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Abstract

In this paper, we propose to optimize energy con-
sumption in heterogeneous wireless networks through joint
packet size optimization. Specifically, we consider a two-
hop data communication system composed of a body sen-
sor network (BSN) and a WiFi network. Within the system,
we formulate an energy consumption optimization prob-
lem with the constraints of both throughput and time de-
lay. Mathematically, we convert this problem into a geo-
metric programming (GP) problem, which is then numeri-
cally solved. The solutions can be used by both the BSN
and the WiFi network to dynamically change their packets’
payload sizes based on their current packet delivery ratios
(PDRs). Since the PDRs are time-varying, we tabulate an
offline payload size lookup table for online packet size se-
lection using PDRs as indices. Finally, we collect PDRs
from a deployed two-hop BSN-WiFi network and simulate
the energy consumption. The performance evaluation re-
sults show that our solution achieves up to 70% energy sav-
ings compared with solutions that use fixed packet sizes.

1 Introduction

With the advancement of both hardware and software in
wireless communication, the cost of deploying wireless in-
struments dramatically decreases and wireless networks be-
come more and more common in our daily life. The perva-
sive existence of wireless networks provides the feasibility
of many human-centered applications, such as eCoupon [1],
CenceMe [2]. Although wireless networks enable us to en-
joy many daily conveniences, their designs face two main
challenges. First, the wireless devices’ energy capacity is
limited. Any node in the wireless network running out of
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energy may cause the malfunction of the whole network.
Second, the current designs of heterogeneous wireless net-
works, such as ZigBee and WiFi, are separate. The design-
ers of one specific network rarely consider how to achieve
system improvement as a whole with other coexistent net-
works. To jointly tackle the above two challenges, this pa-
per aims to address the problem of optimizing energy con-
sumption in heterogeneous wireless networks. Particularly,
we consider a system composed of a body sensor network
(BSN) and a WiFi network.

Within the system, the BSN consists of a group of wire-
less sensor motes, which are either wearable on or im-
planted into a human body to monitor vital physiological
parameters and body movements. It has attracted signif-
icant interests from a wide range of applications, includ-
ing assisted living [3], emergency response [4], athletic per-
formance evaluation [5], interactive controls [6] and victim
monitoring [7]. In the BSN, the data collected by sensors is
delivered by motes to an aggregator (e.g., a cell phone [8]).
The aggregator reorganizes the received packets and deliv-
ers them through WiFi to a data center like in a hospital.
For applications like health care, real-time and reliable data
delivery is usually required for this two-hop wireless com-
munication. The main source of energy consumption in this
system is communication. In communication, it is known
that longer packets experience reduced reliability and suffer
increased time delay, while shorter packets suffer increased
overhead. Thus, with the consideration of the throughput
and time delay, our work is to jointly determine the optimal
packet sizes for both the motes and the aggregator in the
two-hop system with the purpose of optimizing communi-
cation energy consumption.

To address this problem, we first abstract the two-hop
communication system as a three-phase pipeline and ana-
lyze the time delay in each phase. Then, taking the through-
put and time delay constraints into account, we formulate
an energy optimization problem with the packet sizes in the



BSN and WiFi networks as the variables. We mathemati-
cally convert the energy optimization problem into a prob-
lem of Geometric Programming (GP) [9] and solve it with
cvx [10]. In our design, the optimal solutions are also tabu-
lated on the aggregator. With packet delivery ratios (PDRs)
as indices, the aggregator looks up the table and gets the op-
timal packet sizes for both BSN and WiFi networks. Finally,
to evaluate the optimal solutions, we prototype a two-hop
BSN-WiFi network that is composed of TelosB motes and a
laptop as an aggregator. With collected PDRs, the commu-
nication energy in the network is simulated and the perfor-
mance evaluation results support our theoretical study.

To pursue energy efficiency, many works have been
done in both wireless sensor network and WiFi network
separately. In wireless sensor network, several energy-
efficient synchronous duty-cycling MAC protocols [11, 12]
and asynchronous duty-cycling MAC protocols [13, 14]
have been proposed. Algorithms for scheduling packet
transmissions [15, 16, 17] or optimizing homogeneous net-
works’ packet sizes [18, 19, 20, 21] are also developed to
achieve energy efficiency. In WiFi network, energy effi-
ciency for smart devices (e.g. smart phones) has also been
studied [22, 23, 24, 25]. However, these works do not con-
sider the joint energy optimization in both the BSN and
WiFi networks. Although WISE [26] and BuzzBuzz [27]
consider network coexistence, they only focus on collision
minimization and throughput maximization, rather than the
joint energy optimization under throughput and time delay
constraints.

Our main contributions can be summarized as follows:
•We are among the first to optimize the communication

energy consumption in heterogeneous wireless networks.
Based on a particular two-hop communication system that
is composed of a BSN and a WiFi network, we formulate a
communication energy optimization problem through joint
packet size analysis with throughput and time delay con-
straints.
•We convert the energy optimization problem into a GP

problem, which is then numerically solved by cvx. We also
tabulate the optimal solutions for online packet size selec-
tion with PDRs being as indices.
• We collect PDRs from a real deployed two-hop BSN-

WiFi network and simulate the communication energy con-
sumption. The results show that our solution can achieve
up to 70% energy savings than the solutions that use fixed
packet sizes.

The rest of this paper is organized as follows. Section 2
summarizes existing works that improve energy efficiency
in wireless communication. In Section 3, we formulate and
solve the communication energy optimization problem with
constraints of throughput and time delay. Finally, perfor-
mance evaluation based on trace-driven simulation and con-
clusions are given in Sections 4 and 5, respectively.

2 Related Work

Many research works that pursue energy efficiency have
been done in wireless sensor network, especially in BSN
area. There are some works achieving energy efficiency
through the design of MAC protocols [11, 12, 13, 14].
In [12], authors introduce DW-MAC, which is a new low-
overhead scheduling algorithm that allows nodes to wake up
on demand during the sleep period of an operational cycle
and ensures that data transmissions do not collide at their in-
tended receivers. In [13], authors propose PW-MAC, which
minimizes sensor node energy consumption by enabling
senders to predict receiver wakeup times through an on-
demand prediction error correction mechanism. Besides,
some energy-efficient scheduling algorithms for packet
transmissions are proposed [15, 16, 17]. In [17], authors
propose a packet transmission scheduling algorithm, which
is primarily based on the well-known tradeoff between the
expected number of data packets that are successfully re-
ceived by the sink and the transmission power consumed in
the system. In addition, energy efficiency is also achieved
through packet size optimization [18, 19, 20, 21]. In [18],
authors address optimal fixed packet size for data commu-
nication in energy constrained wireless sensor networks by
maximizing the energy efficiency metric. In [20], authors
maximize the throughput and energy utilization in noisy
wireless channels by adapting the packet length to the in-
stant network statistics. In [21], authors optimize energy
consumption in BSN by dynamically adjusting packet size,
and examine the effects of error control schemes on energy
efficiency under different propagation phenomena.

Energy efficiency has also been largely studied in
WiFi network [22, 23, 24, 25]. In [22], authors present
Cell2Notify, an energy management architecture that lever-
ages the presence of multiple radios on the WiFi smart-
phone to reduce the idle energy consumption of the WiFi
radio. In [23], authors propose NAPman, a network-assisted
power management for WiFi devices that leverages AP vir-
tualization and a new energy-aware fair scheduling algo-
rithm to minimize client energy consumption. In [24], au-
thors design WiFisense, a mobile-centric WiFi sensing sys-
tem that maximizes the usage of open WiFi access opportu-
nities via the salient features including sensor-based mobil-
ity detection, disconnected sensing and connected sensing.
In [25], authors present SiFi, silence prediction based WiFi
energy adaptation that examines audio streams from phone
calls, tracks when silence periods start and stop and then
places the WiFi radio to sleep during these periods.

However, these aforementioned works improve the en-
ergy efficiency in wireless sensor network and WiFi net-
work separately. We are different in that we jointly opti-
mize the energy consumption in both the BSN and WiFi
networks. Our novelty also lies in that we achieve this en-
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ergy efficiency with a joint packet size optimization.
There are some works on coexistence of BSN and WiFi

networks [26, 27, 7]: In [26], authors propose a WISE pro-
tocol that enables ZigBee links to achieve assured perfor-
mance in the presence of heavy WiFi interference. In [27],
authors examine the interference patterns between ZigBee
and WiFi networks at the bit-level granularity and then de-
sign BuzzBuzz to mitigate WiFi interference through in-
creased header and payload redundancy to ZigBee. Al-
though these works reduce the packet collision, they do not
consider the energy optimization with throughput and time
delay constraints. In [7], authors shortly study energy min-
imization with the focused victim monitoring scenario.

3 Offline Energy Optimization

Energy constraint is an important issue in wireless com-
munications since wireless devices usually have limited bat-
tery power. The main source of energy consumption in
wireless sensor network is communication. In this paper,
we aim to tackle the communication energy optimization
problem in heterogeneous wireless network system through
joint packet size analysis. Specifically, we consider a two-
hop heterogeneous wireless communication system that is
composed of motes (equipped with sensors), one aggrega-
tor (connected to a sink mote) and one WiFi access point
(AP) (see Figure 1). The first hop in the system is a BSN
that consists of the motes and the aggregator. In this hop,
each mote tries to transmit packets to the aggregator fol-
lowing the IEEE 802.15.4 standard [28]. The second hop
is composed of the aggregator and the AP, communicating
with each other through WiFi following the IEEE 802.11
standard [29]. In this hop, the aggregator aggregates pack-
ets received from the first hop and forwards the new packets
through WiFi to the AP.

In the following subsections, we first abstract the two-
hop network system as a three-phase pipeline system and
analyze the time delay in each phase. Second, we analyze
how the energy is consumed in the two-hop heterogeneous
wireless networks. Third, we formulate an energy optimiza-

tion problem with constraints of throughput and time delay
and then we solve the optimization problem by transform-
ing it into an already known convex problem - GP problem.
Finally, we analyze the solutions that an offline payload size
lookup table is tabulated for online packet sizes selection
with PDRs being as indices.

3.1 Two-hop System As a Pipeline

To formulate the communication energy consumption
problem, we first abstract the two-hop heterogeneous wire-
less network system as a pipeline described in Figure 1. The
pipeline contains three phases:
• Data Generation Phase. In this phase, data is generated

by motes. We use bn (n ∈ {1, 2, ..., N}) to denote all motes’
data generation rates with bits/second being as the unit. In
the pipeline, all motes together are viewed as one data gen-
eration group and its data generation rate or throughput is∑N
n=1 bn. Thus, it takes 1∑N

n=1 bn
time for the group to gen-

erate one bit data.
• Transmission Phase I. In this phase, generated data

is transmitted from motes to the aggregator through the
BSN. For one BSN data packet transmission, we suppose a
polling packet is first sent from the aggregator to all motes
and the selected mote replies to the aggregator with a BSN
data packet. If we use Sp and θ1 to denote the size of the
polling packet and the network throughput in the first hop,
respectively, then the time to send a polling packet can be
computed by t1p =

Sp

θ1
. Furthermore, if we use Sh1 and Sd1

to denote the sizes of a BSN packet’s protocol overhead and
data payload in the first hop, then the time for the mote to
send a BSN data packet is t1d = Sh1+Sd1

θ1
.

Taking retransmission into account, we assume the PDRs
of all motes in both directions in the first hop are the same
and use p1 to denote them. The failure of transmitting ei-
ther a polling packet itself or a data packet will lead to the
polling packet retransmission, while only data packet trans-
mission failure will cause the data packet retransmission.
Thus, to successfully deliver a polling packet and a follow-
ing BSN data packet, the first hop, on average, needs to



transmit the polling packet for 1
p21

times and the data packet
for 1

p1
times. Therefore, on average, it takes t1p× 1

p21
+t1d× 1

p1

time to successfully deliver one data packet from one mote
to the aggregator.
• Transmission Phase II. After receiving packets from

the BSN, the aggregator reorganizes the packets’ payloads
into a WiFi data packet. Since a WiFi data packet’s gener-
ation process overlaps with Transmission Phase I and with
the assumption that the aggregator transmits the new gen-
erated packet immediately after it is constructed, the time
spent on the packets reorganization by the aggregator is al-
ready included in the time delay in Transmission Phase I.

To simplify the analysis, we assume that the RTS-CTS
exchange is turned off, which is the default setting for com-
mercial WiFi devices. Thus, to send a WiFi data packet,
the aggregator only needs to use a CSMA-like mechanism
to make sure the channel is clear. In CSMA, the aggrega-
tor first carrier senses the wireless channel. If the channel
is idle, it sends out the packet immediately. Otherwise, it
randomly selects a time period within [0, CW ] as a back-
off time counter before transmitting. Here CW denotes the
backoff window size, which is composed of time slots with
the length of tsl = 20 µs. The backoff time counter is decre-
mented as long as the channel is sensed idle, stopped when
a transmission is detected on the channel, and reactivated
when the channel is sensed idle again. The aggregator prop-
agates packets when the backoff time reaches zero and the
channel is clear; otherwise, it backs off again. The aver-
age backoff time period for one packet transmission can be
approximated as t2i = CW × tsl/2×min{(M − 1)/2, R} [30].
Here M−1 is the number of potential contenders sharing the
same AP with the aggregator and R is the maximum number
of backoff retries.

After sending out a WiFi data packet, the aggregator
waits for an ACK from the AP. Compared with the WiFi
data packet, the ACK is very short. Thus, we assume there
is no ACK failure. If we use Sh2, Sd2 and θ2 to denote the
sizes of the WiFi packet’s protocol overhead, data payload
and network throughput in the second hop, respectively,
then the time for the aggregator to send a data packet is
t2d = Sh2+Sd2

θ2
. Furthermore, if we use p2 to specify the

PDR, the expected number of transmissions for one suc-
cessful packet delivery is 1

p2
. Therefore, the second hop on

average takes (t2i+t2d)× 1
p2

time to successfully deliver one
WiFi data packet from the aggregator to the AP.

3.2 Energy Consumption in Two-hop
Network System

The wireless devices consume energy mainly for three
tasks: transmission, reception and idle sensing. Thus, in
each hop, we sum the energy consumed for the above tasks
to obtain the total energy consumption.

3.2.1 Energy Consumption in the BSN

In the BSN hop, energy is consumed for communication
between N motes and one aggregator. It begins with the ag-
gregator broadcasting polling packet, and then the selected
mote transmits a data packet to the aggregator. A success-
ful delivery includes the consecutively successful delivery
of both the polling packet and the following data packet.
In this process, all motes consume energy to receive every
polling packet, and each selected mote spends energy on
transmitting the polled data packet back to the aggregator.
In addition, the aggregator spends energy on broadcasting
polling packets and receiving data packets from motes.

We assume that the polling packet has a fixed length, that
is composed of the protocol overhead and the value of Sd1
- the assigned packet size for motes. The total energy con-
sumed by N motes for receiving polling packets and trans-
mitting data packets, under consideration of retransmissions
over any time period t can be formulated as:

E11 = (N×ρmr×t1p×
1

p21
+ρmt×t1d×

1

p1
)×

∑N
n=1 bn × t
Sd1

(1)

Here ρmr and ρmt denote the power spent by a mote for
receiving polling packets and for transmitting data packets,
respectively. Besides, t1p × 1

p21
is the expected time needed

to successfully receive a polling packet, while t1d × 1
p1

is
the expected time to successfully deliver a packet (see Sec-
tion 3.1). In short, the summation of the two items inside
the parentheses is the average energy consumed for success-
fully delivering one packet. Furthermore, during any time
period t, there are

∑N
n=1 bn×t
Sd1

packets to be transmitted in
total.

Symmetrically, the total energy consumed by the ag-
gregator for broadcasting polling packets and receiving all
packets from N motes, with consideration of retransmis-
sions over any time period of t can be expressed as:

E12 = (ρmt× t1p×
1

p21
+ρmr × t1d×

1

p1
)×

∑N
n=1 bn × t
Sd1

(2)

Here, ρmt and ρmr are still the power consumed by the mote
for packet transmission and reception, because we assume
the aggregator is connected to a sink mote and works under
the host mode [31]. To transmit or receive a packet, the sink
mote needs to extract energy from the aggregator.

Therefore, the whole energy consumed by N motes and
one aggregator over any time period t in the BSN hop is
expressed as:

E1 = E11 + E12 (3)

3.2.2 Energy Consumption in the WiFi Network

In the WiFi network hop, energy is consumed by the aggre-
gator for transmitting packets and being idle. With the re-
ceived data packets from BSN, the aggregator reorganizes
multiple BSN packets into a new WiFi packet and then
transmits it to the AP. When the packet is received by the
AP, it replies an ACK to the aggregator. A successful de-
livery includes consecutively successful delivery of the data



packet from the aggregator and the ACK from the AP. Since
an ACK is tiny, we assume it is always successfully deliv-
ered and ignore the energy consumption for the ACK recep-
tion on the aggregator side. Over any time period t, the total
amount of data generated by N motes is ∑N

n=1 bn × t. With
retransmission mechanism, the aggregator should success-
fully deliver all the data to the AP.

The energy consumed by the aggregator for transmitting
the WiFi packets including retransmissions over any time
period t is described as:

E21 = ρat × t2d ×
1

p2
×

∑N
n=1 bn × t
Sd2

(4)

Here, ρat denotes the aggregator’s transmission power and
t2d× 1

p2
specifies the average time for the aggregator to suc-

cessfully deliver one packet (see Section 3.1). Moreover,∑N
n=1 bn×t
Sd2

is the total number of packets that the aggregator
needs to send to the AP during any time period t.

In addition, for any packet transmission, the aggregator
needs to stay in the idle state for a time period of t2i. Thus,
the energy spent in the idle state over any time period t is
formulated as follows:

E22 = ρai × t2i ×
1

p2
×

∑N
n=1 bn × t
Sd2

(5)

where ρai is the power that the aggregator spends during
the idle state for carrier sensing.

Therefore, the whole energy consumed by the aggrega-
tor for packet transmissions and being idle during any time
period t in the WiFi network is expressed as:

E2 = E21 + E22 (6)

3.3 Energy Consumption Optimization

In this subsection, we start with formulating an energy
optimization problem of the two-hop heterogeneous net-
works with constraints of throughput and time delay. Then
we find that this energy optimization problem is a nonlinear,
non-convex problem. Finally, in order to take advantage of
the existing convex optimization programming technique to
solve it, we convert it to a nonlinear but convex optimization
problem - GP problem [9].

First, the energy optimization problem with constraints
of throughput and time delay is formulated as follows:

Minimize E = E1 + E2 (7)

Subject to

Sp ×
∑N
n=1 bn

Sd1
×

1

p21
+

N∑
n=1

bn ×
Sd1 + Sh1

Sd1
×

1

p1
≤ θ1 (8)

N∑
n=1

bn ×
Sd2 + Sh2

Sd2
×

1

p2
≤ θ2 (9)

Sd1∑N
n=1 bn/N

+ t1p ×
1

p21
+ t1d ×

1

p1
+ (t2d + t2i)×

1

p2

+
Sd1∑N
n=1 bn

× (
Sd2

Sd1
− 1) ≤ D (10)

Sd1, Sd2 > 0 (11)

In the objective function (Eq.7), only the packet sizes Sd1
and Sd2 in two hops are variables. All other parameters have
constant values and their meanings are presented here: (i)
θ1 and θ2 in InEqs.8 and 9 denote the network throughput
of the BSN and the WiFi network, respectively. (ii) D in
InEq.10 is the maximum time delay allowed between the
point at which data is generated on motes and the point
when data is successfully delivered to the AP.

InEqs.8 and 9 capture network throughput constraints in
the BSN and the WiFi network, respectively. InEq.8 means
that the first hop’s throughput is larger than the total amount
of data (polling packets plus data packets) that needs to be
sent per unit time. This amount of data contains the extra
data that is incurred as a result of retransmission. Similarly,
InEq.9 represents that the second hop’s throughput is larger
than the total amount of data (without considering ACKs)
that needs to be sent per unit time.

InEq.10 captures the delay constraint in the two-hop het-
erogeneous networks. The left hand side of InEq.10 is the
total time latency between the point at which data is gen-
erated on motes and the point when the data is received by
the AP in the form of a WiFi packet. It can be understood
as follows: (i) Sd1∑N

n=1 bn/N
is the average time for one mote

to generate one packet. (ii) Then, this packet is transmit-
ted to the aggregator with time delay t1p × 1

p21
+ t1d × 1

p1
.

(iii) After receiving the data, the aggregator reorganizes the
data into a WiFi packet, senses the channel, and sends it to
the AP with time delay (t2d + t2i) × 1

p2
. (iv) The last term

Sd1∑N
n=1 bn

× (Sd2
Sd1
− 1) denotes the time for all motes to gen-

erate the extra data that are necessarily used to compose
one WiFi packet on the aggregator. We don’t include the
transmission time for the extra data because the system can
be abstracted as a pipeline, in which the data generation on
motes and data transmission in the BSN happen in paral-
lel. InEq.8 ensures that the first hop’s network throughput
is large enough to support the data generation rates of all
motes with consideration of retransmissions.

To solve the above energy optimization problem, we
convert it into the standard form of the GP with unknown
variables Sd1 and Sd2 as follows:

Min E = (
ρmt + ρmr

p1θ1
+

ρat

p2θ2
)

N∑
n=1

bnt

+
(Nρmr + ρmt)Sp + (ρmt + ρmr)p1Sh1

p21θ1

N∑
n=1

bnt× S−1
d1

+
ρatSh2 + ρaiθ2t2i

p2θ2

N∑
n=1

bnt× S−1
d2 (12)

Subject to∑N
n=1 bn

p1θ1
+

(Sp + p1Sh1)
∑N
n=1 bn

p21θ1
× S−1

d1 ≤ 1 (13)∑N
n=1 bn

p2θ2
+
Sh2

∑N
n=1 bn

p2θ2
× S−1

d2 ≤ 1 (14)



(
p1Sh1 + Sp

Dp21θ1
+
Sh2 + θ2t2i

Dp2θ2
)

+
(N − 1)p1θ1 +

∑N
n=1 bn

Dp1θ1
∑N
n=1 bn

× Sd1

+
p2θ2 +

∑N
n=1 bn

Dp2θ2
∑N
n=1 bn

× Sd2 ≤ 1 (15)

Here, t is any constant value. According to [9], if the form
of an optimization problem is in conformity with standard
form of GP (the coefficients are any positive numbers and
the variables’ exponents are any real numbers), then it is a
GP problem. As we can see, all the coefficients for objec-
tive function (Eq.12) and constraint inequalities (InEqs.13 -
15) are positive numbers. Besides, all the exponents belong
to {-1,0,1} that are real numbers; thus, the objective func-
tion and the left hand side of constraint inequalities are all
posynomial functions. Therefore, we can confirm that the
energy optimization problem is a GP problem.

The main approach to efficiently solve the GP problem is
to convert it to a nonlinear but convex optimization problem,
which is a problem with convex objective and inequality
constraint functions. Efficient solution methods for general
convex optimization problems are well formulated [9, 10].
We choose cvx [10] which is a modeling system for disci-
plined convex programming, to solve our GP problem. cvx
is developed by Stanford University, and effectively turns
Matlab into an optimization modeling language.

Through solving this optimization problem by cvx, we
can obtain the solutions of the packet sizes Sd1 for motes
in the BSN and Sd2 for the aggregator in the WiFi net-
work, with the objective of minimizing the whole energy
consumption over any time period t.

3.4 Analyzing and Tabulating the Opti-
mization Solutions

With cvx, we solve the energy optimization problem in
the form of GP under a particular two-hop system config-
uration. The system’s hardware is mainly composed of
TelosB motes with MSP430F1611 micro controller [32] and
CC2420 radio and the Sprint HTC Hero smart phone [25]
with Android 3.1. One mote is connected to the phone
through USB and works as a sink node in the BSN where
we suppose 3 motes exist and their data generation rates are
b1 = 4kbps, b2 = 5kbps and b3 = 5kbps, respectively [33].
The values of the above three parameters are just used in
this particular two-hop system configuration. However, our
energy optimization problem and solutions to them are gen-
eral, and hence should not be constrained by the detailed
parameter settings here. The setup of other parameters is
shown in Table 1.

In Table 1, Sh1 and Sh2 are protocol overheads of both
physical layer and MAC layer. In addition, Sp is composed

N 3 ρat 1.65 W
M 5 ρai 1.15 W
t 1 s CW 32
Sh1 20 bytes R 5
Sh2 46 bytes θ1 250 × 103 bps
Sp 23 bytes θ2 54 × 106 bps
ρmt 35× 10−3 W D 177 × 10−3 s
ρmr 38 ×10−3W

Table 1: Parameter Setup

of Sh1 and 3 bytes which store the selected mote ID (1 byte)
and the value of Sd1 (2 bytes).

Since the wireless communication channels are unstable,
the parameters p1 and p2 are time-varying, which signifi-
cantly impact the energy optimization. Therefore, we di-
vide the value range of p1 and p2 into 100 bins with a bin
size being as 1%. There are 100×100 bin combinations of p1
and p2 in total. For each combination, we replace p1 and p2

with the values of their bins and then solve the optimization
problem to obtain the optimal solutions - packet sizes Sd1
and Sd2.

Figures 2(a) and 2(b) show the optimal solutions for Sd1
and Sd2 under different p1 and p2 combinations, respec-
tively. From them, we first can see that when the com-
munication quality is poor, both hops prefer to use bigger
packet sizes. This observation can be explained through the
following two aspects: (i) To simplify the problem, we as-
sume the PDR is not affected by the packet length. Thus,
When PDR is low, a bigger packet size with a smaller pro-
tocol overhead is preferred. (ii) A longer packet indicates a
longer packet interval. As indicated in [34], a longer packet
interval can attenuate the effect of burstiness, but it cannot
be unboundedly large since it needs to satisfy the time delay
constraint.

Second, from Figure 2(a) we can also see that if we fix
the value of p1, the packet length in the first hop grows as
p2 increases. The reason can be explained as follows: as
the network throughput in the second hop is fixed, a larger
p2 indicates that the aggregator can deliver more data to the
AP per unit time, while a smaller p2 means the opposite.
Moreover, when p1 is fixed, the amount of data that is re-
ceived and that should be delivered by the aggregator is a
monotonically increasing function of the packet size in the
first hop. Thus, the packet size in the first hop cannot be
large when p2 is low and vice versa. Similarly, in Figure
2(b), when p2 is fixed, the packet size in the second hop is
a monotonically increasing function of p1. This is because
that the aggregator has more data to deliver per unit time
when the communication quality in the first hop is better.

Finally, the optimal solutions obtained from cvx show
that the energy optimization problem is solvable only if
p1 ranges in [16%, 100%] and p2 values in [3%, 100%].
These results indicate that when the communication quality
is extremely poor in both two hops, the energy optimiza-
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Figure 2: The Optimal Solutions

tion problem does not have an optimal solution. The reason
can be either that the large number of retransmissions of the
generated data packets makes the time delay unsatisfiable or
that the network throughput in both two hops cannot support
the transmission and retransmission of data packets. More-
over, in terms of the solvability of the energy optimization
problem, the second hop can tolerate worse communication
condition (p2 can be the values between 3% and 16%) than
the first hop. This is because the second hop has a much
larger network throughput (54Mbps in our configuration)
and hence its throughput constraint is easier to be satisfied.

For practical system deployment, we can tabulate the op-
timal solutions and install the table on the aggregator. The
table contains 4 columns: p1, p2, Sd1 and Sd2, where p1 and
p2 are used as indices. The aggregator is in charge of mon-
itoring the two-hop PDRs by: (i) calculating the ratio of
the number of received packets over the number of trans-
mitted polling packets to get p1; (ii) calculating the ratio of
the number of ACK packets over the number of transmit-
ted data packets to obtain p2. With the obtained p1 and p2,
the aggregator then selects the optimal packet sizes Sd1 and
Sd2 from the installed table to notify the assigned mote by
polling packet and to prepare its own packet, respectively.

4 Performance Evaluation Based on Trace-
Driven Simulation

In this section, we evaluate the jointly optimal packet
size solution using the collected PDR trace (including p1
and p2) from a real prototype system, which is composed
of one TelosB mote that is attached on the human body, the
laptop to which another TelosB mote (the sink node) is con-
nected through a USB cable, and the AP. Here, we use only
one on-body mote’s PDR to represent all motes’ PDRs be-
cause we assume that all motes’ PDRs are the same and all
motes’ packets transmissions are scheduled by the polling
packets and hence are free of collision. In the experiment,
the mote is attached on the left hand, while the aggregator
is put on a chair close to the AP. We set that the aggregator
transmits the polling packet every 20ms and calculates the
PDRs every 5 seconds.

First of all, we compare our solution with the solutions
that use fixed packet sizes. To select reasonable packet size
combinations for the competitive solutions, we first notice
that the valid range of packet payload size in TinyOS-2.0
[35] is 28∼114 bytes and the valid packet size in WiFi net-
work is at most 2272 bytes (including 46 bytes protocol
overhead) [29]. Second, we find that the WiFi packet can-
not be longer than 308 bytes; otherwise the data generation
duration would already exceed the 177ms time delay con-
straint. Third, in the system, several BSN packets will be re-
organized into a WiFi packet, thus the WiFi packet payload
size we select should be an integral multiple of the packets’
payload size in the BSN. Therefore, one fixed packet pay-
load size combination we select is 28 bytes in the BSN and
28 bytes in the WiFi network, while the other combination
is 70 bytes in the BSN and 140 bytes in the WiFi network
(see Figure 3). Figure 3 demonstrates that our jointly op-
timal packet size solution consumes the least energy com-
pared to the other two solutions. Moreover, the curves have
the same trends since the energy consumptions are simu-
lated based on one PDR trace. The huge fluctuation arises
from the unstable PDRs. To save energy, our solution ad-
justs the packet sizes according to the fluctuant PDRs. In
comparison with the solutions that use fixed packet payload
sizes, our solution, on average, can reduce the energy con-
sumption by 69.99% and 6.41%, respectively.

For other solutions that use fixed packet sizes, we com-
pare our solution with them in terms of the mean energy
consumption, minimum time delay and energy savings. The
results are presented in Table 2. For each item of the Energy
Savings column, it is calculated by the energy that our so-
lution saves over the energy that the corresponding solution
using fixed packet sizes consumes. As we can see in Table
2, compared with the solutions using fixed packet sizes, our
solution can save up to 69.99% energy while at the same
time still meet the user configured maximum time delay
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Figure 3: Energy Consumption Comparison

Sd1 Sd2 Mean (E) Min (D) Energy
(Byte) (Byte) (mJ) (ms) Savings
28 28 77.3 51 69.99%
28 140 37.9 115 38.87%
28 308 32.6 221 28.8%
70 70 34.6 124.3 33%
70 140 24.8 164.3 6.41%
70 280 19.9 244.3 −
114 114 23.6 201.2 1.88%
114 228 17.6 266.3 −
Optimal Size 23.2 177(max) N/A

Table 2: Performance Comparison

(177ms). Although some payload size combinations (such
as 70 and 280, 114 and 228) consume less energy than our
solution (these situations are represented by the dash items
in the column of Energy Savings), it is worthy of being no-
ticed that their minimum time delays are far beyond the user
configured maximum time delay.

5 Conclusions

In this paper, we consider a two-hop data communica-
tion system that is composed of motes, an aggregator and an
AP. Within the system, we formulate an energy consump-
tion optimization problem with constraints of throughput
and time delay through adjusting joint packet sizes. Mathe-
matically, we convert the problem into the numerically solv-
able GP problem, whose solutions are then used to tabulate
a lookup table for online packet size selection. Finally, we
simulate the energy consumption based on the PDR trace
collected from a deployed two-hop BSN-WiFi network for
performance evaluation. The results show that our solution
can achieve up to 70% energy savings than the solutions that
use fixed packet sizes.
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