduler allocates more resources to accommodate more
retransmissions, so that statistically the delivered bandwidth is
able to meet the requested bandwidth. Notice that sometimes
the bandwidth delivery ratio for adaptive QoS exceeds 1. In
this case, additional bandwidth has been allocated to adapt to
interference, and the sensor node is able to send out accumu-
lated data (backlogged in the transmission buffer because of
lack of resource in the previous time intervals) in a burst.

As shown in Figure 6(b), BodyQoS pays only a small delay
penalty in providing highly reliable data communication. We
observe that the average time delay for all three cases is
only slightly higher than the case in which there is no QoS
reservation. As discussed in section IV, this time delay can be
significantly reduced when Kfre is greater than 1. We plan to
evaluate this approach in future work.

The data buffer fetching speed for each QoS strategy is
illustrated in Figure 6(c). It is clear that adaptive QoS is able
to fetch data from the buffer at the same pace that the data
is generated, regardless of interference levels. This feature is
essential for storage limited sensor nodes to prevent data loss
due to buffer overflow.

For RSVP-Light QoS, fixed wireless resources are reserved
during all four time periods. When interference level increases,
the MAC layer uses more time to send each packet, and hence
the number of packets that can be fetched for transmission is
reduced within the fixed time period. As shown in Figure 6(c),
the data buffer fetching speed of RSVP-Light QoS reduces to
3.9∼4 Kbps in the fourth time period. Best-effort communi-
cation receives less resources when more resources are given
to the adaptive QoS in the presence of interference. As shown
in the figure, the data fetching speed drops below 4 Kbps in
the third and fourth time periods.

Figure 6(d) illustrates energy consumption per delivered
data byte. In the first time period, adaptive QoS and RSVP-
Light QoS consume slightly more energy than best-effort.
This is because adaptive QoS and RSVP-Light QoS incur a
polling overhead. Note that all three cases have similar energy
efficiency when interference is present in time periods 2∼4.

In summary, BodyQoS provides a high bandwidth delivery
ratio (Figure 6(a)) and a high data fetching speed (Figure 6(b))
while maintaining similar delay (Figure 6(c)) and energy
efficiency (Figure 6(d)) properties as compared with existing
solutions. Interested readers can refer to [27] for a more
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detailed performance evaluation.

VII. RELATED WORK

There has been extensive research in the networking com-
munity on QoS solutions for the Internet and general wireless
ad hoc networks. Particular focus has been given to use of
QoS to manage and reserve communication resources [7]
[8] [9] [10]. However, those QoS solutions are designed for
much more powerful devices, such as Internet routers and
wireless access points, which are often line-powered. Most of
these solutions do not apply to BSN applications, which use
resource constrained sensor devices powered by small form
factor batteries (e.g., AA, coin, or film).

Several sensor network protocols have been proposed that
provide QoS features. For example, a VMAC like solution
[23] was developed at U.C. Berkeley, in which priorities and
reliability can be configured for a set of underlying MAC
protocols. However, their solution does not support bandwidth
specification and reservation. This statement is also true for
the Bluetooth [13] protocol and several other sensor network
protocols [28] [29] [30] that provide limited QoS features. For
body sensor networks, real system experiences can be found in
[2] [3], and a number of initial results are available in the BSN
proceedings [31]. The SATIRE paper [1] describes a wearable
personal monitoring service that is transparently embedded in
user garments. However, none of these systems support QoS.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the design and implementation of a
QoS system for body sensor networks, called BodyQoS.
Different from conventional QoS designs, BodyQoS addresses
three unique challenges brought by BSN applications. First,
BodyQoS adopts an asymmetric architecture, in which most
processing is done at the resourceful aggregator while little
is done at the resource limited sensor nodes. Second, a
virtual MAC is developed in BodyQoS to make it radio-
agnostic, so that it can control and schedule wireless resources
without knowledge of the implementation details of the under-
lying MAC protocol. This approach supports a wide variety
of different MACs, including CSMA, TDMA, and hybrid
approaches. Third, BodyQoS adopts an adaptive resource
scheduling strategy during times of channel impairment, ei-
ther due to RF interference or fading effects. This makes it
possible to provide statistical bandwidth guarantees as well
as reliable data communication in BSN. BodyQos has been
implemented in NesC on top of TinyOS, and evaluated in a
MicaZ testbed. Our performance evaluation demonstrates that
BodyQoS achieves greatly improved performance as compared
with conventional solutions, with minimal overhead.

In the future, we plan to extend our work to address
multiple co-existing body sensor networks, in which resource
scheduling and reservation must be coordinated across multi-
ple mobile networks. We also plan to develop a new transport
protocol that can take advantage of the adaptive bandwidth
provided by BodyQoS.
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