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Abstract

In this paper we present a balanced data replication
scheme that provides real-time latency bounds on con-
tent retrieval in content distribution networks. Many
network applications have ever-increasing requirements
on latency sensitive data services. Data replication ser-
vices have been widely used as an important perfor-
mance enhancement mechanism to reduce data access
latency and throughput. We investigate the problem of
provisioning an underlyingbalanceddata replication
service to provide aglobal latency boundon data re-
trieval in content distribution networks. The solution
involves constructing an overlay network based on the
given latency bound, and a mechanism to assign content
objects to the network nodes so that the workload of all
the network nodes is balanced. Our evaluation results
drawn from detailed simluations show the efficacy of our
load-balancing scheme in meeting the latency bound re-
quirements with high confidence under heavy load.

1 Introduction
Many large-scale distributed systems, such as peer-to-
peer file sharing systems, content distribution networks
(CDNs), and wireless sensor networks, utilize data repli-
cation to enhance the overall system performance. For
example, peer-to-peer applications and many distributed
file systems [19] greedily replicate large files so that
the average download time of clients is reduced. In
CDNs, popular content is replicated on-demand or pre-
populated to CDN edge servers to support a higher vol-
ume of client requests [1]. In wireless sensor networks,
when some event of interest is detected in a certain area
and triggers queries from different locations in the net-
work, the data associated with the event may be repli-
cated to prevent network congestion [6]. In these sys-
tems, the locations of content replicas have a significant
impact on performance. The problem of how and where
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to replicate content in large-scale network systems has
been studied in many different scenarios [17, 12, 21].

While data replication, in general, can improve over-
all system throughput and service availability, many ap-
plications in large-scale distributed systems have strin-
gent timing requirements as well. Namely, many appli-
cations require that requests to retrieve content be served
within a global latency bound, regardless of where the
requests originated. This kind of soft real-time require-
ments is vital for many import network applications. For
example, an online stock trading service provider would
want its content to be accessible within a short amount
of time for all its worldwide customers. Online gam-
ing, for another example, also requires the state infor-
mation of the game to be accessible to the gamers very
quickly. Whether a (short) global latency bound on con-
tent access can be provided has a substantial impact on
the quality of many online services.

The problem we investigate in this work is how to
achieve load-balancing when there are many content
objects with soft real-time latency bounds in a large-
scale content distribution network (CDN). When a large
number of content objects are to be replicated on the
CDN servers, each individual server will host only a
subset of the content objects. The fact that differ-
ent content objects can have very different popularities
and servers have different network connectivities can
cause servers to have an imbalanced workload. Load-
balancing among the network nodes is of primary impor-
tance to improve the utilization of the system’s resources
and the system’s ability to provide latency bounds. Dif-
ferent from many existing load-balancing techniques in
other distributed systems [4, 14, 10], our load-balancing
mechanism is coupled with the process of creating repli-
cas for content objects. This is because our load-
balancing mechanisms are subject to the constraint of
content objects’ latency bound requirements. Ideally, we
want to place replicas of the content objects strategically,
so that (1) latency bound requirements of the content ob-
jects are met; (2) workload of all the network nodes is
balanced; and (3) the replication cost is low. Moreover,
for a large-scale system, the algorithm has to be decen-
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tralized. In this paper, we assume that the content ob-
jects do not have stingent consistency requirement and
hence their replicas do not need to be strictly synchro-
nized with each other. In the rest of the paper, we de-
scribe such a balanced data replication scheme that sat-
isfies these requirements.

The remainder of the paper is organized as follows.
Section 2 sketches the architecture and technical chal-
lenges of our balanced data replication scheme. Sec-
tion 3 gives the detailed design of the load-balancing
replication algorithm. An extensive performance eval-
uation of our system is presented in Section 4. Section 5
presents a survey of related work. The paper concludes
with Section 6.

2 Overview

2.1 Latency Bound

In our previous work [12], we presented a content distri-
bution service that can provide global latency bounds on
content retrievals. For the sake of completeness, we here
briefly describe the architecture of the CDN we built.

Consider a CDN that consists of a large number of
CDN servers, or servers for short. Content objects can
be replicated on these servers. Content objects are dis-
cretized into a small number ofcontent classesby their
latency bounds. Content objects in the same content
class share the same latency bound. Latency bounds of
the content objects are known to all the servers.

In our CDN model, servers of the CDN provider
are deployed on the edge of the Internet backbone and
may be co-located with ISPs’ Internet Gateway Routers
(IGRs). This is known as thecolocationmodel in which
the requests of clients can be redirected to the near-
est CDN server [1, 4]. Hence, clients are presumably
very close to their nearest CDN servers. When a CDN
server receives a request, if the requested content object
is available at the server’s local storage, a reply is sent
back to the client directly. Otherwise, the request will be
redirected to some replica of the requested content ob-
ject (or to the origin server). When a content object is
replicated on a CDN server, we say the serverhoststhe
content object.

To provide a latency bound on content retrieval, the
CDN provider needs to replicate the content objects on
its servers so that when a CDN server receives a client
request, it can either find the requested content object
in its local storage, or can find a replica of the content
object from a remote server that is within the latency
bound. To achieve this goal, we first construct an overlay
network based on the latency bound. The construction
needs to guarantee one important property of the overlay
network: neighbors on the overlay can reach each other
within the given latency bound.

With an overlay network in which neighbors can

reach other within the global latency bound, to provide a
latency bound on content retrieval is to find a set of repli-
cas for every content object so that every CDN server
can find the content from its closed neighborhood, which
is defined as its neighbors plus itself, on the overlay net-
work.

Note that trivially replicatingall content objects to
every server can make the network latencies of serv-
ing client requests very short. This naive scheme, how-
ever, is not practical because it incurs a prohibitively
high replication cost. Hence, our data replication ser-
vice needs to avoid creating unnecessary replicas when
replicating content to meet the latency bound require-
ments. Specifically, neighbors on the overlay network
should largely host different content objects.

2.2 Load-balancing

Workload of a CDN server is simply the total request
rate it experiences. As in many other distributed sys-
tems, load-balancing is very important for a CDN sys-
tem to effectively utilize available resources. An im-
balanced workload will create hotspots which can cause
many latency bound violations. Load-balancing has
been studied in many different scenarios such as dis-
tributed file systems [19], peer-to-peer systems [10, 18],
and CDNs. Existing load-balancing techniques on
CDNs are mainly request redirection schemes [4, 22]In
our CDN system, content objects are replicated to meet
the latency bound requirements and are available on a
small subset of the CDN servers only. An effective
replication strategy is of ultimate importance to the sys-
tem’s ability to achieve load-balancing. Request redi-
rection mechanisms deal with how to efficiently redirect
requests to given replicas so that servers’ workload are
balanced. How to strategically create replicas for con-
tent objects to facilitate load-balancing, however, is out
of the scope of request redirection. Our load-balancing
mechanism achieves balanced workload along with the
replication process. It can also benefit from combin-
ing with certain request redirection schemes. Therefore,
we believe that request redirection is both orthogonal
and complimentary to the load-balancing technique we
present in this paper.

A

D

B

C

F1,F2,F3,F4

(a)

A

D

B

C

F1

(b)

F2,F3,F4 F2,F3,F4

F2,F3,F4

Figure 1. Imbalanced vs. Balanced Replication

The workload of a server is determined by the num-
ber of content objects that it hosts, and their popular-
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ity. Another factor is the network degree (on the overlay
network) of the server. To understand this, consider the
example illustrated in Figure 1. Node A has the highest
degree among the 4 nodes. Both replication schemes
in Figure 1(a) and (b) satisfies the latency bound re-
quirement. However, the load-balance properties of the
two schemes differ a lot. Assuming all the content ob-
jects share the same popularityr at all the nodes, in
Figure 1(a), node A servesall the requests while other
nodes have no workload at all. In contrast, replication in
Figure 1(b) enjoys a much better load-balancing: work-
load of all the nodes are4r. Note, however, the replica-
tion i Figure 1(a) enjoys the advantage of having fewer
replicas. Actually, there is a trade-off between the num-
ber of replicas and the load-balancing property. In Sec-
tion 4, we investigate this trade-off under different sys-
tem parameters.

It is worth noting that the total workload in the system
is independent of the replication scheme. It is solely de-
termined by request rates of all the content objects. Dif-
ferent replica placements merely make the total work-
load be distributed among the servers differently.

In this work, we mainly focus on controlling work-
load of the CDN servers, as opposed to network band-
width. We argue that server workload is the major con-
cern because the CDN servers are a dedicated resource
of the CDN provider. The scheme of distributing the
overall workload to different CDN servers largely deter-
mines the response time of the CDN servers. Network
bandwidth, however, is a shared resource. Our content
service is just one of the many services that are running
on the internet and sharing the underlying network in-
frastructure. Hence, the bandwidth consumption of our
service is unlikely to noticeably affect the actual net-
work latencies. In addition, our previous measurement
study [12] showed that internet latencies are fairly stable
for our service. Given the fact that the overlay network is
created based on the latency bound and the satisfactory
network latency stability, if we can find a balanced data
replication scheme on the overlay network to ensure the
response time of the servers are bounded, then we can
achieve the latency bound guarantee. In the next sec-
tion, we present the detailed design of such a scheme.

3 System Design

In this section, we present our balanced data replica-
tion algorithm. Servers make independent decisions on
which content objects to host based on local informa-
tion about their workload and popularity of the con-
tent objects. Servers only need very limited knowledge
about their neighbors, making the scheme highly scal-
able. The algorithm consists of three major phases. In
the token calculation phase, servers first exchange their
IDs with their neighbors (i.e., the servers that are reach-

able within the latency bound). Without communication,
each server can locally generate a conflict-free token
winning sequence using the token calculation algorithm
to be described. After that, servers consolidate the token
winning sequences of their neighbors and come up with
a sequence that contains all the tokens within its closed
neighborhood. This sequence will be used to decide on
the order in which servers make content allocation de-
cisions. In the content allocation phase, following the
consolidated token winning sequence, servers use the
content object allocation algorithm to choose appropri-
ate objects to host. We also present a post-adjustment
phase to deal with dynamics of network topology and
changes in popularity of content objects. In what fol-
lows, we describe the three phases in detail, and discuss
issues related to multiple content classes.

3.1 Token Calculation

In this phase, each server first collects ID information
of all of its neighbors. Note that the neighborhood of a
server is the collection of CDN servers that are reachable
by the server within a given latency bound. After servers
obtain the IDs of their neighbors, each server will create
a set of pseudo random number generators (RNGs). For
each of its neighbors, a server associates a RNG seeded
with the neighbor’s ID. Servers also create RNGs asso-
ciated with themselves, and seed them with their own
IDs. Note thatall the RNGs of all servers should use
the same pseudo random number generation algorithm.
This scheme is inspired by the NCR algorithm used in
TDMA schemes for wireless communications [3, 25].
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Figure 2. Token Allocation Example

For the ease of explanation, we take server A in Fig-
ure 2 as an example. As Figure 2 depicts, servers B,
C and D are neighbors of server A, while server E is
B’s neighbor but not A’s. Node A first generates a ran-
dom number sequence using the RNG seeded with its
own ID: {20, 11, 8, 2, 23, 8, 2, ...}. Similarly, it gener-
ates random number sequences for servers B, C and D
by RNGs associated with IDs of B, C, and D, respec-
tively.

Having the random number sequences of all four
servers in its neighborhood constructed, server A scans
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the four sequences in parallel in ascending order of the
index. For an indexi, we say a server wins thetoken
if its ith random number is greater than all theith ran-
dom numbers of its neighbors, using ID numbers for
tie-breaking. Clearly, tokens are associated with index
numbers. Token winners will make content allocation
decisions as will be discussed in Section 3.2. From Fig-
ure 2, we can tell that server A wins tokens at index 1,
8 and 11. When server A calculates the tokens locally,
servers B, C and D do the same token calculation in par-
allel independently. All token winners are marked as
shaded blocks in Figure 2. The important feature of this
process is that no two servers would win the same token
if they are neighbors. This is true because all the RNGs
use the same pseudo random number algorithm. When a
server sees itsith random number is greater than those of
its neighbors, the neighbors should have the same view.

Having received the token winning sequences of
servers B, C, and D, server A can combine all the se-
quences and get a consolidated sequence, illustrated by
the arrows in Figure 2. This sequence is used in the con-
tent object allocation phase to be discussed in the next
section.

It is worth pointing out that in index 7, no server in
A’s neighborhood wins the token. This is because B’s
7th random number is greater than those of A, C, and D,
but smaller than that of E. This does cause some problem
in TDMA design [3] because it introduces “holes” in the
sequence of token winners. Our scheme is not impacted
much by these holes, because we only care about the
relative decision sequence for content object allocation.
It is true, though, that we need to generate more random
numbers to get the same number of tokens because of
the holes.

3.2 Content Object Allocation

The consolidated token sequence (illustrated as the ar-
rows in Figure 2) of a server is basically a sequence of
tokens of its neighbors. If a server finds that the token
with the smallest index belongs to itself, it volunteers
to host a content object, using the algorithm to be pre-
sented later in this section. This decision or a dummy
decision (to be discussed later in this section) is broad-
cast to its neighbors. The token is then removed from
the server’s consolidated token sequence. If a server
finds that some neighbors hold tokens with smaller in-
dices, it simply waits for the content object allocation
decisions from those neighbors, with a time out to han-
dle token loss in rare cases. Every time it hears a con-
tent object allocation decision from a neighbor, the cor-
responding token is removed from its consolidated token
sequence and the content object selected by the neighbor
is marked as “unavailable”. After all those tokens with
smaller indices than its own token are removed, it can

make its own content object allocation decision again
and broadcast it. For example, in Figure 2 after server
A makes the first content object allocation decision, it
will need to wait for decisions from C, B, D, C, B before
it makes the next content objection allocation decision.
Note that in the token calculation phase, the possibility
of winning tokens for a server is inversely proportional
to the number of neighbors of the server. Statistically,
the more neighbors a server has, the fewer chances it
will get to host content objects. This is ideal in our situa-
tion because when a server hosts an object, its neighbors
will forward their requests for the object to the server.
The workload that will be brought to the server by host-
ing an object is therefore proportional to the number of
neighbors of the server. Hence, making servers that have
more neighbors host fewer objects is helpful in making
servers’ workload balanced.

To implement the mechanism described above, each
server maintains anavailable objects list(AVL). This
list maintains all content objects that havenot been
hosted by any server in its closed neighborhood, as well
as their popularity. Servers only choose objects from
their AVL to host. When new content objects are in-
troduced to the CDN system, they are inserted into the
servers’ AVLs. The algorithm for content object alloca-
tion will then be triggered to create replicas for the new
objects. Note that the popularity of objects maintained
by a server are those popularity witnessed by the server
locally, not global popularity. The list is sorted in the
descending order of popularity of the objects. When a
server hears that some neighbor has volunteered to host
a content object, the content object will be removed from
its AVL. Similarly, when the server decides to host a
content object, the object will be removed from the AVL
as well. This way, if two servers are neighbors, they
would not both be replicas of the same content object,
assuming no packet loss. Ideally, for each content ob-
ject, there will be one and only one replica in each local
neighborhood.

Note that although the tokens are associated with in-
dices, the content allocation phase is not a synchronous
process. All the decision making and broadcasting can
happen in parallel in different neighborhoods throughput
the the whole network. The decisions a server is wait-
ing for do not have to arrive in order. For example, in
Figure 2, D’s content allocation decision can arrive at A
before those of B and C. In addition, when one server
broadcasts its decision to its neighbors, it may trigger
multiple servers to make decisions in parallel, which
speeds up the whole process. In this scheme, there is no
network wide information propagation, making it highly
scalable.

We assume the popularity of content objects can be
predicted based on history information. Measurement
studies show that relative popularity of content objects is
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pretty stable over time [17, 15]. It is true, however, that
popularity of content objects can be subject to abrupt
changes in some situations (e.g., flash events). We do
have a mechanism (to be discussed in Section 3.4) to
accommodate popularity changes. Having relatively ac-
curate history information about popularity of content
objects can only be beneficial.

The response time of a server obviously depends on
its workload. It is well known that server response time
does not linearly scale with the offered load. In fact,
in many cases there exists a knee in the load-response
curve. Imposing a workload that exceeds the knee will
cause a substantial increase on the response time, and
hence cause a lot of latency bound violations. Hence, for
a given bound on server processing timet and a target la-
tency miss ratiop, we define thecapacity thresholdof a
server as the workload at which1−p of the requests can
be served withint. Imposing a workload that exceeds
the capacity threshold can cause a substantial increase
of latency bound violations.

From the definition of the capacity threshold, we
need to keep the workload of all the servers below their
capacity thresholds if possible. Specifically, when a
server picks a content object to host, it needs to make
sure this action will not bring its workload beyond its
capacity threshold. Hence, a content object allocation
decision actually is twofold: the server needs to decide
(1) which content object to host; and (2) which neigh-
bors should be allowed to forward requests for this ob-
ject to the server. The goal is to minimize the servers’
chance of transcending their capacity thresholds.

We use a greedy heuristic in making the content al-
location decisions. When it is the turn for a server, say
A, to pick a content object to host, it greedily chooses
the objectO that has the highest popularity among the
objects in its AVL that does not make workload ofA

exceed its capacity threshold. If there exists such an ob-
ject, the server then collects the popularity of this object
on its neighbors. Note that, if all its neighbors forward
the requests forO to A, it is possible that the server
will be overloaded. Hence, the server needs to be se-
lective in notifying the neighbors of its object alloca-
tion decision. This notification process proceeds from
the neighbor with the lowest network degree (number of
neighbors on the overlay) to the highest. If the available
capacity of the server is sufficient to serve the requests
for the picked object from a neighbor, a notification re-
porting that the object is hosted is sent to the neighbor.
Otherwise, adummy decisionis sent to the neighbor. A
dummy decision is a placeholder just to let the neighbor
know the server has already made a content allocation
decision so that the neighbor can proceed if it is waiting
for the server’s decision. After every notification is sent,
the server updates its available capacity. In the case that
the available capacity ofA is not sufficient for any avail-

able object, the server will choose the to host the least
popular object with a probability that is proportional to
its degree.

Note that for the sake of simplicity, we assume that
all servers have homogeneous capacities. Our algo-
rithm can be trivially extended to handle heterogeneity
of server capacities without affecting the validity of the
discussions in this paper. For example, when servers
have different capacities, instead of using the absolute
workload as the metric of deciding load-balancing, we
can use the ratio of a server’s workload over its total ca-
pacity.

3.3 Multiple Content Classes

In the CDN system, content objects are categorized into
different content classes by their latency bound require-
ments. Content objects of the same content class share
the same latency bound. Since construction of the over-
lay network depends on the latency bounds, different
content classes actually have different overlay networks.
The token calculation and content object allocation al-
gorithms presented above assume that all content ob-
jects have the same latency bound. These algorithms can
be easily extended to handle multiple content classes.
When there are content objects that belong to multiple
content classes, the system can sequentially run the algo-
rithms for each content class. Since the number of con-
tent classes is usually small, this is not an issue. The se-
quence of running the algorithms on the content classes,
however, may have an impact on the performance of
load-balancing. Conceivably, the latency bounds of the
content classes can affect the load-balancing property.
The popularity of content objects in each content class
may also be a factor that needs to be considered. In Sec-
tion 4, we study the implications of different strategies
of handling multiple content classes.

3.4 Post-Adjustment

After the process described above terminates, every
server will be able to find at least one replica for any of
the content objects within its one-hop closed neighbor-
hood. Moreover, the workload of all the servers should
be below their capacity thresholds due to the way repli-
cas of the content objects are created.
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However, dynamics of workload can disrupt the
load-balancing. Consider the example depicted in Fig-
ure 3(a). Server D is a replica of objectx. Servers A, B,
and C, can forward requests asking forx to D because
they are neighbors of D. For the same reason, they would
not hostx. Now, if x for some reason (e.g., a flash event)
suddenly becomes extraordinarily popular, it can cause
server D to suffer a much higher workload than the other
servers, and potentially makes D overloaded.

To deal with this situation, we introduce a post-
adjustment phase to readjust the content object allo-
cations to achieve better load-balancing after the reg-
ular replica assignment process. The post-adjustment
process still proceeds in a distributed fashion, meaning
servers make decisions independently based on their lo-
cal knowledge about their neighbors. The basic idea of
the post-adjustment algorithm is that when a server has
a workload significantly higher than its capacity thresh-
old, it can “push” some of the hot content objects it hosts
to some of its relatively underloaded neighbors, as illus-
trated in Figure 3(b). Server D can pushx to server C
and hence create another replica ofx. After that, B can
forward requests asking forx to C. This way, the total
workload brought by objectx is shared by C and D. The
cost is that an extra replica ofx is created.

Formally, when a node, say node A, finds that its
workloadLoad(A) satisfies

∃s ∈ Neighbors(A), Load(A) > Load(s) and

Load(A) > F × CapacityThreshold(A) (1)

it picks the object with the highest popularity among
all the objects it hosts, sayO, and asks its least loaded
neighbor to be a replica ofO too. The neighbor then
broadcasts an announcement to notify its neighbors that
a new replica ofO has been created.

In order to choose the least loaded neighbor, servers
periodically exchange workload information with their
neighbors. This information can also be piggybacked
in the content object allocation decisions. The condition
specified by Eq. 1 indicates that the server is not the least
loaded in its neighborhood, and its workload is currently
F times higher than its capacity threshold, whereF is a
constant calledtolerance factor. Obviously,F should
be greater than 1. The tolerance factor is an indicator of
how much overload is tolerated by the post-adjustment
algorithm. Generally, the smaller the tolerance factor,
the better load balancing can be achieved, but at a higher
cost. Servers periodically check their workload against
the condition specified in Eq. 1, and make adjustment to
content object allocations independently. Workload of
those heavily loaded servers gradually gets shed off and
shared by other underloaded servers.

Note that, it is possible that after a heavily loaded
server pushes out a hot content object to some of its
neighbors, the content object may be pushed back to the

server by some neighbor. In that case, there is a possibil-
ity that this content object will be pushed back and forth
indefinitely. To avoid this situation, every server needs
to maintain a list of “hot-potatoes”. If a server pushes
out a content object in the post-adjustment phase, and
later on the content object gets pushed back to the server,
the content object is added to the hot-potatoes list. Con-
tent objects in the hot-potatoes list willnot be picked
to be pushed out by the server again within a relatively
long period.

4 Evaluation
4.1 Experiment Setup

We implemented our balanced data replication service
by instrumenting a Squid Proxy Cache [20] and tested
it on PlanetLab [16]. Because PlanetLab is a shared
platform and its servers are constantly in heavy loaded
state, it is very hard to run repeatable and controllable
experiments on it. In our performance evaluation study,
we used a “hybrid” experiment methodology. We first
selected certain servers on PlanetLab and deployed our
measurement daemons to these servers. Distance maps
of the servers can be constructed from the measurement
results. We implemented the data replication algorithm
described in Section 3 in a discrete event simulator. The
distance maps constructed from PlanetLab measurement
data were then fed to the simulator. We configured dif-
ferent latency bounds so that different overlay network
topologies can be generated. We used two different ex-
periment scenarios. One has 30 servers, all from sites
in North America. The other has 75 servers from both
North America and Europe. Figure 4 shows the experi-
ment scenario with 30 servers. Unless otherwise speci-
fied, the experimental data presented in this section are
the average of the results running on both scenarios. Be-
fore embarking on presenting detailed evaluation results,
we first validate the simulation results of one of our ex-
periments against the results we obtained from experi-
menting on PlanetLab. Figure 5 gives the workload of
all the 30 servers when running the same experiment on
PlanetLab and in simulation. As we can tell from the
figure, the results match fairly well. This gives us confi-
dence in the fidelity of our simulation results.

We evaluate our replication algorithm using the fol-
lowing two primary metrics:

• Latency bound miss ratio:The latency bound miss
ratio is the fraction of requests that are served with
latencies longer than the latency bounds associated
with the requested objects. When there are multiple
content classes, the latency bound miss ratios are
the aggregated ratios of all the classes.

• Average number of replicas:As content objects are
replicated in the network, the number of replicas is
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Figure 4. Experiment setup on PlanetLab

of interest because it is directly related to the repli-
cation cost. Fewer replicas imply lower replication
cost. The average number of replicas is defined as
the total number of replicas of all the content ob-
jects over the number of content objects.
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Figure 5. Validation of Simulation Results

The end-to-end latency of serving a request consists
of two parts. The first part is the network latency be-
tween the server where the request is originated and the
replica the request is forwarded to. This value is imme-
diately available from our measurement data. The sec-
ond part is the server end processing delay. This time is
related to the workload of the CDN servers. Since we are
discouraged from running overloading experiments on
PlanetLab, we measured the server end latencies from
using our local boxes. Basically, we setup a server in our
LAN that serves client requests generated by an array of
clients running SURGE [5]. The request intensities of
the clients were configured according to our simulation
results, which contain the information of workload ex-
perienced by each CDN server. The server processing
delay can then be measured on the clients. The end-to-
end latency of serving a request is the sum of the two
parts. When theend-to-end latencyof a request exceeds
its latency bound, we count it as a miss.

Our replication algorithm requires every server to
know its capacity threshold. As discussed in Section 3.2,
the capacity threshold of a server depends on a latency
boundt and a target miss ratiop. In our experiments, we
chooset = 100ms andp = 0.01. In other words, we

make the capacity threshold of a server the workload that
the server can serve 99% of the requests within 100ms.

Different content objects can have very different
popularity. Measurement studies on traffic of Web
caches [7], Web servers [2, 15], and peer-to-peer file
sharing systems [11] discover that popularity of content
objects in these applications follow Zipf-like distribu-
tions or a variation of Zipf distribution. To understand
the system performance under realistic conditions, we
use a Zipf-like distribution as the popularity model. The
value of theα parameter of Zipf is 1.2 in our experi-
ments. Note that using Zipf distribution as the model
of content objects’ popularity brings tremendous differ-
ence of popularity among content objects.

In our experiments, we used a parameter calledload
factor, defined as the sum of request rates of all the con-
tent objects on all the servers over the total capacities
of all the servers, to control the overall workload of the
system.

4.2 Basic Performance

We first demonstrate the efficacy of our load-balancing
algorithm in achieving the latency bounds with high
confidence. As discussed in Section 2.2, there is a
trade-off between load balancing and the replication cost
(i.e., the number of replicas). Greedily minimizing the
number of replicas can cause imbalanced workload and
hence jeopardize the system’s overall performance in
meeting the latency bounds. To the best of our knowl-
edge, there is no existing load-balancing algorithm in
literature on content distribution services with latency
bounds. We compared our replication algorithm with a
simple baseline heuristic that attempts to minimize the
number of replicas and avoids overloading servers when
creating replicas for content objects. The purpose of this
comparison is to demonstrate the necessity of consider-
ing popularity of objects, servers’ capacities, as well as
network topology, which is what our load-balancing al-
gorithm does. In this baseline algorithm, every server re-
peatedly picks a content object that has not been hosted
by itself or any of its neighbor randomly, andnominates
the server with the highest network degree among its
neighbors (including itself) that have not exceeded their
capacities to host the object. If all of its neighbors have
exceeded their capacities, the neighbor with the highest
degree is nominated. When a server receives a nomi-
nation from its neighbor, it will become a replica of the
object and sends out an announcement toall of its neigh-
bors.

Figure 6 gives the comparison study between our
load-balancing replication algorithm and the baseline
heuristic. In this experiment, there are three classes of
content objects with their latency bounds being 250ms,
350ms, and 450ms, respectively. We plotted both the la-
tency bound miss ratio and the average number of repli-
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Figure 6. Comparison with Baseline

cas (NOR) in Figure 6. The two algorithms exhibit dif-
ferent behaviors on both of performance metrics. When
the load factor is low, the miss ratio is nearly 0 using our
replication algorithm. The miss ratio slowly climbs as
the load factor increases. Even when the load factor is
close to 1.0 in which case the system’s overall workload
approaches its total capacity, the miss ratio is still blow
8%. In contrast, the miss ratio of the baseline algorithm
is significantly higher across all load factors. As to the
average number of replicas, the baseline algorithm ex-
pectedly produces fewer replicas. Note that, the number
of replicas created by our replication algorithm increases
with the load factor. This is reasonable because when the
system’s workload gets higher, more replicas are needed
to keep the servers below their capacity thresholds.

Next, we investigate the impact of the latency bounds
on the performance of our load balancing algorithm.
For the purpose of better understanding this impact, we
made all the content objects belong to the same content
class in this experiment, and varied the latency bound of
the class. The latency bound can have an impact on load
balancing because the overlay network is constructed
based on it. A more generous latency bound makes
servers generally have more neighbors on the overlay,
which should be helpful in achieving load-balancing es-
pecially when the load factor is high. This is because
the more neighbors a server has, the better chance it
has to have some neighbors to share its workload when
its workload approaches its capacity threshold. Exper-
imental results summarized in Figure 7(a) confirm our
analysis. Regarding the number of replicas, a longer la-
tency bound conceivably creates fewer replicas because
the network is more connected, as shown in Figure 7(b).

As mentioned above, in order to maintain servers’
workload below their capacities, our load-balancing al-
gorithm may create more replicas than the minimum
possible number of replicas. To understand how many
more replicas are created by our algorithm, we plotted
the minimum number of replicas for each latency bound
in Figure 7(b). The minimum number of replicas is cal-
culated using existing minimum dominating set (MDS)
algorithms [13, 12]. Note, however, the minimum num-
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Figure 7. Impact of Latency Bound

ber of replicas shown here is just the theoretical lower
bound. It could be achievable only when those servers
forming the minimum dominating set have enough ca-
pacity to hostall the content objects. This generally is
not true in practice. In reality, servers can reach their ca-
pacity thresholds after hosting part of the objects only.
The rest of the objects will have to be hosted by more
servers, resulting in an average number of replicas that
is larger than the minimum.

Our replication algorithm is expected to achieve good
load-balancing. However, this is not to say that the
workload of all servers should be strictly balanced all
the time. The primary goal of our load-balancing is to
keep latency bound miss ratio as low as possible. In
fact, when the overall workload of the system is very
low, the servers are free to have imbalanced workload as
long as the miss ratio is low. When the system is heav-
ily loaded, however, it is important that the workload
of all the servers be balanced because when the overall
system workload is high, imbalanced workload will in-
evitably cause some of the servers to exceed their capac-
ity thresholds. Figure 8 depicts the workload imbalance
of our system under different load factors. We usedco-
efficient of variation, defined asstdev

mean
, as the metric to

describe the workload imbalance. Large coefficient of
variation values imply significant imbalance. As we ex-
pected, when the system is relatively underloaded, im-
balanced workload is observed. The imbalance gradu-
ally diminishes when the system workload increases.

Finally, Figure 9 compares the miss ratios at different
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network scales (30 and 75 servers). Encouragingly, the
miss ratios of the two scenarios do not have appreciable
difference across all the load factors, which serves as
evidence of good scalability of our algorithm.

4.3 Multiple Content Classes

When there exist multiple content classes, the replica-
tion algorithm needs to run on each content class se-
quentially. With content classes having different latency
bounds, there are basically two options regarding the se-
quence of running the algorithm on the content classes.
We can start running the algorithm on the content class
that has the most stringent latency bound, then on the
less stringent bound class, and on forth. Alternatively,
we can start from the class that has the most gener-
ous latency bound and proceed to the classes with more
stringent bounds. We call these options “tight-first” and
“loose-first”, respectively. Besides latency bounds of
the classes, the popularity of the objects in each con-
tent class may also have an impact on the overall load-
balancing performance.

In this section, we are going to find out the perfor-
mance of the tight-first and loose-first policies. More-
over, we want to reveal the impact of the objects’ popu-
larity when there are multiple content classes. Again,
there are three content classes (class0, class1, class2)
with latency bounds of 250ms, 350ms, and 450ms, re-
spectively. Each content class has the same number of
content objects. Regarding the popularity, we call the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.5  0.6  0.7  0.8  0.9  1

M
is

s 
R

at
io

Load Factor

Hottest class: 450ms, Loose-First
Hottest class: 450ms, Tight-First
Hottest class: 250ms, Loose-First
Hottest class: 250ms, Tight-First

(a) Miss Ratio

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 N
um

be
r 

of
 R

ep
lic

as

Load Factor

Hottest class: 450ms, Loose-First
Hottest class: 450ms, Tight-First

Hottest class: 250ms, Loose-First
Hottest class: 250ms, Tight-First

(b) Average Number of Replicas

Figure 10. Multiple Content Classes

content class that has the most “hot objects” the “hottest
class”. An object is a “hot object” if it has a popularity
that is 10 fold greater than the average popularity of all
the content objects.

Intuitively, a more generous latency bound gives
servers better chances of finding some neighbors to
share their workload when overloaded. When content
objects are to be replicated on servers that are largely
under heavy load, it would be beneficial if the latency
bound of the objects was generous. Hence, we expect
the tight-first policy to outperform the loose-first pol-
icy. For similar reasons, the hottest class should be pro-
cessed first. However, when these two conditions are at
odds (i.e., when the hottest class isnot the class with the
most stringent latency bound), it is not obvious which
factor has the dominant impact. Figure 10(a) shows the
miss ratios of the 4 combinations of policies under dif-
ferent load factors. As shown in the figure, tight-first
policy always outperforms the loose-first policy for both
cases where the hottest class has the most stringent la-
tency bound, and the hottest class has the most generous
bound. Furthermore, among the 4 combinations, using
tight-first when the hottest class has the tightest bound is
the best. Conversely, using loose-first when the hottest
class has the tightest bound is the worst. This can be
observed from Figure 10(a).

As to the cost of running the load-balancing algo-
rithm on multiple classes, there is barely discernable
difference among different policies, as shown in Fig-
ure 10(b). Finally, Figure 11 gives the miss ratios of
the three classes when tight-first policy is used. As can
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be observed in the figure, for both cases that the hottest
class has the tightest bound and the hottest class has the
loosest bound, fairness among the classes is achieved,
which is ideal. From these experiment results, we con-
clude that tight-first policy is the best policy for running
our algorithm on multiple content classes. In fact, all
other experiments involving multiple classes presented
in this section used this policy.

4.4 Imperfect Knowledge

The evaluation results above are based on the assump-
tion that the servers have perfect knowledge of the pop-
ularity of the content objects. In practice, popularity of
objects can be predicted from history. However, the pre-
dictions can only be rough estimates. In this section, we
examine the performance of our algorithm when servers
have imperfect knowledge about the objects’ popularity.
We hope our replication algorithm can tolerate imperfect
knowledge to a certain extent. In particular, we hope
the performance in terms of miss ratio will have only a
graceful degradation.

Our approach is to salt the popularity of the con-
tent objects with random noise, and vary the amount
of noise. We used a parameter callederror in adding
random noise to the popularity information. With an
error of ǫ, the popularity of the content objects fed to
the servers will be a random number in the range of
[(1−ǫ)p, (1+ǫ)p], wherep denotes the actual popularity
of the content objects. Note the way we salt the popu-
larity knowledge keeps the total workload of the system
unchanged from a statistical perspective. This excludes
the impact of changes to the system overall workload,
and hence enables us to examine the impact of imper-
fect knowledge of popularity only.

Figure 12 shows the latency bound miss ratios un-
der different load factors and error levels. For compar-
ison, we also gave the miss ratios when perfect knowl-
edge about popularity was available. As can be observed
in the figure, the miss ratio increases when the error is
enlarged, which is understandable. Besides, the perfor-
mance degradation becomes more noticeable when the
load factor increases. The reason is that the imperfect

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.5  0.6  0.7  0.8  0.9

M
is

s 
R

at
io

Load Factor

Perfect Knowledge
Error=0.5
Error=0.6
Error=0.7
Error=0.8

Figure 12. Imperfect Knowledge on Popularity

knowledge of popularity basically brings imbalance to
servers workload. When the system’s overall workload
gets close to its capacity limit, imbalanced workload will
make some of the servers overloaded and hence cause
more latency bound misses. With an error of 8.0, and
a load factor of 0.9, the miss ratio can reach 20%. De-
spite this, our load-balancing replication algorithm ex-
hibits a fairly good tolerance to imperfect knowledge of
objects’ popularity. This is partly because that some of
the disturbance brought by imperfect knowledge can ac-
tually cancel out itself to some extent: the increase of
some objects’ popularity is averaged out by the decrease
of some other objects. Moreover, the post-adjustment
mechanism to be evaluated in the next section mitigates
the performance degradation observed here.

4.5 Post-Adjustment

In this section, we study the performance of our load-
balancing replication algorithm in the presence of work-
load dynamics. As discussed in Section 3.4, our load-
balancing mechanism proceeds with the process of repli-
cating content objects to provide bounded latencies. If
the popularity of the content objects are stable over time,
the overall workload of the system would be stable as
well. However, in practice there exist various system dy-
namics. The most relevant dynamics are the changes in
content objects’ popularity. Operationally, the CDN sys-
tem should run the replication algorithm periodically but
at a low frequency, say once a day. Hence, slight or slow
changes on content popularity and system’s workload
can be naturally covered. It is possible, however, that
the objects’ popularity can experience abrupt changes
between two invocations of the algorithm. For example,
a flash event can dramatically increase the popularity of
a small set of content objects. This unquestionably has
negative impact on the system’s performance in terms of
latency bound miss ratio. Such kind of changes not only
bring higher workload to the servers, but also affects the
relative popularity of the content objects. We expect that
abrupt changes to content popularity can substantially
increase latency bound misses, especially when the sys-
tem is already heavy loaded and hence lacks the cushion
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to accommodate extra workload.
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The post-adjustment mechanism (Section 3.4) is de-
signed to deal with this situation. Servers trigger the
post-adjustment mechanism when they find out that their
workload transcend their capacity thresholds by more
than a tolerance factor. An overloaded server will greed-
ily attempt to “push” some of its most popular content
objects to some of its relatively underloaded neighbors.
Post-adjustment allows servers to offload themselves at
the cost of creating more replicas for some of the content
objects.

Figure 4.5 summarizes the results of our experi-
ments to evaluate the efficacy and overhead of the post-
adjustment mechanism. We simulated the dynamics of
popularity by adding random disturbance to the popu-
larity of the content objects so that the system’s over-
all workload reaches a target level. In these exper-
iments, we first chose a target load factor. Pairs of
object-server were randomly picked to be disturbed in
the way that the popularity of the object on the server
was scaled up by a factor randomly chosen in the range
of [5, 20]. Note this always increases the system’s work-
load. The disturbance process was repeated until the
overall system workload reached the target load factor.
The post-adjustment mechanism was then triggered to
adjust the replicas of the content objects. The load fac-
tor of the system before the disturbance was 0.5 for
all the experiments. In Figure 13(a) we plotted the la-
tency bound miss ratio with the disturbance and the
miss ratio after post-adjustment settled down, varying

the target workload after disturbance. Clearly, for all
the load factors post-adjustment significantly reduces
the latency bound misses brought by the disturbance.
Besides, post-adjustment with smaller tolerance factors
generally can bring down the miss ratios further. Fig-
ure 13(b) studies the major overhead of running post-
adjustment, namely the extra replicas created. It gives
the average extra number of replicas per content object
created by post-adjustment process with different toler-
ance factors, varying the target workload. From the fig-
ure, it is clear that while using smaller tolerance fac-
tors can create more replicas, the cost is generally fairly
moderate. Another observation worth mentioning is that
when the load factor increases, the difference in perfor-
mance among different tolerance factors diminishes (as
shown in Figure 13(a)), while the difference in overhead
increases (as shown in Figure 13(b)). This is because
when the system’s workload comes close to its capacity
limit, many servers are saturated with their own work-
load and hence can not share much of the workload of
those overloaded servers even though many more repli-
cas are created.

5 Related Work
Existing load-balancing mechanisms for CDNs are
mainly efficient request redirection algorithms. In the
case of geographically distributed replicas, DNS-based
request redirection has been widely adopted to spread
client requests to servers because of its transparency to
clients. More sophisticated approaches [8, 9, 4, 22] try
to use information of servers’ workload, network prox-
imity, and content availability to improve overall perfor-
mance. In our system, content objects are replicated on
different sets of CDN servers so that a soft real-time la-
tency bound on content retrieval is provided. This prop-
erty drives our load-balancing technique to be coupled
with the replica selection algorithm.

With the emergence of distributed hash table (DHT)
based P2P systems, researchers recently looked into the
load-balancing problem in such systems. In P2P sys-
tems structured by DHT, content objects are “hashed” to
nodes by certain consistent hashing mechanisms. Karger
and Ruhl [14] proposed an address-space balancing pro-
tocol that balances the distribution of identifier space
to nodes to improve overall load-balancing. Godfrey et
al.[10] and Rao et al. [18] addressed the load-balancing
problem by using the concept of virtual servers. A vir-
tual server looks like a single node to the underlying
DHT, but each physical node can be responsible for mul-
tiple virtual servers. In our system, content objects are
not subjected to the constraint of an underlying consis-
tent hash. Instead, the placement of replicas of the con-
tent objects is subject tolatencybound requirements.

Xiong et al.[24] presented a concurrency control
mechanism for replica management. In their application
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scenario, replicas have stringent consistency require-
ments, which different from our case. ten the replicas are
replicated. Wei et al.[23] investigated a problem of dy-
namically creating replicas of in distributed database to
improve transaction processing time. Our work is very
different in that our system creates replicas under the
constraint of global latency bound requirment.

6 Conclusions and Future Work
In this paper, we proposed a load-balancing data repli-
cation scheme for a content distribution network provid-
ing latency bounds on content access. The approach in-
volves a distributed algorithm to decide which servers
should host which content objects. The algorithm guar-
antees that every server can find all the content objects
within its one-hop closed neighborhood. Most impor-
tantly, the replica assignment plus a distributed post-
adjustment mechanism enable the system to achieve
very good load-balancing among servers. Evaluation re-
sults drawn from simulations and experiments on Plan-
etLab [16] using realistic content access request mod-
els show that our scheme achieves good performance
in terms of meeting the latency bounds and achieving
load-balancing at a moderate replication cost. For future
work, we are interested in extending the performance
evaluation with real traces of client traffic as opposed to
synthetic workload. We also plan to investigate the per-
formance implications when the network latencies be-
tween servers are more dynamic. Another interesting
avenue for future exploration is how to extend our work
to treat content classes with different tolerance to misses.
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