
Adaptive and Radio-Agnostic QoS for Body Sensor
Networks

Gang Zhou, Qiang Li†, Jingyuan Li†, Yafeng Wu†, Shan Lin†, Jian Lu†, Chieh-Yih

Wan‡, Mark D. Yarvis‡, and John A. Stankovic†
Computer Science Department, College of William and Mary

gzhou@cs.wm.edu

†Computer Science Department, University of Virginia

†{lq7c,jl3sz,yw5s,shanlin,jl3aq,stankovic}@cs.virginia.edu
‡Intel Research, Oregon
‡{chieh-yih.wan,mark.d.yarvis}@intel.com

As wireless devices and sensors are increasingly deployed on people, researchers have begun to focus
on wireless body-area networks. Applications of wireless body sensor networks include healthcare,
entertainment, and personal assistance, in which sensors collect physiological and activity data
from people and their environments. In these body sensor networks, quality of service is needed to

provide reliable data communication over prioritized data streams. This paper proposes BodyQoS,
the first running QoS system demonstrated on an emulated body sensor network. BodyQoS adopts
an asymmetric architecture, in which most processing is done on a resource rich aggregator,
minimizing the load on resource limited sensor nodes. A virtual MAC is developed in BodyQoS

to make it radio-agnostic, allowing a BodyQoS to schedule wireless resources without knowing the
implementation details of the underlying MAC protocols. Another unique property of BodyQoS
is its ability to provide adaptive resource scheduling. When the effective bandwidth of the channel

degrades due to RF interference or body fading effect, BodyQoS adaptively schedules remaining
bandwidth to meet QoS requirements. We have implemented BodyQoS in NesC on top of TinyOS,
and evaluated its performance on MicaZ devices. Our system performance study shows that
BodyQoS delivers significantly improved performance over conventional solutions in combating

channel impairment.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based Systems]:
Real-time and Embedded systems; C.2.1 [Computer Communication Networks]: Network

Architecture and Design; D.2.8 [Software Engineering]: Metrics—complexity measures,performance
measures

General Terms: Algorithms, Design, Performance, Experimentation

Additional Key Words and Phrases: Body Sensor Networks, Asymmetric Architecture, Adaptive
QoS, Virtual MAC, Bandwidth

1. INTRODUCTION

In the last few years commercial sensor network applications have emerged that
require pervasive sensing of people and the environment, e.g., assisted living [Ganti
et al. 2006] [Harvard CodeBlue ] [MIThril ] and smart homes [UVA Smart House
] [Kidd et al. 1999] [UFL Smart House ]. For these applications, it is essential
to be able to reliably collect physiological readings from humans via Body Sen-
sor Networks (BSN). Such networks could benefit from Quality of Service (QoS)
mechanisms that support prioritized data streams, especially when the channel is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 ·

impaired by interference or fading. For example, heart activity readings (e.g., EKG
waveforms) are often considered more important than body temperature readings,
and hence can be assigned a higher priority in the system. In another example,
a glucose data stream might be assigned a low priority when the readings are in
normal range, but a higher priority might be re-assigned to the data stream by
user applications when readings indicate hyper- or hypo-glycemia. QoS support is
needed to ensure reliable data collection for high priority data streams and to dy-
namically reallocate bandwidth as conditions change, especially when the effective
channel bandwidth is reduced by interference or fading.
QoS research is not new; prior research has focused on managing and reserving

resources [Zhu and Cao 2005] [Aad and Castelluccia 2001] [Garg et al. 2003] [G. S.
Ahn and A. Campbell and A. Veres and L. H. Sun 2002] in the Internet, wireless
networks, and ad hoc networks. However, for body sensor networks, three new
QoS challenges [Zhou et al. 2008] arise: (1) A body sensor network consists of two
levels of devices: multiple simple sensor nodes and a more powerful aggregator. A
sensor node can be very resource constrained. For example, a sweat sensor can
be designed as a Band-Aid, which uses a film battery and is attached to the wrist
to obtain sweat levels. In contrast, an aggregator is comparatively more powerful.
An aggregator might be a cell phone or an electronic watch that includes a 32-bit
processor and rechargeable batteries. This asymmetric, star-shaped architecture re-
quires an asymmetric QoS solution, not typical of prior QoS research. (2) Existing
medical sensor devices often use different radio technologies, such as CC1000 [Chip-
conCC1000 ], IEEE 802.15.4 [IEEE 802.15.4 2003], or Bluetooth [IEEE 802.15.1
2002]. There is a need for a radio-agnostic QoS solution, which can be easily
ported from one radio platform to another. (3) Low power radios are susceptible to
channel fading and interference. This issue is especially evident in BSN due to hu-
man body factor. A number of studies [Shah et al. ] [Natarajan et al. 2007] [Roelens
et al. 2006] [Johansson 2002] showed that the human body presents various adverse
fading effects to wireless communication channels that are dependent on body size
and posture. As a result, the communication channel characteristics in a BSN are
highly variable and difficult to predict. Furthermore, when co-existing networks or
RF emitting devices such as microwaves are present, packets may be lost due to
interference, reducing the effective channel bandwidth [Zhou et al. 2006]. In both
cases, the QoS software needs to re-allocate resources from lower priority streams
to higher priority streams. Adaptive QoS scheduling is thus needed to provide
statistical bandwidth guarantees, which are essential for reliable data collection in
body sensor networks.
Driven by these new challenges, we propose BodyQoS, an adaptive and radio-

agnostic QoS solution for body sensor networks. The main contributions of this
work are:

—Prioritized Data Stream Service: Through well-defined interfaces, applications
submit their QoS requirements for each stream, assigning a specific priority ac-
cording to the data type and level of criticality. If the available wireless resource
is not sufficient to serve all QoS reservations, the higher priority streams are
served first.

—Asymmetric QoS framework: Most admission control functions and resource

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 3

scheduling computations in BodyQoS are managed by the aggregator, while little
processing is required at sensor nodes.

—Radio Agnostic QoS: A virtual MAC is implemented in BodyQoS to represent and
schedule channel resources. It separates the QoS scheduler from the underlying
MAC implementation. The virtual MAC design allows the QoS system to be
ported from one radio platform to another (less than 100 lines of modified code,
in one instance).

—Adaptive Bandwidth Scheduling: Besides conventional RSVP-Light [RSVP ] QoS
scheduling, we also implement and evaluate adaptive QoS scheduling in BodyQoS
that provides statistical bandwidth guarantees.

—Testbed Implementation: BodyQoS has been implemented in TinyOS [Hill et al.
2000] and evaluated on the MicaZ [CROSSBOW ] platform. Our evaluation
shows that BodyQoS exhibits improved performance compared to conventional
solutions.

The rest of the paper is organized as follows. In section 2 we present an overview
of the BodyQoS architecture. We then explain design details of the BodyQoS
components: the Virtual MAC in section 3, the QoS scheduler in section 4 and
admission control in section 5. We also build a statistical model for BodyQoS and
theoretically compare the energy efficiency with or without BodyQoS in section 6.
Implementation issues in TinyOS are discussed in section 7, and the performance
evaluation and comparison with existing solutions are presented in section 8. Sec-
tion 9 describes related work. Finally, in section 10, we present the conclusions.

2. BODYQOS OVERVIEW

A BSN is a collection of small, low power sensing devices (such as EKG, pulse
oximeter, temperature, sweat) wirelessly connected to a resource-rich aggregation
device (such as a watch or cell phone), all within one communication hop of each
other. BodyQoS is a set of software modules that sits between the transport and
the MAC layers. BodyQoS receives QoS and data transmission requests from the
transport layer and uses the underlying MAC protocol to transmit data. BodyQoS
consists of three components: Admission Control, QoS Scheduler and Virtual MAC
(VMAC). BodyQoS adopts an asymmetric architecture. The Admission Control
and Scheduler components are implemented as a master and slave module on the
aggregator and sensor nodes respectively. As shown in Figure 1, the slave admission
control and slave QoS scheduler execute on the sensor motes, while the main part
of admission control and the QoS scheduler execute on the aggregator.
The admission control module has two main functions. The first function is to

accept or reject new QoS reservations. The decision is based on the requested
bandwidth, time delay requirement, and priority, as well as the available wireless
resources, previously accepted reservations, and the effective channel bandwidth.
The second function is to continuously monitor and estimate the effective band-
width, which varies according to interferences in the environment and body fading
effect. QoS reservations are dynamically adjusted as necessary.
The main function of the QoS scheduler is to control use of the channel such

that reservation requirements are attained. It schedules wireless resource for all
admitted streams and provides admission control signaling between sensor nodes

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



4 ·

and the aggregator. The scheduler also allocates unused wireless resources for
best-effort communications. The QoS scheduler is also responsible for measuring
the effective channel bandwidth at runtime and for reporting it to the admission
control module. Finally, the QoS scheduler can schedule a sensor node to sleep if
it predicts a lull in the communication schedule.

TransportTransport Admission ControlSlave QoS Schduler VMACVMAC

Sensor Motes Aggregator
QoS SchedulerSlave Admission Control
AppApp

Real MACReal MAC datapoll
Fig. 1. BodyQoS Architecture

The VMAC isolates BodyQoS from the details
of a specific MAC protocol. The VMAC design
is challenging because it must control and reserve
the wireless resource to support QoS scheduling,
while abstracting away the details of the underlying
MAC, including both CSMA-based and TDMA-
based MACs. To achieve this goal, the VMAC
exposes an abstract representation of wireless re-
source. It also provides an interface for the QoS
scheduler to schedule wireless resource.
As illustrated in Figure 1, both admission con-

trol and the QoS scheduler consist of two parts
that are distributed across sensor nodes and the ag-
gregator. The aggregator makes admission control
decisions, computes the communication schedule,
and polls individual sensor nodes for data. Use
of polling simplifies resource scheduling and sup-
ports an efficient asymmetric QoS design. Polling
also simplifies coordination among multiple aggre-
gators, allowing possible extension to co-existing
body sensor networks.

3. VMAC DESIGN

Today, several different radio platforms are avail-
able for sensor devices, e.g., the CC1000 [Chip-
conCC1000 ], the CC2420 [ChipconCC2420 ] or
Bluetooth [IEEE 802.15.1 2002]. In some cases,
multiple radio platforms may exist within a single system. To prevent QoS schedul-
ing from being tied to a specific radio implementation, a virtual MAC design is
required.
The VMAC design is particularly challenging. We first identify three MAC fea-

tures that are essential for QoS support and commonly available in most MAC
protocols. First, a MAC should be able to send a packet when requested. It should
return control of the radio back to the scheduler when the packet is either trans-
mitted successfully or fails after exceeding the maximum number of backoffs or
retransmissions. As a result, there is a maximum time period for a MAC to handle
a packet transmission request, after which the MAC should return control back to
the QoS scheduler. Second, when a packet is received, the MAC should notify the
QoS scheduler with the received packet. Third, it should track the time and energy
overhead for transitioning between sleeping/waking states, to allow efficient sleep
scheduling for sensor nodes.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 5TInterval…...packet packet packet packet packet packetSpkt…... …... …...…... packet
Fig. 2. VMAC Abstraction

Figure 2 presents our VMAC abstraction for representing and scheduling wireless
resources. Time in VMAC is divided into intervals. Within each interval, VMAC
is able to send out a certain number of packets with the specified data payload
length, each within a specified time period. The following parameters are essential
for the VMAC abstraction, and their values should be configured according to
measurements of underlying MAC implementations.

—Tinterval: the length of each interval in seconds.

—Npkt: the maximum number of packets that the QoS scheduler can transmit or
receive within each time internal, assuming a clean channel.

—Spkt: the effective data payload size in bytes.

—TminPkt: the minimum time duration for the MAC to transmit a packet assuming
a clean channel, i.e., the minimum MAC response time for handling a packet
transmission request, after which the MAC returns radio control to the QoS
scheduler.

—TmaxPkt: the maximum time duration for the underlying MAC to transmit a
packet or report giving up after exceeding the maximum backoffs or number of
retransmissions. This is the maximum MAC response time for handling a packet
transmission request, after which the MAC returns radio control to the QoS
scheduler.

—TminSleep: the minimum sleep duration for radio duty cycling, taking into account
the delay to transition the radio between sleep and normal mode, as well as a
user specified value to account for other energy costs.

The above parameters define a virtual MAC that the QoS scheduler can directly
use for scheduling wireless resource. Setting these parameter values, however, is not
trivial and is MAC dependent1. For example, Spkt is the actual data payload length
used in the underlying MAC. Likewise, TmaxPkt needs to account for both the worst-
case backoff time and the maximum number of MAC-layer retransmissions. One

1Notice that the MAC dependency is encapsulated entirely in the VMAC.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



6 ·

Requested to send D packets within time T

D ≥ 1 and

time left ≤ TmaxPkt?
End

Call real MAC to send one packet;

N

Update time left

D=D-1

Y

Wait for real MAC returns: 

success/failure

Fig. 3. Packet Transmission in VMAC

could obtain these values either analytically or experimentally. Once the above
parameters are configured, VMAC is able to represent and reserve the wireless
resource regardless of the underlying MAC implementation.
Figure 3 presents the packet transmission process in VMAC. In each interval, the

VMAC attempts to transmit D packets iteratively within the time period T , until
either all packets have been sent or the remaining time is less than TmaxPkt.
VMAC design is generic, refraining from functions that are only available in a

specific MAC. For example, overhearing is possible in CC1000 and IEEE 802.15.4,
but not in Bluetooth. This design choice allows the QoS implementation to be
ported from one radio platform to another with minimum code modification. Re-
searchers from U.C. Berkeley have developed a virtual MAC [Polastre et al. 2005],
in which priorities and reliability can be configured for a set of underlying MAC pro-
tocols. However, this solution is designed for general use, without specific features
for QoS reservation. Specifically, there is no support for bandwidth specification
or reservation in their solution. In our BodyQoS design, as we will discuss later in
Section 4 and 5, users’ high level bandwidth specification can be translated into low
level VMAC parameter configuration, which as shown in Figure 3 can be enforced
regardless of the underlying real MAC implementation.

4. QOS SCHEDULER DESIGN

The QoS scheduler is the core of BodyQoS. We first describe the basic scheduling
framework that BodyQoS uses to reserve the channel for different types of data

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 7

......

an Interval (consists of K fre periods)

a Period

Reservation: “Aggr �Mote”
Best-Effort

Reservation: “Mote �Aggr”

Fig. 4. QoS Traffic Scheduling

traffic. Then we describe a mechanism to measure the effective bandwidth in a
radio-agnostic manner. Finally, we present two QoS scheduling algorithms: RSVP-
Light [RSVP ] QoS scheduling and adaptive QoS scheduling. We also consider the
impact of different delay requirements on scheduling.

4.1 Basic Scheduling Framework

There are three types of traffic in our system: (1) reserved aggregator→mote com-
munication, (2) reserved mote→aggregator communication, and (3) best-effort com-
munication. Each QoS reservation has a delay requirement that is either high or
low sensitivity. A reservation that has low delay sensitivity is only scheduled once
for communication within an interval. For a reservation with high delay sensitivity,
a data communication slot is scheduled KmaxFre times within each interval, where
KmaxFre is a system-wide parameter2.
The average scheduling delay for a low delay sensitivity reservation is Tinterval

2 ,
and the worst case scheduling delay is Tinterval. For a high delay sensitivity reser-
vation, the average scheduling delay is Tinterval

2×KmaxFre
, and the worst case scheduling

delay is Tinterval

KmaxFre
. Depending on delay sensitivity requirements, an interval can be

divided into either 1 or KmaxFre periods. Within each period, each high delay
sensitivity reservation is scheduled once for data communication. For ease of ex-
planation, assume that an interval consists of Kfre periods, which can be either 1
or KmaxFre.
For a mote→aggregator QoS reservation, the aggregator generates polling pack-

ets to poll each sensor mote for data within each time interval. If the number
of packets returned for each poll is too small, the control overhead will be high.
Hence, we aggregate multiple short polling packets into a larger one. However, the
requested number of packets can not be arbitrarily large within a single polling
packet because losing such a polling packet leads to significant wireless bandwidth
loss. In BodyQoS, a dynamically configurable parameter PL is used to set the
maximum number of packets requested within a single polling packet.
To take advantage of polling aggregation, we group all QoS reservations that

request mote→aggregator traffic, as shown in Figure 4. Within each period, the
wireless bandwidth is first assigned to aggregator→motes traffic. If the requested

2In the current implementation, KmaxFre is configured during system initialization. Dynamic
configuration of the KmaxFre value can be added in the future.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



8 ·

data packets are successfully delivered before the assigned bandwidth is consumed,
the unused bandwidth is used for scheduling motes→aggregator traffic. The re-
maining bandwidth is used for best-effort communication.
For each QoS reservation Ri, the aggregator knows how many QoS reservations

remain to be scheduled before serving the best-effort traffic. Thus, the aggregator
can assign reservationRi a sleep period Tsleep, during whichRi will not be scheduled
for data communication and the corresponding radio can be scheduled for sleeping.
The Tsleep value is piggybacked in each polling packet to notify corresponding sensor
motes. Each sensor mote checks all of its QoS reservations for the overlapping sleep
period. If the overlapping period is greater than the configured sleep overhead
TminSleep, the radio is put into sleep mode for the overlapping period.

4.2 Measuring Effective Bandwidth

In order for BodyQoS to perform efficient QoS scheduling, it is essential to measure
the effective bandwidth that the QoS system can use during runtime. Conventional
wisdom for measuring effective bandwidth usually depends on underlying MAC
functions. For example, in CODA [Wan et al. 2003], each node samples the channel
load periodically to compute how busy the channel is. This scheme works for radios
that have the carrier sense ability, and may not work for frequency hopping spread
spectrum radios such as Bluetooth [IEEE 802.15.1 2002]. The effective bandwidth
can also be measured through utilizing ACK packets such as in B-MAC [Polastre
et al. 2004] or the RTS-CTS-DATA-ACK handshake in IEEE 802.11b [IEEE 802.11
1999].
In BodyQoS, we propose a radio-agnostic method to measure effective bandwidth

by taking advantage of the global knowledge of the QoS scheduler. In BodyQoS, if
QoS reservation Ri requests bandwidth bi, the QoS scheduling algorithm, discussed
later in this section, interprets the request as: within each time interval, request
VMAC to send/receive Di packets within time Ti × Di, where Ti is the time for
MAC to send a packet. The Di and Ti information is included in a polling packet
and sent from the aggregator to a mote. When the mote receives this packet, it
continues sending the requested Di packets until the specified time period Ti ×Di

expires. When the requested reservation has no packet to send, a “NoData” packet
is returned, which ensures that the mote tries its best to send back Di packets
within the time period Ti ×Di.
On the aggregator side, after a polling packet is sent out, it waits for the mote

response for a time period of Ti ×Di + TmaxPkt, where TmaxPkt is used to account
for the maximum backoff or retransmissions of the polling packet. The effective
bandwidth computation needs to consider three possible cases:

(1) If the aggregator receives Di packets within time Ti ×Di + TmaxPkt, it stops
waiting for more packets, and records the actual wait time TwaitT ime. The
number of packets received is Di, and the effective bandwidth is BWeffective =
Di∗Bytes perPacket+Polling Packet Size

TwaitTime
, within the recorded actual waiting time.

(2) If the aggregator does not receive Di replies, it continues waiting for packets
until the specified time period Ti ×Di + TmaxPkt expires. Then it records the
actual number of received packets to compute the effective bandwidth within
the time period Ti ×Di + TmaxPkt as:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 9

BWeffective =
Numof Recived Packet ∗Bytes Per Packet+Polling Packet Size

Ti×Di+TmaxPkt

(3) If the aggregator does not receive any packets before the time period Ti×Di+
TmaxPkt expires, it knows that either the polling packet was lost, or all replies
were lost. The aggregator assumes that the single polling packet was lost (since
this is far more likely), and the effective bandwidth is 0 within the time period
TmaxPkt.

As discussed above, whenever a polling packet is transmitted, the aggregator gets
a chance to measure the effective bandwidth almost for free. Even though these
bandwidth measurements are only samples of the channel when polling occurs, they
are accurate enough for the QoS support since the time interval is relatively short
(2 seconds in our system).
The aforementioned is a direct way to compute the effective bandwidth in BodyQoS.

To reduce the processing load, we propose a second, simpler, and indirect scheme:
BWeffective = BWideal ∗ Numof Delivered Packet

Numof Requested Packet . For each polling packet, the QoS
scheduler knows the number of requested packets. The number of delivered pack-
ets can also be easily obtained at the aggregator. The ideal bandwidth can be
computed as follows:

BWideal =
Npkt × Spkt × 8

Tinterval
(1)

In our performance evaluation, we use this indirect scheme to compute effective
bandwidth, and also to maintain a moving average of effective bandwidth with the
decay factor of δ:

BWmovAvg(i+ 1) = δ ×BWeffective

+(1− δ)×BWmovAvg(i) (2)

4.3 Advanced Scheduling Algorithms

Next, we describe a way to compute Ti and Di values at runtime. In BodyQoS, we
provide two algorithms for computing these values: RSVP-Light QoS scheduling
and adaptive QoS scheduling.

4.3.1 RSVP-Light QoS Scheduling. In the standard RSVP [RSVP ] protocol,
an audio/video stream reservation consists of a fixed bandwidth and time for data
communication, and lost packets are not retransmitted. This is reasonable for
audio/video streams because it does not make sense to play late or unordered
portions of audio/video data. BodyQoS supports this conventional wisdom, by
reserving a fixed wireless bandwidth according to the QoS reservation, disregarding
the current channel condition and measured effective bandwidth.
If a QoS reservation Ri requests bi Kbps bandwidth, the number of bits sent

within each time interval Tinterval is bi ∗ Tinterval. Since the effective application
data payload size for each VMAC packet is Spkt bytes, the number of data packets
that should be scheduled for Ri is:

Di = ⌈bi ∗ Tinterval

Spkt × 8
⌉ (3)

In section 3, we defined TminPkt as the minimum time period for the real MAC

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



10 ·

to send out a packet when the channel is clean. For VMAC to send out Di packets,
BodyQoS should reserve a time period of TminPkt ×Di

4.3.2 Adaptive QoS Scheduling. To cope with channel impairment, it is essential
for the QoS system to manage wireless resources adaptively, based on channel
conditions. For example, an EKG sensor continuously samples heart activities and
places data into a limited size buffer in a sensor mote. During times of channel
impairment, the effective bandwidth reduces and packets are lost. The lost packets
should receive more opportunities to be retransmitted. The question is how much
time should the lost packets get for retransmission. For example, if the packet
needs 4ms to be sent when the effective bandwidth is 100%, then 40ms is needed
to service the reservation when the effective bandwidth reduces to 10%.
Now we must determine how to allocate the 40ms. One approach is to give

the MAC more time for retransmission. However, MAC protocols typically limit
the number of backoffs and retransmissions. Radio control is returned to QoS
scheduler after time TmaxPkt. If the scheduler waited any longer, the radio would
remain idle, wasting precious resources. Instead, a portion of the bandwidth should
be given to the transport layer so that the transport layer can retransmit the lost
packet. Traditional transport layers do not ask for more resources when packets
are lost. For example, communication failure in TCP is considered a result of
congestion. TCP actually backs off and uses less bandwidth when packets are lost.
However, packet losses in a BSN are mainly due to channel impairment, rather
than congestion, since the radio range is small and BSNs typically have a single
use. As a result, transport layer retransmissions make sense in BSN. Without the
adaptive bandwidth provision, buffer space in sensor motes may be depleted and
data samples could be lost.
In order to schedule adaptive bandwidth, we need to compute Di and Ti values

dynamically, according to the effective bandwidth BWmovAvg from Formula 2. For
ease of explanation, we denote the dynamically computed new values of Di and
Ti as D⋆

i and T ⋆
i . Di and Ti are used to denote the values obtained in the ideal

case when there is no channel impairment. Therefore, Ti in the ideal case is the
minimum time for the MAC to send out a packet, that is, TminPkt. When there is
channel impairment and the effective bandwidth is BWmovAvg, the MAC needs to
increase the time for sending one packet to T ⋆

i :

T ⋆
i = min{TminPkt ×

BWideal

BWmovAvg
, TmaxPkt} (4)

Where BWideal is computed according to Formula 1.
When the channel degrades to the point at which the maximum MAC retransmis-

sions fails to deliver most packets, some additional time must be allocated so that
the transport layer can retransmit lost packets. The total time assigned to both
the transport and MAC layers should be the adaptive bandwidth the reservation
requests under the current channel condition. In the ideal case, the time assigned
to the reservation is Di ×Ti. When there is channel impairment, the time assigned
to it should be D⋆

i × T ⋆
i . So we have the following equation:

D⋆
i × T ⋆

i

Di × Ti
=

BWideal

BWmovAvg

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 11

From this equation, we can obtain the following formula:

D⋆
i = Di ×

BWideal/BWmovAvg

T ⋆
i /TminPkt

(5)

4.3.3 High Delay Sensitivity. Thus far we have only considered QoS reservations
that require low delay sensitivity. For high delay sensitivity QoS reservations, the
algorithms are slightly different.
For RSVP-Light QoS scheduling, we modify Formula 3 and calculate Di as fol-

lows:

Di = max{⌈bi × Tinterval

Spkt × 8
⌉,KmaxFre} (6)

For adaptive QoS scheduling, we can still use Formula 3 to compute Di, and use
Formula 5 to compute D⋆

i . However, the minimum allowable value for D⋆
i is now

KmaxFre.

5. ADMISSION CONTROL DESIGN

This section discusses three important aspects of admission control: (1) Computing
the required bandwidth, including both data and signaling bandwidth for new QoS
reservations; (2) Making decisions to admit/reject new QoS reservations. The same
algorithm is used to adjust existing reservations when the effective bandwidth is
reduced as a result of channel impairment; and (3) Coordinating slave admission
control modules on the motes from a master module on the aggregator.

5.1 Computing Bandwidth Requirements

For each QoS reservation, the requested data bandwidth is directly obtained from
its QoS specification. We also compute the control overhead that is needed for
scheduling reservations, which varies depending on the type of QoS reservation.
For aggregator→mote QoS reservations, no polling packets are needed. The

required data bandwidth is given by:

DAM =
∑
i

Di, where Di = ⌈bi × Tinterval

Spkt × 8
⌉ (7)

For mote→aggregator QoS reservations with low delay sensitivity, the required
data bandwidth is given by:

DMAL =
∑
i

Di (8)

For mote→aggregator QoS reservations with high delay sensitivity, the required
data bandwidth is given by:

DMAH =
∑
i

max{Di,KmaxFre} (9)

For mote→aggregator QoS reservations, regardless of the delay requirements,
polling packets are needed. As discussed in Section 4, neither long polls nor short
polls are optimal in terms of bandwidth efficiency. As a result, a standard polling
length PL is used, which denotes the standard packet size that is desired to be

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



12 ·

Effective BW BWmovAvg sd

1KHKL0

Fig. 5. Water Mark and Admission Decision

polled for each polling. Since all mote→aggregator traffic is grouped together for
scheduling, the (polling) overhead bandwidth3 can be computed as:

P = Kfre × ⌈ (DMAH +DMAL)/Kfre

PL
⌉ (10)

Combining all aforementioned data and polling overhead bandwidths together,
the total required bandwidth for all QoS reservations is:

Drequired = DAM +DMAL +DMAH + P (11)

5.2 Admission Decisions

As shown in Figure 5, a high water mark KH and a low water mark KL are set
within the resource range [0, 1], where 1 corresponds to the effective bandwidth
BWmovAvg. If the total required bandwidth, including the new reservation, is no
greater than the low water mark KL × BWmovAvg, then the new reservation is
accepted.
The total required bandwidth may also fall between the low water mark and

the high water mark KH × BWmovAvg. In this case, if the new QoS reservation’s
priority is no less than the highest priority among all admitted reservations, this
new reservation is admitted. Otherwise, it is rejected.
Finally, if the required bandwidth is greater than the high water mark, BodyQoS

considers removing existing, lower priority reservations to make room for the new
reservation. If enough bandwidth can be reclaimed by removing lower priority
requests, the new reservation is admitted. Otherwise, it is rejected. By remov-
ing existing reservations, the total bandwidth requirement may be pushed below
the high water mark, which can prevent thrashing when the effective bandwidth
oscillates. When less important reservations are removed, they are temporarily
treated as best-effort communication, and the requesting applications are notified
of the QoS termination. Applications can choose to resubmit their request with
different QoS requirements, perhaps setting a higher priority or a lower bandwidth
requirement.
The ejection policy is now described in more detail. First, admission control

decides how much bandwidth to reclaim. Then, it sorts all admitted reservations
in increasing priority order. When two QoS reservations tie in priority, the one

3We assume in this paper the resources consumed by polling and data packets is roughly the

same, at a first order approximation. We are aware that large data packets do exist, and we will
consider an additional variable for controling packet size in future work.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 13

with the higher bandwidth requirement is considered first. The sorted list is then
evaluated from head to tail. As the reservation list is processed, three situations
may occur:

(1) If the aggregated bandwidth of all QoS reservations to be removed, including the
current reservation being checked, is greater than the bandwidth that is needed
to be reclaimed, then the current reservation is ignored; admission control
checks the next reservation in the list.

(2) If the aggregated bandwidth of all QoS reservations to be removed, including
the current reservation being checked, is smaller than the bandwidth that is
needed to be reclaimed, then the current reservation is removed; admission
control checks the next reservation.

(3) If the aggregated bandwidth of all QoS reservations to be removed, including
the current reservation being checked, is equal to the bandwidth that is needed
to be reclaimed, then the current reservation in the list is removed and the
algorithm stops.

Once admission control determines which QoS reservations to remove, it notifies
the QoS scheduler to stop reserving resources for each.
The above algorithm executes when a new reservation request is received and

when the effective bandwidth drops below the amount needed for admitted QoS
reservations.

5.3 Admission Control Signaling

BodyQoS design is based on an asymmetric architecture. This drives the need for
collaboration between the two components of admission control that execute on
the sensor motes and the aggregator. Admission control signaling is necessary in
three cases: when a new QoS request is submitted through the “NewQoS” interface,
when an existing QoS is requested to stop through the “StopQoS” interface, and
when an admitted QoS is removed through the “RemoveQoS” interface.
NewQoS Signaling: There are four cases for new QoS signaling, depending

on whether the new QoS is submitted from a mote or the aggregator, and also
depending on whether the admission result is yes or no.
Figure 6 presents the cases when a new QoS is submitted from a mote. As

shown in Figure 6 (a), the signaling starts when a new QoS is submitted from
the transport layer at a mote. Upon the NewQoS reception, the slave admission
control component forwards this request to the admission control component at
the aggregator. In this case, the aggregator accepts this request and replies with a
handle for data submission in the future. When the slave admission control receives
this handle, it does three things: notifies the transport layer of the acceptance
and the handle, notifies the slave QoS scheduler of the handle, and replies to the
aggregator that the yes decision has been received. The slave admission control
needs to retransmit (2) if (3) is not received, and also the admission control needs
to retransmit (3) if (4) is not received. These retransmissions are stopped after the
maximum number of retries. Finally, when the aggregator receives the confirmation
from the mote, it notifies the QoS scheduler to schedule resources for the reservation,
and the NewQoS signaling ends.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



14 · TransportTransport AdmissionControlSlave QoSSchduler
Sensor Motes Aggregator

QoSSchedulerSlaveAdmissionControl(1)NewQoS(spec,...)(2)NewQoS(spec,...)(3)Yes & Handle(4)Received(4)Yes & Handle(4)Handle (5)Handle, Spec, Traffic directionRetransmit (2) if (3) isno t rece i ve d a fte r atimeout;Delete handles that havenot been polled for along time;
Retransmit (3) if (4)is not received aftera timeout;S top afte r max imum#retransmissions; returnto app. Error message; Stop after maximum#retransmissions;

TransportTransport AdmissionControlSlave QoSSchduler
Sensor Motes Aggregator

QoSSchedulerSlaveAdmissionControl(1)NewQoS(spec,...)(2)NewQoS(spec,...)(3)No & Bandwidth(4)No & BandwidthRetransmit (2) if (3) is notreceived after a timeout;Stop after the maximum#retransmissions; return toapp. with error message;
(a) Mote submits NewQoS and reply is Yes
(b) Mote submits NewQoS and reply is No

Fig. 6. Admission Control Signaling for NewQoS

There is a possibility that message (4) from the mote to the aggregator is never
successfully delivered, which leads to an inconsistency that the slave QoS scheduler
has the handle, but the QoS scheduler does not. This can be resolved by timing
out the handle at the mote, since it will never be polled by the aggregator.
Figure 6 (b) presents a different case when admission control sends a rejection.

Similar to case (a), the slave admission control forwards the received NewQoS
request to the aggregator. But different from case (a), when the slave admission

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 15

control receives the rejection, it does not send confirmation to the aggregator. It
notifies the transport layer of the rejection decision, together with a bandwidth
that the aggregator suggests for future QoS reservations. Also, retransmissions of
(2) are necessary before (3) is received, and a maximum number of retries is set.
The signaling processes are similar when a NewQoS request is submitted from

the aggregator. If admission control returns yes and a handle, it just informs the
decision to the transport layer and the QoS scheduler at the aggregator. There is
no need for handshaking with motes, since traffic is from the aggregator to motes.
In the case when admission control returns no and the suggested bandwidth, there
is also no need for handshaking with motes. Admission control just needs to return
the rejection decision as well as the suggested bandwidth to the transport layer at
the aggregator side.
StopQoS Signaling: The transport layer can submit a StopQoS request with

“handle” as the parameter. When a StopQoS is submitted at the mote side, slave
admission control notifies the slave QoS scheduler to delete the corresponding han-
dle. When this handle is requested by the aggregator for further data, the slave QoS
scheduler replies with a “HandleInvalid” message, so that the aggregator knows that
this handle should be stopped. The QoS scheduler at the aggregator side removes
the handle from its reservation list and also tells admission control to remove this
handle. Then, the QoS reservation is stopped.
When a StopQoS is submitted at the aggregator side, admission control notifies

the QoS scheduler to stop the corresponding handle. Then no more resources are
reserved for this QoS reservation again.
RemoveQoS Signaling: Admission control removes lower priority QoS reser-

vations when the available resource is not enough to serve all QoS requirements. If
the reservation to be removed requires aggregator→motes traffic, admission control
just tells the QoS scheduler to remove the handle, and then its data transmission
requests are treated as best-effort traffic. It is also notified that it will no longer
get QoS reservation service and a new QoS request should be submitted.
When the QoS reservation that must be removed needs motes→aggregator traffic,

the mote needs to be notified since that is where data is submitted and transmit-
ted. As shown in Figure 7, admission control informs the motes of the RemoveQoS
message as well as the corresponding handle. Retransmissions are conducted, until
either a confirmation is received from the mote or a maximum number of retrans-
missions have been tried. Since the handle is removed from the QoS scheduler, the
reservation is not made. Instead, it is treated as best-effort communication. When
communication fails and the handle is not removed from the slave QoS scheduler,
it is automatically timed out.

6. BODYQOS MODELING AND ENERGY EFFICIENCY ANALYSIS

In this section, we build a statistical model for BodyQoS and analyze its energy
consumption in a simple scenario. Especially, we study how the BodyQoS protocol
affects the energy consumption of nodes.
To build the model, we assume that one aggregator and N motes perform two

types of traffic in a body network: (1) The aggregator sends packets to motes with
bi bps bandwidth; (2) each mote sends packets to the aggregator with the QoS

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



16 · TransportTransport Admission ControlSlave QoS Schduler
Sensor Motes Aggregator

QoS SchedulerSlave Admission Control (1)RemoveQoS(handle)(1)Remove handle(2)Done(2)Remove handleTime out a reservation if it has not been polled for a long time; Retransmit (1) if (2) is not received after a timeout;Stop trying after the maximum #retransmissions;
Fig. 7. Admission Control Signaling for RemoveQoS

Operation Mode Current

Sleep 0.03mA

Idle Listen 26.1mA

Receive 26.5 mA

Transmit at -5dBm 21.6mA

Table I. Current Measurements for Different MicaZ Modes

reservation. Here, we do not consider the best-effort communication, because this
type of traffic consumes the same energy with or without BodyQoS. In this simple
scenario, we assume all motes request the same bandwidth, bi bps. Furthermore,
as we defined in section 3, we assume that it takes time TminPkt for a sensor node
to send or receive a packet when the channel is clear.

Next, we measure the energy consumption of a MicaZ node in different modes, us-
ing a power meter connected to the mote via the MicaZ’s 51-pin connector [CROSS-
BOW ]. During the measurement, the supply voltage of the node is 3.07 V. The
current measurements are presented in Table 6. The power level is the computed
as the product of the current and voltage readings.

From table 6, it is clear that MicaZ motes consume almost zero energy during
sleep, comparing with current readings of other modes. So, for simplicity, we assume
that nodes do not consume energy when sleeping.

6.1 Energy Consumption with BodyQoS

Now we compute the energy consumption of the aggregator and motes in one in-
terval Tinterval.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 17

First, during the reserved Aggregator→motes communication, we have:

E1
Agg = Ptx × TminPkt × ⌈bi × Tinterval

SPkt×8
⌉ (12)

and

E1
Mote = Prx × TminPkt × ⌈bi × Tinterval

SPkt×8
⌉ (13)

Here Spkt is the effective application data payload size for each VMAC packet, as
defined in section 3. Ptx is the MicaZ transmission power and Prx is the MicaZ
receiving power.
Second, during the reserved motes→Aggregator communication, the aggregator

sends polling packets and receives packets from motes. According to Equation 10,
the number of polling packets in one interval is:

P = Kfre × ⌈
N × ⌈ bi×Tinterval

Spkt×8 ⌉
Kfre × PL

⌉

Therefore, the energy consumption of the aggregator in this stage is:

E2
Agg = Ptx × TminPkt ×Kfre × ⌈

N × ⌈ bi×Tinterval

Spkt×8 ⌉
Kfre × PL

⌉

+Prx × TminPkt ×N × ⌈bi × Tinterval

SPkt×8
⌉ (14)

According to the BodyQos protocol, each mote receives all polling packets, sends
its own packets and goes to sleep after finishing its own transmission. Thus the
energy consumption of the aggregator in this stage is:

E2
Mote = Prx × TminPkt ×Kfre × ⌈

N × ⌈ bi×Tinterval

Spkt×8 ⌉
Kfre × PL

⌉

+Ptx × TminPkt × ⌈bi × Tinterval

SPkt×8
⌉ (15)

To summarize, when BodyQoS is used, the total energy consumptions of the
aggregator and motes in one interval are as follows:

EAggr = E1
Aggr + E2

Aggr and EMote = E1
Mote + E2

Mote (16)

6.2 Energy Consumption without BodyQoS

In order to better understand the impact of the BodyQoS protocol on energy ef-
ficiency, we also compute the energy consumption of nodes when BodyQoS is not
used. For fairness, we assume that the aggregator always sends packets first, and
motes start to send after the aggregator is done. Here, we use the simple CSMA
protocol, which is the standard MAC protocol provided in the TinyOS [Hill et al.
2000] library.
In this CSMA protocol, to send a packet, nodes first do the CCA to sense the

channel. If the channel is clear, the packet is sent out immediately. Otherwise, the
node randomly selects a time from [0, CW ] to backoff, and then does the CCA
again. In TinyOs implementation, CW = 0.32ms × 64 = 20.48ms. To ease the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



18 ·

analysis, we assume that this CSMA protocol eliminates all collisions. Thus, each
mote still takes TminPkt to send out one packet. Since all motes have the same
packet incoming rate, we assume that a mote sends out the (i + 1)th packet after
all motes send out the ith packets. Given that, the average backoff time of each
packet can be approximated as CW/2 ×min{(N − 1)/2, Ntry}, where Ntry is the
maximum number of backoff retries. The total latency of all motes sending one
packet is CW/2×min{(N − 1)/2, Ntry}+ TminPkt.
Therefore, when BodyQoS is not use, the energy consumption of aggregator and

motes can be computed as follows:

E
′

Aggr = Ptx × TminPkt × ⌈bi × Tinterval

Spkt × 8
⌉+

Prx × TminPkt ×N × ⌈bi × Tinterval

Spkt × 8
⌉+ Pidle ×

⌈bi × Tinterval

Spkt × 8
⌉ × (CW/2×min{(N − 1)/2, Ntry} − TminPkt×(N−1)) (17)

and

E
′

Mote = Prx × TminPkt × ⌈bi × Tinterval

Spkt × 8
⌉+

Ptx × TminPkt × ⌈bi × Tinterval

Spkt × 8
⌉+ Pidle ×

⌈bi × Tinterval

Spkt × 8
⌉ × CW/2×min{(N − 1)/2, Ntry} (18)

6.3 Impact of BodyQoS on Energy Efficiency

To study the impact of the BodyQoS protocol on energy efficiency, we can compute
the energy difference with or without BodyQoS. The energy difference in Aggregator
and motes can be represented as follows:

∆EAggr = EAggr − E
′

Aggr

= Ptx × TminPkt ×Kfre × ⌈
N × ⌈ bi×Tinterval

Spkt×8 ⌉
Kfre × PL

⌉ − Pidle ×

⌈bi × Tinterval

Spkt × 8
⌉ × (CW/2×min{(N − 1)/2, Ntry} − TminPkt × (N − 1)) (19)

and

∆EMote = EMote − E
′

Mote

= Prx × TminPkt ×Kfre × ⌈
N × ⌈ bi×Tinterval

Spkt×8 ⌉
Kfre × PL

⌉ − Pidle ×

⌈bi × Tinterval

Spkt × 8
⌉ × CW/2×min{(N − 1)/2, Ntry} (20)

Let TminPkt = 2ms, Kfre = 10, bi = 20Kbps, Ntry = 8, Spkt = 25bytes,
Tinterval = 2s, and PL = 5, we compute ∆EAggr and ∆EMote, with different
numbers of motes in this body network. Results are shown in Figure 8.
As shown in Figure 8, the BodyQoS protocol brings more energy consumption

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 19

-0.1-0.08-0.06-0.04-0.0200.02 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Difference of Energy 
Consumption in one Interval (J) # MotesAggregatorMote

Fig. 8. BodyQoS Energy Efficiency Analysis

to the aggregate when there are one or two motes, mainly because the aggregate
has to send extra polling packets, 40 packets in this case. However, When there
are more than two motes, the BodyQoS actually reduces the energy consumption,
because those polling packets schedule valid motes transmissions, and also reduces
the backoff time of the CSMA protocol, and hence reduces the idle listening time
of the aggregator. With more motes, more energy is saved. This trend is more
obvious for motes’ energy consumption. For example, with 15motes, the BodyQoS
can save 0.09J in a 2 second interval.
Therefore, we can conclude from our analysis that our BodyQoS design can

actually save a lot of energy compared with existing techniques, when there are
more than two sensors deployed inside a Body Sensor Network, which is the typical
case in real applications. We also observe that even when only one or two sensors
are deployed in a body network, the control overhead that BodyQoS brings is still
very small and hence can be ignored.

7. TINYOS IMPLEMENTATION

We have implemented BodyQoS in TinyOS [Hill et al. 2000] with the CC2420
[IEEE 802.15.4 2003] and Bluetooth [IEEE 802.15.1 2002] radio platforms. Three
important implementation issues are addressed in this section: how to integrate
BodyQoS with other modules and configurations in TinyOS, how to implement
VMAC above the CC2420 radio platform, and how to implement VMAC above the
Bluetooth radio platform.

7.1 Modules and Configurations

Figure 9 illustrates how BodyQoS is integrated with applications and the CC2420
radio components. In the TinyOS-1.x implementation, all packets from applications
arrive at the RadioCRCPacket configuration module and then get wired to different
radio platforms depending on the sensor devices that are used. When the MicaZ
devices are used, RadioCRCPacket is wired to the CC2420RadioC configuration
module. So the best way for BodyQoS to intercept all packets is to place it between
the RadioCRCPacket and CC2420RadioC configurations. All “send” commands
and “sendDone/receive” events between RadioCRCpacket and CC2420RadioC are

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



20 ·

intercepted and scheduled by BodyQoS and used as best-effort communication.ApplicationRadioCRCPacket
CC2420RadioC

send
qoSReceiveqoSSendqoSSendDonenewQoSReplynewQoSstopQoS
sleep
135
2sendDonereceive467send

5 6 3 4 1 21 2
7 2

Admission ControlQoS SchedulerVMACBodyQoS
Fig. 9. VMAC materialization in CC2420

For QoS communicaiton, “newQoS/stopQoS” commands are provided by admis-
sion control, and the “newQoSReply” event is generated to inform applications
of admission decisions. QoS data communication is done through the “qosSend”
command and the “qosSendDone/qosReceive” events. VMAC communicates with
the CC2420RadioC through the default “send” command and “sendDone/receive”
events. It also calls the command “sleep” to schedule the CC2420RadioC for sleep-
ing to save energy.
Intel provides TinyOS implementation of its IMote1 Bluetooth platform, which

can be configured in a similar way and hence is not elaborated here.

7.2 VMAC Implementation with CC2420 and Bluetooth

In Section 3, Figure 3 explains how VMAC responds to a packet transmission
request. In fact, in the whole response of VMAC, only a very little part is platform
dependent. That is, only the “call real MAC to send the next packet” and the
“wait for real MAC returns” in Figure 3 are radio platform dependent. So in
an implementation, only this part needs to be separated for modification, if the
system is ported from one radio platform to another. To demonstrate the code
modifications for different radio platforms, the VMAC implementation in TinyOS

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 21

bool pending;
TOS_Msg sendPkt;
TOS_Msg recvPkt;

command result_t VMACSendPkt.send(TOS_MsgPtr msg ){
bool success;
if(pending==TRUE)   return FAIL;
memcpy(&sendPkt, msg, sizeof(TOS_Msg));
success=call CC2420Send.send((TOS_MsgPtr)(&sendPkt));
if(success)   pending=TRUE;
return success;

}

event result_t CC2420Send.sendDone(TOS_MsgPtr msg, result_t success){
pending = FALSE;
return signal VMACSendPkt.sendDone(msg, success);

} 

event TOS_MsgPtr CC2420Recv.receive(TOS_MsgPtr m){
/* begin: drop noise packets*/
if(HEADER_GetMsgType(m->info)>=TYPE_INVALID_UP 
|| HEADER_GetMsgType(m->info)<=TYPE_INVALID_DOWN)   return m;
/* end: drop noise packets*/
memcpy(&recvPkt, m, sizeof(TOS_Msg));
signal VMACRecvPkt.receive(&recvPkt);
return m;

}

(a) VMAC Implementation on CC2420

bool pending;
TOS_Msg sendPkt;
TOS_Msg recvPkt;

command result_t VMACSendPkt.send(TOS_MsgPtr msg ) {
bool success;
if(pending==TRUE) return FAIL;
memcpy(&sendPkt, msg, sizeof(TOS_Msg));
success = call BluetoothSend.send(msg->addr, (TOS_MsgPtr)(&sendPkt), sendPkt.length);
if(success) pending = TRUE;
return success;

}

event result_t BluetoothSend.SendDone(char *data, result_t success){
pending = FALSE;
return signal VMACSendPkt.sendDone(data, success);

}

event result_t BluetoothRecv.receive(uint32 Source, uint8 * Data, uint16 Length) {
/* begin: drop noise packets */
if(HEADER_GetMsgType(Data->info)>=TYPE_INVALID_UP
|| HEADER_GetMsgType(Data->info)<=TYPE_INVALID_DOWN) return FAIL;
/* end: drop noise packets */
memcpy(&recvPkt, (TOS_MsgPtr)Data, Length);
signal VMACRecvPkt.receive(&recvPkt);
return SUCCESS;

}

(b) VMAC Implementation on Bluetooth

Fig. 10. VMAC Implementation on Real MAC Protocols

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



22 ·

on CC2420 radio and bluetooth radio are shown in Figure 10, from which we can
see that the VMAC design really makes BodyQoS radio-agnostic.

8. PERFORMANCE EVALUATION

This section presents the performance evaluation of BodyQoS. We first explain our
evaluation design and then go into details of performance discussion.

8.1 Evaluation Design

Our experimental setup mimics a typical assisted living facility, where a body sen-
sor network is used for monitoring physiological readings of a patient at home. A
MicaZ mote is configured to report heart activity readings generated by an EKG
sensor to the aggregator. A second MicaZ mote is configured to report patient’s
location information, and a third MicaZ mote is configured to report body tem-
perature readings. The aggregator is emulated by a MicaZ mote, which is con-
nected to a serial port of a laptop for data collection. Within the body sensor
network, we compare the performance of three solutions: adaptive QoS that we
propose in BodyQoS, the conventional RTP-Like QoS that we also implement in
BodyOoS, and the best-effort communication that requires no resource reserva-
tions. In different groups of experiments, which are presented later in this section,
the EKG/location/temperature data streams use different services: adaptive QoS,
RTP-Like QoS or best-effort communication.
Four metrics are measured for performance evaluation. First, we measure the

ratio of the delivered bandwidth over requested bandwidth, which demonstrates the
reliability of data collection. Second, we measure the average time delay of data
communication, which starts when a packet is fetched from a sensor’s data buffer
and ends when the packet is actually delivered to the aggragator. Third, we compare
the speed that the sampled data is removed from the buffer for transmission, since
sensor motes have very limited storage space for buffering sampled data. Finally,
we measure the energy consumption per delivered data byte.
Six groups of experiments are conducted for performance evaluation, and each

of them is repeated for five times. We observed similar performance results in
repeated experiments and present one representative result for each of them. Even
though detailed parameter values of BodyQoS and experiment configurations can
be found in the following subsections, here we list representative values of important
BodyQoS parameter that we found out through performance evaluation: polling
length PL = 20, decay factor δ = 0.2, buffer size=50 packets.

8.2 Performance with Different Interference

Since most sensor nodes use the unlicensed 2.4GHz ISM bandwidth, a body sensor
network may suffer interference from co-existing sensor networks, wireless mesh
networks, cell phones, Bluetooth headsets, wireless routers or even microwaves. It is
important to measure BodyQoS performance when different levels of interference is
present. For this purpose, we design and conduct this experiment. In the first time
period, 0s∼135s, there is no explicit noise. In the second time period, 135s∼225s,
a MicaZ node is turned on to generate noise signals. It sends out a noise packet
every 30ms. In the third time period, 225s∼315s, the noise node increases its noise

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 23

level by sending out a packet every 25ms. In the fourth time period, 315∼400s, the
noise node increases its noise level again by sending out a packet every 20ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 11. Delivered Bandwidth with Different Interference

As presented in Figure 11, before the noise node is turned on at the end of the
first time period, all three solutions work well, maintaining 100% bandwidth de-
livery ratio. But, when different levels of interference are present, both RTP-Like
QoS and best-effort communication suffer severe packet loss and their bandwidth
delivery ratios decrease. For example, the bandwidth delivery ratio of RTP-Like
QoS decreases to about 90% in the second time period, and then to about 80% in
the third time period, and then to about 60% in the fourth time period. Similarly,
the bandwidth delivery ratio of best-effort communication decreases to 45∼90% in
the second time period, and then 0∼30% in the third and fourth time periods. The
reason for the performance decrease for RTP-Like QoS is that it always requests
reserving fixed wireless resource, disregarding existing interference. The higher the
interference level, the more the performance decreases. For best-effort communica-
tion, the performance decrease is because of two reasons. First, it does not get any
promise of wireless resource reservation. When interference is present, more wireless
resources go to adaptive QoS and less goes to best-effort communication. Second,
when interference increases, it only relies on the MAC layer for more backoffs and
retransmissions, but does not benefit from the adaptive bandwidth scheduling, in
which collaborative effort from both MAC and Transport layers is made.
However, even when different interference levels are present in time period 2∼4,

our adaptive QoS solution still maintains close to 100% bandwidth delivery ratio.
Even though the bandwidth delivery ratio varies with time, which is due to the
adaptation to interference, statistically speaking, the delivered bandwidth meets
the requested bandwidth. This reliable data collection provided by adaptive QoS
is mainly due to our novel bandwidth scheduling. When the body network suf-
fers interference, the QoS scheduler allocates more resources for supporting more
retransmissions, so that statistically the delivered bandwidth is able to meet the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



24 ·

requested bandwidth. We are also aware that sometimes the bandwidth delivery
ratio for adaptive QoS exceeds 1. This is because when more time is allocated for
adapting to the interference, the sensor node sends out the buffered data that has
not received enough time to be sent out in the previous time interval.

 0

 5

 10

 15

 20

 25

 30

 35

 100  150  200  250  300  350  400

P
ac

ke
t T

ra
ns

m
is

si
on

 D
el

ay
 (

m
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 5

 10

 15

 20

 25

 30

 35

 100  150  200  250  300  350  400

P
ac

ke
t T

ra
ns

m
is

si
on

 D
el

ay
 (

m
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 12. Average Channel Access Delay with Different Interference

As shown in Figure 12, BodyQoS does not pay significantly more time delay for
the impressive reliable data communication it provides. We do realize that the
average time delay for all three services is a little higher than that when there is no
QoS reservation. As we discussed in section 4, this time delay can be significantly
reduced when we set the Kfre parameter greater than 1.

 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort
 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 13. Data Buffer Fetching Speed with Different Interference

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 25

In this group of experiments, the EKG/Location/temperature sensors all gener-
ate sensor readings at the same speed of 4Kbps. The data buffer fetching speed
for the corresponding adaptive QoS/RTP-Like QoS/best-effort communication is
illustrated in Figure 13. It is clear that adaptive QoS always fetches data from
the buffer at the same speed as that the data is generated and put into the buffer,
no matter whether there is interference or not. This feature is essential for the
storage limited sensor nodes. Otherwise, when the buffer fetching speed is consis-
tently lower than the data generating speed, the data buffer overflows, which leads
to a blank area in the patient’s EKG data. The reason that adaptive QoS can
constantly provide the requested data buffer fetching speed, is that it adopts the
adaptive bandwidth scheduling that adapts to the dynamic interference.
For RTP-Like QoS, the fixed wireless resource is reserved during all the four time

periods. So it receives a fixed time for removing data from the buffer for transmis-
sion. When interference increases, the MAC layer uses more time for sending the
same data packet, and hence the number of packets that can be fetched for trans-
mission reduces within the fixed time period. That is why we observe in Figure 13
that the data buffer fetching speed of RTP-Like QoS reduces to 3.9∼4Kbps in the
fourth time period. For best-effort communication, it gets less resources for data
communication when more resources are given to the adaptive QoS in the presence
of interference. This is why the data fetch speed goes below 4Kbps in the third and
fourth time periods.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100  150  200  250  300  350  400E
ne

rg
y 

C
on

su
m

pt
io

n 
P

er
 B

yt
e 

(E
-7

m
W

hr
)

Time (s)

Adaptive
RTP-Like

Best-Effort

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100  150  200  250  300  350  400E
ne

rg
y 

C
on

su
m

pt
io

n 
P

er
 B

yt
e 

(E
-7

m
W

hr
)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 14. Energy Consumption Per Byte with Different Interference

Figure 14 illustrates the energy consumption per delivered data byte. We can see
that in the first time period, adaptive QoS and RTP-Like QoS have slightly more
energy consumption compared to that of best-effort. This is because adaptive QoS
and RTP-Like QoS have slightly higher polling overhead compared to that of best-
effort. The second observation is that when there is interference in time period 2∼4,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



26 ·

there is no obvious difference for the energy consumption of adaptive QoS, RTP-
Like QoS and best-effort. They have similar energy efficiency when interference is
present.
Therefore, compared with the RTP-Like and Best-Effort methods, the adaptive

QoS design achieves much better bandwidth delivery ratio as observed in Figure 11
and data fetching speed as observed in Figure 13, but pays similar time delay
as observed in Figure 12 and energy efficiency as observed in Figure 14. Since the
bandwidth delivery ratio is more interesting, we focus on the bandwidth comparison
in the rest of performance comparison.

8.3 Performance with Different Polling Lengths

As we discussed in Section 4, neither long polls nor short polls are efficient designs
and a standard polling length PL is used, which denotes the standard packet size
that is desired for each polling. In the previous experiment, PL is set to 20. In
this experiment, we also evaluate the performance when PL is 10 and 50. The
performance is observed in three time periods. In the first time period, 0∼165s,
the noise node is turned off. In the second time period, 165∼285s, the noise node
is turned on and it sends out a noise packet every 30ms. In the third time period,
285∼400s, the noise node increases the noise level by sending out a noise packet
every 20ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 15. Performance When Polling Length = 10

One interesting observation from Figures 15∼17 is that when the polling length
increases, adaptive QoS and best-effort have more performance variation. For in-
stance, the maximum difference of consecutive bandwidth delivery ratios for adap-
tive QoS is 35% points in Figure 15 when PL is 10, and then increases to 80% points
in Figure 16 when PL is 20, and then increases to 120% points in Figure 17 when
PL is 50. For best-effort communication, the maximum difference of consecutive
bandwidth delivery ratios is 60% points in Figure 15, and then increases to 75%
points in Figure 16, and then increases to 100% points in Figure 17. Adaptive QoS

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 16. Performance When Polling Length = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 17. Performance When Polling Length = 50

achieves less stable performance when PL increases, because the loss of a polling
packet leads to the absence of transmission of all polled packets. The greater the
polling length, the more the data packets that are prevented from being sent out,
and the more the bandwidth delivery ratio variation is observed at the aggregator.
Also, when more data packets are lost due to the loss of a polling packet, the mea-
sured effective bandwidth decreases more, and more resources go to the adaptive
QoS in the next time interval. So best-effort gets less resources in the next time
interval, since the total resources are fixed. This is why best-effort also illustrates
increased performance variation when the polling length increases.
Another interesting observation in Figures 15∼17 is that when the polling length

increases, the polling overhead decreases and, hence, more wireless resource is given

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



28 ·

to best-effort communication. For example, in Figure 15, when the polling length is
10, best-effort can only achieve about 50% bandwidth delivery ratio in the second
time period and 15% in the third time period. However, as shown in Figure 17,
when the polling length increases to 50, the bandwidth delivery ratio for best-effort
increases close to 100% in the second time period and 55% in the third time period.
Therefore, increasing the polling length helps improve the whole system perfor-
mance. Also considering that too large a polling length also leads to decreased
performance stability, we use polling length 20 in the rest of the performance eval-
uations, which is proven, through experiments, to have the best tradeoff between
performance stability and communication overhead in our evaluation. Please be
aware that there is no single “best tradeoff”, and it will vary with user preferences
and detailed applications.

8.4 Performance with Different Effective Bandwidth Measurements

As analyzed in Formula 2, a decay factor δ is designed to control the moving average
speed in effective bandwidth measurement. In previous experiments, δ is set to 0.2.
In this experiment, we also evaluate the performance when δ is 0,05 and 0.8. In
the first time period, 0∼165s, the noise node is turned off, and in the second time
period, 165∼200s, the noise node is turned on and it sends out a noise packet
every 30ms. The system performance is observed when interference is added at the
beginning of the second time period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 18. Performance When Decay Factor = 0.05

From Figures 18∼20, we observe that when a greater decay factor is used, the
system adapts to interference more quickly. As shown in Figure 18, when δ is 0.05,
it takes about 30s for the system performance to be stabilized in the presence of
interference. However, as shown in Figure 20, when δ is 0.8, it only takes 6s for the
performance to become stabilized, which is an 80% reduction in system response
time. The reason is that when δ increases, more weight is given to the most recently
measured effective bandwidth.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 19. Performance When Decay Factor = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 150  160  170  180  190  200

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 20. Performance When Decay Factor = 0.8

On the other hand, even though a greater δ value leads to reduced system re-
sponse time, a smaller δ value helps achieve smoother system performance. For
example, the bandwidth delivery ratio varies about 70% points when δ is 0.8 in
Figure 20. However, when δ decreases to 0.05 in Figure 18, the performance vari-
ation reduces to 35% points, half of what we observe in Figure 20. So we use the
decay factor 0.2 in the rest of the performance evaluations, which is proven, through
experiments, to have the best tradeoff between system response time and perfor-
mance stability in our evaluation. Also, please be aware that there is no single
“best tradeoff”, and it will vary with user preferences and detailed applications.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



30 ·

8.5 Performance with Different Data Buffer Sizes

In this section, we measure the impact of data buffer size on BodyQoS performance.
In previous experiments, the data buffer size is configured to be unlimited. In
this experiment, we evaluate the system performance when the data buffer size is
limited. In the experiment, the performance is evaluated with data buffer sizes of
25, 50 and 100. The performance is also observed in three time periods. In the
first time period, 0∼165s, the noise node is turned off. In the second time period,
165∼285s, the noise node is turned on and it sends out a noise packet every 30ms.
In the third time period, 285∼400s, the noise node increases the noise level by
sending out a noise packet every 20ms.

 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort
 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 21. Performance When Buffer Length = 25 Packets

As observed in Figures 21∼23, when interference is present, RTP-Like QoS and
best-effort communication always suffer buffer overflow, no matter whether the
data buffer size is set at 25, 50 or 100. This is because neither RTP-Like QoS nor
best-effort communication adapts resources for dealing with interference. When
interference happens, RTP-Like QoS suffers more MAC layer backoffs and retrans-
missions for each data packet. So it does not have enough time for delivering all
sampled data packets, since the reserved channel control time is fixed. For best-
effort communication, more time is given to adaptive QoS during interference, and
hence less time is given to it for transmitting the sampled data packets.
However, for adaptive QoS, adaptive channel control time is assigned according

to interference. So adaptive QoS almost always maintains the requested 4Kbps data
buffer fetching speed, even when interference is present. We are also aware that
when the buffer size is too small to hold data packets that are generated within
1 second (according to 4Kbps data sampling speed), all the three services suffer
buffer overflow. When there is no enough data in the buffer, the data fetching and
transmission speed may be below the requested 4Kbps. This is why in Figure 21,
when the data buffer size is 25, adaptive QoS, RTP-Like QoS and best-effort all

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 31

 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort
 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 22. Performance When Buffer Length = 50 Packets

 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort
 3900

 3920

 3940

 3960

 3980

 4000

 100  150  200  250  300  350  400

D
at

a 
B

uf
fe

r 
F

et
ch

in
g 

S
pe

ed
 (

bp
s)

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 23. Performance When Buffer Length = 100 Packets

suffer from the insufficient data fetching and transmission speed (<4Kbps) due to
lack of data in the buffer. On the other hand, we also observe that this “false”
buffer overflow is eliminated for adaptive QoS when the data buffer size is 50+.
In real applications, it is reasonable to have a data buffer size of 50+ when the
hardware is actually capable of generating data at the speed of 4Kbps.

8.6 Performance with Different Bandwidth Requirements

In previous experiments, all data streams request 4Kbps bandwidth. In this exper-
iment, we evaluate system performance under different bandwidth requirements.
Similar to the previous experiments, the performance is observed in three time pe-
riods. In the first time period, 0∼165s, the noise node is turned off. In the second

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



32 ·

time period, 165∼285s, the noise node is turned on and it sends out a noise packet
every 30ms. In the third time period, 285∼400s, the noise node increases the noise
level by sending out a noise packet every 20ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 24. Performance When Requiring 2Kbps Bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 25. Performance When Requiring 4Kbps Bandwidth

Comparing Figures 24 and 25, we observe that when the requested bandwidth in-
creases, adaptive QoS still maintains the requested bandwidth, statistically speak-
ing. The reason is that the adaptive resource scheduling provides adaptive QoS
more resource for retransmitting the lost packets in the presence of interference.
However, RTP-Like QoS and best-effort communication suffer decreased bandwidth
delivery ratio when interference happens. For example, in Figure 25, the bandwidth

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
RTP-Like

Best-Effort

Fig. 26. Performance When Requiring 4/2/1Kbps Bandwidth

delivery ratio of RTP-Like QoS reduces to about 90% in the second time period, and
then reduces further to about 60% when interference increases in the third time pe-
riod. For best-effort communication, the bandwidth delivery ratio reduces to about
50% in the second time period, and then below 30% in the third time period. RTP-
Like QoS has reduced performance because it requests a fixed wireless resource and
hence has no extra resources for retransmitting lost packets. Best-effort communi-
cation suffers reduced performance because it gets reduced wireless resources when
more resources are given to adaptive QoS for dealing with interference.
Figure 26 illustrates a more likely setting, in which an EKG stream requests

4Kbps bandwidth, while the location stream requests 2Kbps bandwidth and the
temperature stream requests 1Kbps bandwidth. As shown in the figure, when there
is no interference in the first time period or when there is light interference in the
second time period, EKG/location/temperature streams all achieve the requested
bandwidth, even though the performance is not perfectly smooth. On the other
hand, when interference increases in the third time period, adaptive QoS still statis-
tically keeps the bandwidth promise, because it benefits from the adaptive resource
scheduling. But RTP-Like QoS and best-effort suffer increased packet loss and can
not meet the bandwidth requirements, because they lack adaptive techniques.

8.7 Performance when Adaptive QoS and Best-Effort have the Same Priority

Since Adaptive QoS is configured to have a higher priority than Best-Effort com-
munication, one question may arise: what will be the comparative performance
if Best-Effort is not configured to have a lower priority than Adaptive QoS and
hence does not need to just use the space bandwidth left over by Adaptive QoS?
In order to measure performance in such a scenario, we compare performance of an
Adaptive QoS stream with a Best-Effort stream in the following scenarios: (1)In
scenarios 1, the Adaptive QoS stream that we plan to study sends 4kbps data to
aggregator, together with two other 4kbps Best-Effort streams, in the same way
as we configured in subsection 8.2; (2) In scenario 2, the Best-Effort stream that

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



34 ·

we plan to study sends 4kbps data to aggregator, together with two other 4kbps
Best-Effort streams. All other experimental configurations are the same for these
two scenarios for fair comparison: the same sensor motes are used and deployed at
the same location and time.
We also introduce noise to check how the performance varies with time. In the

first time period, 0s∼135s, there is no explicit noise. In the second time period,
135s∼225s, a MicaZ node is turned on to generate noise signals. It sends out a noise
packet every 30ms. In the third time period, 225s∼315s, the noise node increases
its noise level by sending out a packet every 25ms. In the fourth time period,
315∼400s, the noise node increases its noise level again by sending out a packet
every 20ms.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 50  100  150  200  250  300  350  400

D
el

iv
er

ed
 B

an
dw

id
th

 %

Time (s)

Adaptive
Best-Effort

Fig. 27. Performance When Adaptive QoS and Best-Effort have the Same Priority

As shown in Figure 27, when the background noise node is not turned on during
the 0s∼135s time period, Adaptive QoS can deliver the requested bandwidth while
Best-Effort method can not. This is because adaptive radio resources is sched-
uled in the Adaptive QoS method to deal with the interference from the other
two running Best-Effort data streams, while such adaptive resource scheduling is
not available in the Best-Effort method. From Figure 27, we also observe that the
increased noise level from the noise node has much great impact on the communica-
tion performance of the Best-Effort method than that of the Adaptive QoS method.
This is also because efforts are made in Adaptive QoS to schedule more radio re-
source to retransmit lost packets when congested, but such efforts are not present
in Best-Effort method. We are also aware that when the noise is very high, even
the Adaptive QoS method can not guarantee the requested bandwidth. In such a
case, the “RemoveQoS” interface that we have discussed in section 5.3 can be used
to notify upper layer users that the requested QoS can no longer be guaranteed and
hence the QoS requirement should be reduced and submitted again.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 35

9. RELATED WORK

QoS research has been extensive in the Internet and in general wireless ad hoc
networks. A lot of research, such as [Zhu and Cao 2005] [Aad and Castelluccia
2001] [Garg et al. 2003] [G. S. Ahn and A. Campbell and A. Veres and L. H.
Sun 2002], has been performed on how QoS can be used to manage and reserve
communication resources. However, those QoS solutions are designed for much
more powerful devices, such as Internet routers and wireless access points, which
are often line-powered. Most of these solutions do not apply to BSN applications,
which use resource constrained sensor devices powered by small form factor batteries
(e.g., AA, coin, or film).
There are several sensor network protocols that provide QoS features. For exam-

ple, a VMAC like solution [Polastre et al. 2005] is developed at Berkeley, in which
priorities and reliability can be configured for a set of underlying MAC protocols.
However, bandwidth specification and reservation are not available in this protocol
and hence users can not submit their bandwidth requirements to it for reserving
specified wireless bandwidth. This is also true for Bluetooth [IEEE 802.15.4 2003]
platform and a large number of other sensor network protocols like [Kim et al. 2007]
[Hull et al. 2004] [Rangwala et al. 2006] [Ee and Bajcsy 2004] [Werner-Allen et al.
2006] [Sankarasubramaniam et al. 2003] [Stann and Heidemann 2003] [Paek and
Govindan 2007] [He et al. 2003] [Liu et al. 2005] [Biswas and Morris 2005] [Zhao
and Tong 2003] [Wan et al. 2002]. These protocols provide some QoS features but
can not be called QoS systems. For example, different time delay features are con-
sidered in a geographic routing design in [He et al. 2003] to minimize the end-to-end
time delay, but it does not provide a QoS system so that end-to-end communication
can request and reserve resources for achieving the specified time delay. For body
networks, real system experiences can be found at [Harvard CodeBlue ] [MIThril
], and a number of initial results are available in the BSN proceedings [BSN Pro-
ceedings ]. The SATIRE paper [Ganti et al. 2006] describes a wearable personal
monitoring service that is transparently embedded in user garments. However, none
of these systems support QoS.

10. CONCLUSIONS AND FUTURE WORK

This paper presents the design and implementation of a QoS system for body sen-
sor networks, called BodyQoS. Different from conventional QoS designs, BodyQoS
addresses three unique challenges brought by BSN applications. First, BodyQoS
adopts an asymmetric architecture, in which most processing is done at the re-
sourceful aggregator while little is done at the resource limited sensor nodes. Sec-
ond, a virtual MAC is developed in BodyQoS to make it radio-agnostic, so that it
can control and schedule wireless resources without knowledge of the implementa-
tion details of the underlying MAC protocol. This approach supports a wide va-
riety of different MACs, including CSMA, TDMA, and hybrid approaches. Third,
BodyQoS adopts an adaptive resource scheduling strategy during times of channel
impairment, either due to RF interference or fading effects. This makes it possible
to provide statistical bandwidth guarantees as well as reliable data communication
in BSN. BodyQos has been implemented in NesC on top of TinyOS, and evalu-
ated in a MicaZ testbed. Our performance evaluation demonstrates that BodyQoS

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



36 ·

achieves greatly improved performance as compared with conventional solutions,
with minimal overhead.

REFERENCES

Aad, I. and Castelluccia, C. 2001. Differentiation Mechanisms for IEEE 802.11. In IEEE
INFOCOM.

Biswas, S. and Morris, R. 2005. ExOR: opportunistic multihop routing for wireless networks.
In ACM SIGCOMM.

BSN Proceedings. BSN Proceedings. http://www.bsn-web.org.

ChipconCC1000. Chipcon CC1000 Low Power Radio Transceiver. http://www.chipcon.com.

ChipconCC2420. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
http://www.chipcon.com.

CROSSBOW. XBOW Mote Specifications. http://www.xbow.com.

Ee, C. T. and Bajcsy, R. 2004. Congestion control and fairness for many-to-one routing in

sensor networks. In ACM SenSys.

G. S. Ahn and A. Campbell and A. Veres and L. H. Sun. 2002. Supporting service differenti-

ation for real-time and best effort traffic in stateless wireless ad hoc networks (swan). In IEEE
Transactions on Mobile Computing.

Ganti, R. K., Jayachandran, P., Abdelzaher, T. F., and Stankovic, J. A. 2006. SATIRE:
A Software Architecture for Smart AtTIRE. In ACM MobiSys.

Garg, P., Doshi, R., Greene, R., Baker, M., Malek, M., and Cheng, X. 2003. Using IEEE
802.11e MAC for QoS over Wireless. In IEEE IPCCC.

Harvard CodeBlue. CodeBlue: Sensor Networks for Medical Care.
http://www.eecs.harvard.edu/ mdw/proj/codeblue/.

He, T., Stankovic, J. A., Lu, C., and Abdelzaher, T. F. 2003. SPEED: A Stateless Protocol
for Real-Time Communication in Sensor Networks. In IEEE ICDCS.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System
Architecture Directions for Networked Sensors. In ASPLOS-IX.

Hull, B., Jamieson, K., and Balakrishnan, H. 2004. Mitigating congestion in wireless sensor
networks. In ACM SenSys.

IEEE 802.11 1999. IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification. ANSI/IEEE Std. 802.11.

IEEE 802.15.1 2002. IEEE 802.15.1: Wireless medium access control (MAC)and
physical layer (PHY) specifications for wireless personal area networks (WPANs).

http://www.ieee802.org/15/pub/TG1.html.

IEEE 802.15.4 2003. IEEE 802.15.4, Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
http://www.ieee802.org/15/pub/TG4.html.

Johansson, A. J. 2002. Wave-Propagation from medical implants-influence of body shape on
radiation pattern. In 2nd Joint EMBS/BMES Conference.

Kidd, C. D., Orr, R. J., Abowd, G. D., Atkeson, C. G., Essa, I. A., Macintyre, D., Mynatt,
E., Starner, T. E., and Newstetter, W. 1999. The aware home: A Living Laboratory for
Ubiquitous Computing Research. In CoBuild.

Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S., and

Stoica, I. 2007. Flush: A Reliable Bulk Transport Protocol for Multihop Wireless Networks.
In ACM SenSyS.

Liu, Y., Elhanany, I., and Qi, H. 2005. An energy-efficient QoS-aware media access control
protocol for wireless sensor networks. In IEEE MASS.

MIThril. MIThril. http://www.media.mit.edu/wearables/mithril/.

Natarajan, A., Motani, M., de Silva, B., Yap, K., and Chua, K. C. 2007. Investigating

Network Architectures for Body Sensor Networks. In HealthNet 2007.

Paek, J. and Govindan, R. 2007. Rate-Controlled Reliable Transport for Wireless Sensor Net-
works. In ACM SenSys.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



· 37

Polastre, J., Hill, J., and Culler, D. 2004. Versatile Low Power Median Access for Wireless
Sensor Networks. In ACM SenSys.

Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., and Stoica, I. 2005. A
unifying link abstraction for wireless sensor networks. In ACM SenSys.

Rangwala, S., Gummadi, R., Govindan, R., and Psounis, K. 2006. Interference-aware fair rate
control in wireless sensor networks. In ACM SIGCOMM.

Roelens, L., den Bulcke, V., Joseph, S., Vermeeren, W., and G. Martens, L. 2006. Path loss

model for wireless narrowband communication above flat phantom. IEEE Electronics Leters.

RSVP. Resource ReSerVation Protocol. http://www.ietf.org/rfc/rfc2205.txt.

Sankarasubramaniam, Y., Ö. B. Akan, and Akyildiz, I. F. 2003. Esrt: Event-to-sink reliable

transport in wireless sensor networks. In ACM MobiHoc.

Shah, R. C., Nachman, L., and Wan, C.-Y. On the performance of Bluetooth and IEEE

802.15.4 radios in a body area network. Third International Conference on Body Area Networks
(BodyNets’08).

Stann, F. and Heidemann, J. 2003. RMST: Reliable data transport in sensor networks. In The
First International Workshop on Sensor Net Protocols and Applications.

UFL Smart House. UFL Smart House. http://www.rerc.ufl.edu.

UVA Smart House. UVA Smart House. http://www.marc.med.virginia.edu.

Wan, C., Eisenman, S., and Campbell, A. 2003. CODA: Congestion Detection and Avoidance
in Sensor Networks. In ACM SenSys.

Wan, C.-Y., Campbell, A. T., and Krishnamurthy, L. 2002. PSFQ: a reliable transport pro-
tocol for wireless sensor networks. In ACM WSNA.

Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. 2006. Fidelity and
yield in a volcano monitoring sensor network. In ACM OSDI.

Zhao, Q. and Tong, L. 2003. QoS Specific Medium Access Control forWireless Sensor Networks

with Fading. In SPSC.

Zhou, G., Lu, J., Wan, C.-Y., Yarvis, M. D., and Stankovic, J. A. 2008. BodyQoS: Adaptive

and Radio-Agnostic QoS for Body Sensor Networks. In IEEE INFOCOM.

Zhou, G., Stankovic, J. A., and Son, S. F. 2006. Crowded Spectrum in Wireless Sensor
Networks. In IEEE EmNets.

Zhu, H. and Cao, G. 2005. On Supporting Power-efficient Streaming Applications in Wireless
Environments. In IEEE Transactions on Mobile Computing.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.


