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Abstract—Body sensor networks (BSNs) have been developed
for a set of performance-critical applications, including smart
healthcare, assisted living, emergency response, athletic per-
formance evaluation, and interactive controls. Many of these
applications require stringent performance assurance in terms
of communication throughput and bounded time delay. While
solutions exist in literature for providing joint throughp ut and
time delay assurance by proposing specific MAC protocols or
extensions, we provide this joint assurance in a novel radio-
agnostic manner. In our approach, the underlying MAC and
PHY layers can be heterogeneous and their details do not need
to be known to upper layers like the resource management.
Such a radio-agnostic performance assurance is critical because
a range of radio platforms are adopted for practical body sensor
usage. Our approach is based on a group-polling scheme that
is essential for radio-agnostic BSN design. Through theoretical
analysis, we prove that with the group-polling scheme, achieving
joint throughput and time delay assurance is an NP-hard prob-
lem. For practical system deployment, we propose the BodyT2
framework that assures throughput and time delay performance
in a heterogeneous BSN. Through both TelosB mote lab tests
and real body experiments in an Android phone-centric BSN,
we demonstrate that BodyT2 achieves superior performance over
existing solutions.

I. I NTRODUCTION

A Body sensor network (BSN) consists of a group of
wireless sensors, which are either wearable on or implanted
into a human body to monitor vital physiological parameters
and body movements. The data collected by body sensors are
transmitted to an aggregator (e.g., a cell phone) and then is
reliably delivered to a data center (e.g., a hospital) in real-
time for analysis. BSNs have attracted significant interestfrom
a wide range of applications, including smart healthcare [1],
assisted living [2], emergency response [3], athletic perfor-
mance evaluation [4], and interactive controls [5]. Many of
these applications are performance-critical, requiring stringent
throughput and time delay performance assurance. For exam-
ple, in the NeuroPhone application [5], which uses a wireless
EEG headset (16 channels in total and 4Kbps per channel) for
detecting the neural signals of a human brain to control iPhone
applications, throughput and time delay should be guaranteed
to deliver the neural signals from the EEG sensors to the
iPhone for interactive controls.

To provide joint throughput and time delay performance
assurance within BSNs, two research challenges need to be
addressed: irregular BSN link quality and heterogenous BSN
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radio platforms. In [6], the general low power wireless sensor
communication is reported to be notoriously irregular. In [7]
[8], the link quality in a BSN is reported to be highly dynamic
and even harder to predict than in a general wireless sensor
network due to interference from environment [9], body activ-
ities [2], and body fading [10]. In order to ensure the requested
performance in the presence of such irregular BSN link quality,
available resources must be adaptively rescheduled according
to efficiency and cost. Also, existing body sensor devices, es-
pecially medical sensor devices, often use heterogeneous radio
platforms, such as CC1000, ZigBee/CC2420, and Bluetooth.
It is indispensable to achieve the performance assurance ina
radio-agnostic manner to support platform portability.

In literature, many existing works propose specific MAC
protocols or extensions to specific MAC protocols and radio
platforms for providing statistical throughput and/or time delay
performance assurance. Representative works are [11], [12],
[13], [14], [15], [16], and [17]. Some other works, even though
radio-agnostic is discussed, do not provide any performance
assurance but instead provide best effort solutions for en-
hancing throughput and/or reducing time delay. Representative
works are [18], [19], [20], [21], and [22]. Another group of
works provide either throughput or time delay performance
assurance, but not both. Representative works are [23], [24],
[25], [26], and [8]. In [27], a solution is presented for multiple
BSN data streams that can guarantee different throughputs
but with only a single time delay bound. However, this work
does not meet our goal of allowing different data streams to
request both different throughputs and time delays. Moreover,
[27] is based on an individual-polling scheme, in which each
data packet transmission from a sensor mote is preceded by
a polling message from the central aggregator (details will
be given in section II), rather than the more effective group-
polling scheme, in which multiple data packet transmissions
are allowed after a single polling message. Consequently, [27]
is not appropriate for radio agnostic performance assurance
and also introduces a minimum of 50% communication over-
head.

In this paper, we propose a novel and efficient radio ag-
nostic solution for heterogeneous BSNs. Our solution allows
different data streams to request different throughput andtime
delay performance assurances with reduced communication
overhead. We use both theoretical analysis and practical
system development to achieve this goal. In particular, we
theoretically prove that the joint throughput and time delay
performance assurance with a group-polling scheme is NP-



hard while the throughput performance assurance is solvable in
polynomial time. Meanwhile, we develop BodyT2, a practical
solution for joint throughput and time delay performance
assurance in heterogeneous BSNs. Through both TelosB mote
lab tests as well as real body experiments in an Android phone-
centric BSN, we demonstrate that BodyT2 greatly outperforms
existing solutions.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of joint throughput and time delay
performance assurance and analyze its complexity. We present
the BodyT2 design in Section III and its performance evalua-
tion in Section IV. We present conclusions in Section V.

II. PROBLEM DEFINITION AND ANALYSIS

In this section, we theoretically analyze BSN resource
scheduling in order to meet requested performance assurance.
We first explain the asymmetric BSN architecture and compare
two BSN scheduling schemes: group-polling and individual-
polling. Then, based on the more effective group-polling
scheme, we prove that scheduling for the throughput perfor-
mance assurance is a P problem, while the joint throughput
and time delay assurance is NP-hard.

A. Group-Polling v.s. Individual-Polling

An asymmetric architecture is desired for BSNs in which a
comparatively more powerful aggregator polls less powerful
sensor motes for data communication [8]. Two scheduling
schemes have been proposed based on this asymmetric BSN
architecture. In theindividual-polling [27] scheme, each data
packet transmission from a mote is preceded by a polling
packet from the aggregator that specifies which mote is polled.
Since this scheme adds in a minimum of 50% communication
overhead, it is not appropriate for practical radio-agnostic
system deployment. A more effective and energy efficient
group-pollingscheme is introduced in [8], in which multiple
data packet transmissions are allowed from a mote followinga
single polling packet from the aggregator. The series of packets
sent after a polling packet, which can be more than one packet,
is called apacket train. Group-polling is strongly preferred
over individual-polling mainly for the following two reasons:
• Efficiency. Compared with individual-polling, group-

polling requires much fewer polling packets to deliver the
same amount of data packets, greatly saving communication
bandwidth (≤250Kbps in popular sensor motes like TelosB)
and energy (sensor motes are usually powered by AA batter-
ies). The saved communication bandwidth can be used to serve
more data streams in a BSN, enhancing the BSN capacity. By
listening to more sparsely transmitted polling messages, sensor
motes have more sleeping time and hence the system lifetime
is extended.
• Catering to Radio-Agnostic BSN Designs.Since hetero-

geneous radio platforms are widely adopted in the commer-
cial market, radio-agnostic performance assurance is needed
in BSNs. Group-polling better caters to this demand than
individual-polling since it operates on a virtual MAC (VMAC)
abstraction [8]. For throughput performance assurance, VMAC

abstracts common MAC behaviors with time-domain parame-
ters:TminPkt andTmaxPkt. These are respectively the lower
and upper bound of the time that the underlying MAC
uses for handling a packet transmission request. When the
channel is clear, the radio control is returned to VMAC
within TminPkt; when suffering interference, the underlying
MAC may return the radio control withinTmaxPkt and report
giving up after exceeding the maximum number of backoffs
and/or retransmissions. During runtime, VMAC also measures
the average MAC response timeTk for each motek in a
BSN, which reflects the average communication cost of a
specific mote for a single data packet communication. So,
Tk ∈ [TminPkt, TmaxPkt].

Without knowledge of the underlying MAC implementation,
the aggregator using individual-polling has to reserve the
maximum timeTmaxPkt for a single data packet transmission.
In most cases, the data packet can be successfully transmitted
with time much less thanTmaxPkt, so the rest of the reserved
time is wasted. However, with group-polling the aggregator
can efficiently estimate the time needed to transmit a packet
train asTk×NumofPkt. Even though the underlying MAC
is only allowed to send a data packet when the remaining
reserved time is no less thanTmaxPkt (otherwise, we risk
losing control of the underlying radio), this packet’s real
transmission timeT ∗

k is usually much less thanTmaxpkt. The
difference (TmaxPkt − T ∗

k ) can be salvaged and merged to
the time reserved for sending the next packet. In this way,
fluctuation of the transmission time is absorbed and tolerated.

B. Throughput Assurance

In BodyQoS [8], throughput performance assurance is pro-
vided with the group-polling scheme. Each data streami speci-
fies its throughput requirementbi and the scheduling algorithm
determines the resource, specifically the time resource, for the
data stream.

Definition 1 (BodyQoS Scheduling problem):Suppose
group-polling is used in a BSN. Given a fixed-length time
interval Tinterval and N data streams in the BSN with
throughput requirements{bi}, the problem is to decide the
time schedule for each data stream, such that inTinterval the
delivered throughput is no less than the requested throughput.

In order to solve this problem, BodyQoS first computes the
required bandwidth for each data stream when the channel is
clear, which is called the ideal bandwidth. Also, the time to
send one packet isTminPkt when there is no interference, and
the number of data packets to be delivered withinTinterval is
d bi×Tinterval

8×Spkt
e, whereSpkt is the affective payload size of a

single data packet in bytes. Then at run time, the effective
bandwidth is measured. With the ratio of the ideal bandwidth
to the moving average result of the effective bandwidth,
BodyQoS dynamically recomputes the average packet sending
time and the number of data packets, the product of them is
the time needed for delivering streami’s data packets. The
time for sending one polling message is estimated asTmaxPkt,
and BodyQoS adopts a constant number (1 is default) of



polling messages withinTinterval for each data stream, which
is configured as a system-wide parameter.

Admission decisions are made based on the total required
throughput of all QoS streams, and the scheduling algorithm
computes the time schedule for each stream. Since it needs
constant time complexity to compute the time of both data
communication and polling for individual data streams, com-
puting the required time schedule for all motes in the network
is a P problem. In summary, with only the throughput require-
ment in the group-polling scheme, the BodyQoS scheduling
problem is solvable in polynomial time.

C. Joint Assurance of Throughput and Time Delay

For time delay performance assurance,dk,i is introduced to
denote the requested time delay bound for data streami on
sensor motek. The complete performance assurance require-
ment is denoted as(bk,i, dk,i, pk,i) where bk,i specifies the
throughput requirement andpk,i denotes the priority. Instead
of scheduling polling messages for individual data stream as
in [8], here the aggregator aggregates polling messages forall
data streams on the same mote. To put it another way, the
aggregator does not specify how much time each stream on a
mote uses but only allocates enough time to satisfy the total
throughput requirement of all streams on the same mote. Thus,
a packet train sent from a mote can contain data packets from
different data streams.

Now, the scheduling problem is more complicated with
the added time delay requirement since it needs to ensure
that individual data packets are delivered withindk,i. This
is equivalent to ensuring that the gap between any two con-
secutively scheduled packet trains for motek is bounded by
dk,i minus the time of transmitting one polling packet and
one data packet. So, if data arrive just after the end of a
packet train, the data can be timely transmitted in the next
packet train. When multiple data streams are on the same mote
k, the aggregator considers the minimum delay requirement
min
i
{dk,i}. For convenience of presentation, we introduce two

intermediate symbols:
• Bk =

∑

i

bk,i/Spkt is the number of packets required to

be sent for all streams on motek in a unit time.
• Gk = min

i
{dk,i} − TmaxPkt − Tk is the maximum gap

allowed between consecutive packet trains of motek.
The packet train schedule can be represented as

{(stk,j , etk,j)}, wherestk,j is the start time for the aggregator
to send the polling message of the packet trainj of mote k
andetk,j is the latest time a data packet from this packet train
is allowed to be received at the aggregator. The BodyQoS
Scheduling Problem in Def. 1 can be extended to the following
BodyT2 Scheduling problem.

Definition 2 (BodyT2 Scheduling problemΠ): Suppose
group-polling is used in a BSN. GivenN motes in the BSN
with performance requirements(Bk, Gk), the problem is to
decide the time schedule{(stk,j , etk,j)} such that for all
k ∈ [1, N ], j ∈ N, the following constraints are satisfied:

• Length Constraint.∀k, j, etk,j − stk,j = TmaxPkt+Tk×
d(etk,j − etk,j−1)×Bke. It ensures that the allocated time is
enough to transmit both the data and polling packets for all
streams on motek based on the throughput requirements.
• Gap Constraint.∀k, j, stk,j−etk,j−1 ≤ Gk. It ensures that

the gap between any two consecutively allocated packet trains
of motek is bounded by the minimum time delay requirement
of all streams on motek.
• Disjoint Constraint:∀k1, k2, j1, j2, if k1 6= k2 or j1 6= j2,

then stk1,j1 6= stk2,j2 ; if stk1,j1 < stk2,j2 , then etk1,j1 ≤
stk2,j2 . It ensures that time periods allocated to different
packet trains do not overlap, i.e., no internal interference.

Lemma 1:The BodyT2 Scheduling problemΠ is NP-hard.

With the following three steps, we demonstrate that a
known NP-complete problem, the Partition problem (Π′), is
polynomially reducible to our BodyT2 Scheduling problem
Π. Let π′ and π refer to any instances of problemsΠ′ and
Π, respectively. We construct a polynomial reductionf that
converts any instanceπ′ of the Partition problem to some
instanceπ = f(π′) of our BodyT2 Scheduling problem such
thatπ′ has a solution if and only ifπ = f(π′) has a solution.
Step 1: Construct the polynomial reductionf from π′ to π.

Definition 3 (Partition problemΠ′): Given a finite setA of
numbers, is thereA′ ⊆ A, such that

∑

ak∈A′

ak =
∑

ak′∈A−A′

ak′?

For any partition problem instanceπ′ with set A =
{a1, . . . , an} of n integers, we choose a constantc such that
c × ak ≥ 2 for all k ∈ [1, n]. We construct the following
instanceπ = f(π′) of the BodyT2 Scheduling problem
with n+1 motes. We letTk = TmaxPkt = 1, ∀k, and let
T = c × (

∑

ak∈A

ak + 2 × an+1), where an+1 ≥ 2/c (so

c×an+1 ≥ 2). We define(Bk, Gk) as:

(Bk, Gk) =

{

( c×ak−1

T
, T − c× ak), k ∈ [1, n]

(
c×an+1−1

T/2
, T/2− c× an+1), k = n+ 1

This reduction can clearly be done in polynomial time.
Step 2: Prove that if π′ has a solution, thenf(π′) has a
solution.

For any partition problemπ′, assume there is a solution
such thatA′ = {ak′

1
, . . . , ak′

n2
}, A−A′ = {ak1

, . . . , akn1
},

n1+n2 = n, and
∑

a∈A′

a =
∑

a∈A−A′

a = T/2c−an+1. We have

the following schedulingf(π′) which repeats with a cycle of
lengthT .

c*an+1 c*ak'1 c*ak'n2c*ak1

T / 2 T/ 2

C*∑ak'

ak'∈A'

C*∑ak

ak∈A-A'

t

c*an+1c*akn1

Fig. 1: The Constructed BodyT2 Scheduling

As shown in Fig. 1, packet trains of motek1, . . . , kn1
are

scheduled in the first half ofT and packet trains of mote
k′1, . . . , k

′
n2

are scheduled in the second half. We then have:
for motek = k1, . . . , kn1

,
stk1,1 = 0, stk2,1 = etk1,1, . . .

stk,j = stk,j−1 + T, j > 1

etk,j = stk,j + c× ak,



for motek = k′1, . . . , k
′
n2

,

stk′

1
,1 = T/2, stk′

2
,1 = etk′

1
,1, . . .

stk,j = stk,j−1 + T, j > 1

etk,j = stk,j + c× ak′ ,

for moten+ 1,
stn+1,j =

{

T/2− c× an+1, j = 1
stn+1,j−1 + T/2, j > 1

etn+1,j = stn+1,j + c× an+1.

Now, we check whether the three constraints in Def. 2 are
satisfied. First, we check for motek ∈ [1, n]. Since the right
side of the Length Constraint equals1+T×Bk = 1+T×
c×ak−1

T = c×ak and the left side of it equalsetk,j−stk,j =
c×ak, the Length Constraint is satisfied. The Gap Constraint
also stands asstk,j−etk,j−1 = T−c×ak = Gk. In any
interval T , stk1,j < . . . < stkn1

,j , etk1,j = stk1,j+c×ak1
=

stk1,1+(j−1)×T+c×ak1
= stk2,1+(j−1)×T = stk2,j , so

the packet trains of motek ∈ [k1, kn1
] do not overlap, i.e., the

Disjoint Constraint stands. In a similar way, we can also prove
that the Disjoint Constraint stands for motek ∈ [k′1, k

′
n2
].

Second, we check for moten+1. The Length Constraint
is satisfied as its right side equals to1+T×Bn+1 = 1+T

2 ×
c×an+1−1

T/2 = c×an+1 = etn+1,j−stn+1,j, which equals to
its left side. Sincestn+1,j−etn+1,j−1 = T/2−c×an+1 =
Gn+1, the Gap Constraint also holds. In the same period,
etkn1

,j = stk1,j+
∑

k=k1,...,kn1

(etk,j−stkj
) = stk1,1+(j−1)×

T+c×
∑

ak∈A−A

ak = (j−1)×T+T/2−c×an+1 = stn+1,2j−1.

In a similar way,etk′

n2
,j = stn+1,2j . So, the packet trains of

moten+1 do not overlap with those of other motes and the
Disjoint Constraint stands. Therefore, the schedule in Fig. 1
is feasible.
Step 3:Prove that iff(π′) has a solution, then the correspond-
ing π′ has a solution.

Assume thatf(π′) has a schedule{(stk,j , etk,j)} that
satisfies the three constraints in Definition 2. We need to
construct a solution for the correspondingπ′.

First, in the schedule{(stk,j , etk,j)}, we can prove that
there must exist a periodT that satisfies:
• ∀k ∈ [1, n], ∃ exactly onej, such that(stk,j , etk,j) ⊆ T

(abusing the denotationT a little bit) and
{

etk,j − stk,j =c× ak;
stk,j − etk,j−1=Gk;

• For mote n+1, ∃ exactly onej, such that(stn+1,j ,
etn+1,j) ⊆ T , (stn+1,j+1, etn+1,j+1) ⊆ T and
{

etn+1,j − stn+1,j =etn+1,j+1 − stn+1,j+1=c× an+1;
stn+1,j − etn1,j−1=stn+1,j+1 − etn1,j =Gn+1;

• T = (etn+1,j−1, etn+1,j+1). This can be proven by
contradiction. But, due to space limitations, the detailedproof
is not presented here.

Second, we construct a subset of motes{k′1, . . . , k
′
n2
} such

that during time periodT ,

(stk,j , etk,j) ⊆

{

(etn+1,j , stn+1,j+1), k ∈ {k′
1, . . . , k

′
n2

}
(etn+1,j−1, stn+1,j), k ∈ {k1, . . . , kn1

}

where{k1, . . . , kn1
} = {1, . . . , n} − {k′

1, . . . , k
′
n2

}

With the Disjoint Constraint, we can derive

∑

k∈{k′

1
,...k′

n2
}

(etk,j − stk,j) = c×
∑

k∈{k′

1
,...k′

n2
}

ak ≤ Gn+1

∑

k∈{k1,...kn1
}

(etk,j − stk,j) = c×
∑

k∈{k1,...kn1
}

ak ≤ Gn+1

Since
∑

k∈[1,n]

(etk,j − stk,j) = 2 × Gn+1, we have c ×
∑

k∈{k1,...kn1
}

ak = c×
∑

k∈{k′

1
,...k′

n2
}

ak′ . So, the partition prob-

lem π′ has a solutionA′ = {ak′

1
, . . . , ak′

n2
}.

Therefore, with steps 1∼3, we prove Lemma 1, i.e., our
BodyT2 Scheduling problem is NP-hard.

III. B ODYT2 DESIGN

Since the BodyT2 Scheduling problem for joint throughput
and time delay assurance is NP-hard, it is nontrivial to
obtain the optimal solution. In this section, we propose an
empirical solution for practical system deployment. We present
the necessary/sufficient conditions for admission controland
also the algorithms for admission control and time resource
scheduling. We also extend the existing VMAC [8] for en-
forcing the time resource scheduling result to meet the time
delay performance requirements in addition to the throughput
performance requirements.

A. Admission Control

The admission controller examines the performance as-
surance requests{(bk,i, dk,i, pk,i)}, k ∈ [1, n] and makes
ACCEPT/REJECT decisions. In time periodT , the admission
controller computes the total required time for satisfyingall
streams’ requests when interference is captured and reflected
by Tk. This includes both data and polling packets. The
total number of data packets motek needs to transmit is
D(k, T ) = dBk × T e (Bk as defined in Section II-C). The
total number of polling packets for motek, defined asP (k, T ),
equals the number of packet trains scheduled for that mote.
In BodyQoS [8] which only provides throughput assurance,
P (k, T ) is simply fixed as 1 for eachT , but when the time
delay assurance is jointly considered it is more difficult to
determine. The total required time for both data and polling
packets can be computed asD(k, T )×Tk+P (k, T )×TmaxPkt

which needs to be no more than the total available timeT .
1) The Necessary and Sufficient Admission Conditions:

If mote k is scheduled to sendP (k, T ) packet trains during
T , the sum of gaps between its packet trains plus the time
for sending theP (k, T ) polling packets isT−D(k, T )×Tk.
Also, the gap between any two consecutive packet trains of
mote k should be bounded byGk (defined in Section II-C).
So,T−D(k, T )×Tk ≤ P (k, T )×(Gk+TmaxPkt). When the
gap decreases, the number of packet trains increases. SinceGk

is the maximum gap allowed, the minimum number of packet
trains is:

Pmin(k, T ) =
T −D(k, T )× Tk

Gk + TmaxPkt
. (1)

So, the minimum required time for sending data and polling
packets for motek is:

Smin(k, T ) = D(k, T )× Tk + Pmin(k, T )× TmaxPkt. (2)



Therefore, the necessary condition of admission control is:
∑

k

Smin(k, 1) ≤ 1. (3)

To derive a sufficient admission condition, assume a round-
robin schedule in which all motes withinT receive the same
number of polling messages from the aggregator. The number
of polling messages is estimated as the maximum value of
Pmin(k, T ) for all k. In this way, a sufficient condition for
admission control can be derived as:

∑

k

(D(k, 1) × Tk +max
k

{Pmin(k, 1)} × TmaxPkt) ≤ 1. (4)

Algorithm 1 Admission Control

Input: performance requests{(bk,i, dk,i, pk,i)} for data streami ∈
N on motek ∈ [1..n], the average packet transmission time{Tk}
for motek
Output: ACCEPT or REJECT decision
repeat

if the necessary condition in Inequ. (3) is brokenthen
REJECT and remove the request with the lowestpk,i from
{(bk,i, dk,i, pk,i)}; continue;

end if
if the sufficient condition in Inequ. (4) standsthen

return ACCEPT;
end if
tc = 0; ∀ remainingk, let etk,j−1 = 0 andRk = 0;
loop

call Alg. 2 with input ({(bk,i, dk,i, pk,i)}, tc, {etk,j−1},
{Rk}) and get output ((stk,j, etk,j) or FAILURE);
if Alg. 2 returns FAILUREthen

REJECT and remove the request with the lowestpk,i from
{(bk,i, dk,i, pk,i)}; break;

else
tc = etk,j ; etk,j−1 = etk,j ;

end if
if at least one packet train is allocated to each motethen

return ACCEPT;
end if

end loop
until {(bk,i, dk,i, pk,i)} = ∅
return ACCEPT;

2) The Admission Control Algorithm:With the necessary
and sufficient conditions, the admission controller can make
preliminary decisions: if the necessary condition fails, aRE-
JECT decision is made; if the sufficient condition holds,
an ACCEPT decision is made; otherwise, if the sufficient
condition fails but the necessary condition holds, it is hard to
tell whether an appropriate schedule can be obtained for the
requested data streams. As we have proven in Section II-C,
this is actually an NP-hard problem. Therefore, we integrate an
empirical solution into our admission control Alg. 1. With the
help of Alg. 2 (to be explained later), Alg. 1 tries to make an
appropriate schedule, i.e., determining the start and end time
of packet trains for all motes to meet the joint throughput and
time delay constraints. If a schedule is found, an ACCEPT
decision is made; otherwise, a REJECT decision is made.
When a REJECT decision is made, the data stream with the
lowest priority is removed and the admission controller tries to
make ACCEPT/REJECT decisions again with the remaining
data streams. This process repeats until either an ACCEPT

decision is made or all data streams are finally rejected and
removed. The later case happens when interference is so strong
that no packets can be timely delivered.

3) Algorithm for Scheduling the Next Packet Train:Alg. 2
presents details of scheduling the next packet train. It is used
in both the admission control Alg. 1 and the time resource
scheduling Alg. 3 that we will discuss later. In Alg. 2, we intro-
duceRk to denote the number of expected but unsent packets
from mote k. So, by the end of a packet trainetk,j , even
though the aggregator expects to receiveD(k, etk,j−etk,j−1)
(D(k, t) as defined in Section III-A) packets from motek
based on the throughput requirement, it may actually receive
D(k, etk,j−etk,j−1)−Rk packets. A negativeRk value means
that the aggregator receives more packets than expected from
motek, so it allocates less time for motek’s next packet train.
When sensor data sampling and packet arrival are uniformly
distributed,Rk provides flexibility to time resource scheduling.
Since Rk is measured and can only have a nonzero value
at runtime,Rk is set to zero in admission control. Jointly
consideringRk and Def. 1. Length Constraint, we have:

etk,j − stk,j =

(D(k, etk,j − etk,j−1) +Rk)× Tk + TmaxPkt. (5)

k1,j-1k1,j-1
k1,jk1,j

current time c k2,j

∑
k3

Data to Send

Data to Send

Data to Send

pkt train j-1 

Fig. 2: Scheduling the Next Packet Train

Suppose the most recently scheduled packet train, say
packet train j − 1 for mote k, has the schedule of
(stk,j−1, etk,j−1), then the latest start time of motek’s next
packet trainj should beetk,j−1+Gk. In this algorithm, we try
to schedule the next packet trainj for the mote that has the
minimumetk,j−1+Gk value, say motek1, which is similar to
the earliest deadline first policy. An empirical rule we use here
is: we give motek1’s packet trainj a schedule if and only if
we can foresee that any other mote, sayk2 as in Alg. 2 and
Fig. 2, can also have its packet trainj scheduled.

As shown in Fig. 2,k1 is the mote that has the earliest start
time stk,j = etk,j−1+Gk. k2 is another arbitrary mote that
has a later start timestk2,j . k3 is another arbitrary mote with
its start timestk3,j in between those ofk1 and k2. Suppose
k3’s most recent packet train schedule is(stk3,j−1, etk3,j−1).
Then, during (tc, stk2,j ], k3 desires to send at least one
packet train (C in Fig. 2). The total time that all suchk3
motes require is

∑

k3

Smin(k3, stk2,j−etk3,j−1) which can be

computed according to Eqn. (2). Also, during(etk1,j , stk2,j ],
motek1 requires timeSmin(k1, stk2,j−etk1,j) to send packet
train B. The time between packet trains A and D should be
long enough to schedule packet trains B and C, that is,



∑

k3

(Smin(k3, stk2,j−etk3,j−1)+Rk3
×Tk3

)+Smin(k1, stk2,j−

etk1,j) +Rk1
× Tk1

≤ stk2,j−1 − etk1,j . (6)

Here,stk2,j = etk2,j−1+Gk which is the latest possible start
time of motek2’s next packet trainj.

With Inequ. (7), we make sure that there is enough room
to schedule packet train A. Also, with Inequ. (8), we make
sure that the distance between packet train A and motek1’s
previous packet trainj−1 is bounded byGk1

.

(D(k1, etk1,j − etk1,j−1) +Rk1
)× Tk1

+ TmaxPkt

≤ etk1,j − tc (7)

etk1,j − etk1,j−1 − (D(k1, etk1,j − etk1,j−1) +Rk1
)× Tk1

− TmaxPkt ≤ Gk1
(8)

Finally, etk1,j is computed as the largest value that satisfies
Inequ. (6)∼ (8) andstk1,j is computed with Eqn. (5).

Algorithm 2 Scheduling the Next Packet Train

Input: performance requirements{(bk,i, dk,i, pk,i)}, the current
time tc, the end time of the most recently scheduled packet trains
for all motes{etk,j−1}, {Rk}
Output: the next packet train schedule(stk,j , etk,j) or (FAIL-
URE)
∀k, compute theGk value based on its definition in Section II-C
getmin

k
{etk,j−1 +Gk} and assume it isetk1,j−1 +Gk1

for any k2 (k2 6= k1) do
/*Check if the period(stk1,j , stk2,j ] is long enough for packet
trains of all other motes (sayk3 as an arbitrary one)*/
for any k3 (stk1,j ≤ stk3,j ≤ stk2,j , k3 6= k1, k3 6= k2) do

With Eqn. (2), estimateSmin(k3, stk2,j − etk3,j−1) which
is the time that motek3 needs in(tc, stk2,j ]

end for
compute

∑

k3

Smin(k3, stk2,j − etk3,j−1)

estimate the largestetk1,j that satisfies Inequ. (6), (7), and (8)
if 6 ∃ suchetk1,j then

return (FAILURE)
end if

end for
etk1,j = the minimumetk1,j value computed above for allk3
computestk1,j with Eqn. (5)
return (stk1,j , etk1,j)

B. Time Resource Scheduling

In time resource scheduling, the aggregator sequentially
computes the time allocated to each packet train. More specif-
ically, the time resource scheduling Alg. 3 calls Alg. 2 to
compute a schedule(stk,j , etk,j) for the next packet train
as well as a schedule(stk′,j , etk′,j) for the packet train
after the next. BodyT2 communication supports two kinds of
data: the QoS data that requires throughput and time delay
guarantee, and the best effort data that does not. If enough
time (≥ 2 × TmaxPkt) is available before starting the next
packet train, VMAC is called to poll for best effort data. Then,
when time proceeds tostk,j , VMAC is called to poll motek to
enforce schedule(stk,j , etk,j). The time resource scheduling
waits while motek transmits QoS data packets. The execution
of current schedule ends when either an early termination of

this packet train is received from motek due to lack of data
or the time proceeds tostk′,j . After that, parametersTk and
Rk are updated to assist scheduling the next packet train while
the process repeats.

Algorithm 3 Time Resource Scheduling

Input: performance requirements{(bk,i, dk,i, pk,i)}, {Rk}
Output: function calls to VMAC
∀k, etk,j−1 = 0; Rk = 0
loop

call Alg. 2 with input ({(bk,i, dk,i, pk,i)}, tc = the current time,
{etk,j−1}, {Rk}) and get output ((stk,j, etk,j) or FAILURE)
if Alg. 2 returns FAILUREthen

/* this only happens when the interference level largely
increases after the admission control*/
execute the admission control Alg. 1 again to remove low
priority streams;continue;

end if
etk,j−1 = etk,j ; Rk = 0;
if stk,j ≥ the current time+ 2× TmaxPkt then

call VMAC to poll for best effort data
end if
wait until the time proceeds tostk,j ;
call Alg. 2 with input ({(bk,i, dk,i, pk,i)}, tc = etk,j , {etk,j−1},
{Rk}) and get output ((stk′,j , etk′,j) or FAILURE);
if Alg. 2 returns FAILUREthen

for the same reason above, execute the admission control
Alg. 1 again to remove low priority streams;continue;

end if
call VMAC to poll motek for QoS data;
wait until the time proceeds tostk′,j or motek terminates the
packet train early; then, update the values ofetk,j, Tk, andRk

with runtime measurements and letetk,j−1 = etk,j ;
end loop

C. Enforcing Time Schedule on VMAC

VMAC is located on both the aggregator and motes for
enforcing the time resource scheduling result computed by
Alg. 3. We extend the existing VMAC [8] to enforce the
newly added time delay requirement in additional to the
throughput requirement. The extended VMAC not only checks
the remaining allocated time but also the specified time delay
constraint for each packet transmission. It also notifies the
aggregator to terminate the packet train if there is no packet
to send.

On the aggregator, VMAC receives calls from the above
scheduler and calls the underlying real MAC functions. For
a packet train schedule(stk,j , etk,j), VMAC sends a polling
message to motek with the allocated time lengthPLk,j =
etk,j−stk,j−TmaxPkt+(stk′,j−etk,j). Here, stk′,j−etk,j is
the gap between motek’s packet trainj and motek′’s packet
train j. Since this gap immediately follows the scheduled
time periodetk,j−stk,j−TmaxPkt and is also not scheduled
to any other packet train, it is allocated to extend the length of
packet trainj for motek. When VMAC is called to poll for
best effort data before a packet train schedule(stk,j , etk,j), it
broadcasts a message, indicating that the following time period
(stk,j− current time−TmaxPkt) is open for all motes’ best
effort communication. During this period, potential collision
resolution among different motes’ transmissions is handled by
the underlying specific MAC protocols.



When a mote, say motek, receives a polling message,
VMAC enforces the time resource scheduling result by feeding
QoS or best effort data to the aggregator within the allocated
time periods. When polled for QoS packets with lengthPLk,j

(computed in the previous paragraph), VMAC on motek
computes the amount of data that each streami on motek
requests to send since the end of motek’s previous packet
train. Then, VMAC organizes the data into a packet train in
which the packets with earlier deadlines, including those for
retransmissions, are put ahead of those with later deadlines.
Before sending each data packet, VMAC conducts the follow-
ing checks:
• If the remaining allocated time is less thanTmaxPkt,

VMAC does not send the data packet and the packet train
terminates. This ensures that the control of the underlying
radio is returned to the upper layers before the allocated time
expires. Again, it is worthy to repeat that in most cases it takes
less time thanTmaxPkt to deliver this data packet. However,
VMAC is able to salvage the unused time of this data packet
to send the next data packet.
• If the deadline of the data packet is earlier than the

current time plusTk, it is immediately dropped since we
may otherwise waste time on a packet that finally misses its
deadline.
• If the current data packet is the only QoS data packet

remaining in the mote, VMAC sets theNoMoreData bit in
the replied packet’s header which informs the aggregator of
the early termination of the packet train.

IV. PERFORMANCEEVALUATION

BodyT2 is implemented in TinyOS 2.x with NesC, and
evaluated through both TelosB mote lab tests and real body
experiments in an Android phone-centric BSN. BodyT2 is
compared with the state-of-the-art BodyQoS [8] as well as
the default best effort solution in the standard TinyOS 2.x
release. Three performance metrics are used: (i) the percentage
of delivered throughput, i.e., the timely delivered data through-
put over the requested data throughput; (ii) the data packet
deadline miss ratio, which is computed as the number of data
packets that miss their deadlines divided by the number of data
packets requested to be sent from motes; and (iii) the average
energy consumed to timely deliver one application data byte
to the aggregator. Detailed evaluation settings are given below:
TelosB mote lab tests.A data stream with performance
requirement (5kbps throughput, 200ms time delay) is admitted
into BodyT2 to report data from source to the aggregator in
the lab experiments. Besides the existing interference from the
lab environment like WiFi and Zigbee [9], a TelosB node is
also introduced to generate explicit interference (see Tab. I).
Real body experiments in an Android phone-centric BSN.
We also develop an Android phone-centric BSN to demon-
strate the effectiveness and efficiency of BodyT2 and present
the prototype BSN in Fig. 3. The aggregator of the BSN is
zoomed to Fig. 4 in which one TelosB is plugged in the
USB hub to directly communicate with the Android phone.
Multiple sensor motes can also be plugged in the USB hub and

operate on different frequencies for improving the aggregator
throughput. Additional sensor motes can be attached on the
human body and wirelessly communicates to the aggregator.
Our main technical contributions for developing such a BSN
lies in four aspects: Android OS kernel support, hardware
support, TinyoS support, and application support. Due to space
limitations, more technical details are not presented herebut
available in our technical report [28].

TABLE I: Interference Settings

Interference
Level

Interference Strength Interference
Period

Level 0 Lab background noise 0s∼120s
Level 1 Lab background noise + 1

noise packet every 30ms
120s∼180s

Level 2 Lab background noise + 1
noise packet every 25ms

180s∼240s

Level 3 Lab background noise + 1
noise packet every 20ms

240s∼300s

Aggregator
Mote

Mote

Mote

Fig. 3: A Phone-centric BSN Fig. 4: The Aggregator

In our real body experiments, TelosB devices are attached
to a human body as shown in Fig. 3: a TelosB is attached
to the left chest that generates a data stream with the per-
formance requirement (4kbps throughput, 500ms time delay)
and requests BodyT2 service; a TelosB is attached to the
left wrist that generates a data stream with the performance
requirement (2kbps throughput, 1000ms time delay bound)
and also requests BodyT2 service; a TelosB mote is attached
slightly above the right hip that generates a data stream with
the performance requirement (4kbps bandwidth, 500ms time
delay) but requests best effort service; the same aggregator as
shown in Fig. 4 is put inside the bottom left pocket of the
jacket for data collection and analysis.

All experiments described above are repeated multiple times
and similar results are observed. In the following subsections,
we present two groups of representative results which demon-
strate that BodyT2 largely outperforms the existing BodyQoS
and best effort solutions.

A. Performance Results of TelosB Mote Lab Tests

Fig. 5 (a) plots the mean and standard deviation of the per-
centage of timely delivered throughput when different interfer-
ence levels are present in the lab experiment. We first observe
that BodyT2 achieves a higher timely delivered throughput
ratio than those of best effort and BodyQoS. In fact, BodyT2
achieves up to10% higher throughput ratio than best effort
and 91% higher throughput ratio than BodyQoS. Second,
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Fig. 5: Performance Comparison of BodyT2 with BodyQoS and Best Effort Through TelosB Mote Lab Tests

we observe that BodyT2 achieves a more stable throughput
delivery ratio than those of best effort and BodyQoS. As
shown in the figure, the largest standard deviation for BodyT2
is 5.2% under interference level 2, while best effort has the
largest standard deviation of13.2% under interference level 2
and BodyQoS has the largest standard deviation28.7% under
interference level 1. Third, we observe that the performance
gain of BodyT2 over best effort and BodyQoS increases
when interference increases. For instance, throughout the4
interference periods, BodyT2 has a less obvious decrease
of the throughput delivery ratio than those of best effort
and BodyQoS. BodyT2 achieves superior performance than
existing approaches because its design addresses the joint
throughput and time delay requirements, while the existing
approaches do not. We are also aware that BodyQoS performs
much better than best effort in [8] when only the throughput
requirement is considered, but it performs worse than best
effort when the time delay requirement is jointly considered
here. This is because BodyQoS is not designed to address
the time delay requirement and hence data packets can be
held too long to be timely delivered. Due to uncertainty
of the lab background noise, the interference intensity may
fluctuate with time. So, packets that were scheduled to be
sent out but actually unsent in the previous time period, when
the interference is comparatively strong, may be able to be
sent out in the current time period, when the interference
is comparatively weak, to fullfill the throughput requirement.
This is why sometimes the percentage of delivered throughput
exceeds100%.

Fig. 5 (b) presents the data packet deadline miss ratio. First,
we see that BodyT2 achieves an extremely low deadline miss
ratio (< 5%) under all 4 interference levels, while best effort
has17.9% packets missing deadlines under interference level
3 and BodyQoS misses all deadlines under interference level
2. Second, we see that the deadline miss ratios for best effort
and BodyQoS largely increase when interference increases.
For example, best effort’s deadline miss ratio raises11%
from interference level 2 to 3. Meanwhile, BodyT2’s deadline
miss ratio remains almost constantly low. For similar reasons,
BodyQoS performs the worst among the three. BodyQoS
misses all deadlines under interference level 2 but has nonzero
throughput delivery ratio under interference level 2, because
data packets not delivered in the previous time period, i.e.,

under interference level 1, are sent out here.
Fig. 5 (C) shows the energy consumption per timely de-

livered application data byte, measured in Joules (J). As the
number of timely delivered data byte for BodyQoS drops to
zero, we may have division by zero. So, we assign a very large
energy consumption value1×10−3J in such cases. Since the
y-axis value for BodyQoS is much larger than that of BodyT2
and best effort, we plot the y-axis with a log scale. From Fig.5
(C), we observe that BodyT2 uses similar energy as that of
best effort. We also observe that when interference increases
BodyT2’s energy consumption per timely delivered data byte
remains stable, but best effort’s energy consumption per timely
delivered data byte fluctuates and becomes less stable. Thisis
because fewer data bytes are timely delivered in best effort
than BodyT2 when interference increases even though best
effort dose not waste more energy retransmitting packets that
finally miss deadlines.

B. Performance Results of Real Body Experiments in an
Android Phone-centric BSN

Fig. 6 (a) plots the the timely throughput delivery ratio. We
observe that both BodyT2 data streams on average maintain
∼ 100% timely throughput delivery ratio. However, the best
effort data stream on average has< 100% timely throughput
delivery ratio which also fluctuates significantly. For example,
the best effort stream achieves only77% ratio at 210s and
79.5% ratio at 260s, but BodyT2 data streams’ ratios never
go below 95.5%. This demonstrates BodyT2’s effectiveness
and best effort’s ineffectiveness in supporting multiple data
streams’ throughput and time delay performance requirements.
Here, for the same reason as we have presented when explain-
ing Fig. 5 (a), we also observe that the percentage of delivered
throughput fluctuates above and below the 100% line.

Fig. 6 (b) depicts the data packet deadline miss ratio. We
observe a near zero deadline miss ratio for both BodyT2 data
streams but up to22% deadline miss ratio for the best effort
data stream. This is because on the one hand, best effort uses
the resources remaining after QoS resource scheduling, and
on the other hand, the best effort approach does not consider
deadline when scheduling resources.

Fig. 6 (c) shows the energy consumption per timely de-
livered application data byte. We observe that while both
the BodyT2 data streams and the best effort data stream
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Fig. 6: BodyT2 Performance Evaluation Through Real Body Experiments in an Android Phone-centric BSN

have similar energy efficiency on average, the energy ef-
ficiency fluctuation of the best effort data stream is much
higher than that of the BodyT2 data streams. The maximum
energy consumption per timely delivered data byte on the
two BodyT2 data streams are1.88×10−5J and1.92×10−5J ,
respectively. But the maximum value of the best effort data
stream is2.24×10−5J , which is 17% ∼ 20% higher than
that of BodyT2. This is because the group-polling scheme and
also adaptive resource scheduling in BodyT2 can absorb and
tolerant fluctuations of link qualities but best effort can not.

V. CONCLUSIONS

Joint throughput and time delay performance assurance is
critical for many BSN applications. This paper proposes a
novel approach to provide this joint assurance in a radio-
agnostic manner. Our approach is based on a group-polling
scheme that is essential for radio-agnostic BSN design. We
rigorously prove that with the group-polling scheme re-
source scheduling for the throughput performance assurance
is P, while the joint throughput and time delay assurance is
NP-hard. For practical system deployment, we propose the
BodyT2 framework that assures throughput and time delay
performance in a heterogeneous BSN. Through both TelosB
mote lab tests and real body experiments in an Android phone-
centric BSN, we demonstrate that BodyT2 achieves superior
performance over existing solutions.
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