
SAS: Self-Adaptive Spectrum Management for
Wireless Sensor Networks

Gang Zhou†, Lei Lu†, Sudha Krishnamurthy‡, Matthew Keally†, Zhen Ren†
†Department of Computer Science, College of William and Mary, Williamsburg, VA

‡United Technologies Research Center, East Hartford, CT
†{gzhou, llu, makeal, renzh}@cs.wm.edu, ‡krishnadots@gmail.com

Abstract— Smart wireless sensor devices are becoming increas-
ingly ubiquitous and are expected to be embedded in everyday
objects in the near future. When these devices are deployed in
overlapping or adjacent geographic areas, the unlicensed 2.4GHz
ISM band will be crowded. To deal with the crowded spectrum,
we propose SAS, a Self-Adaptive Spectrum management middle-
ware for wireless sensor networks. SAS enables single-frequency
MAC protocols with multi-frequency capability, so that an
existing MAC protocol, like B-MAC, can automatically adapt to
the least congested physical channel at runtime. We implemented
SAS in TinyOS 2.1 with nesC and evaluated its performance
with TelosB motes. Our performance results demonstrate that
SAS improves the performance of existing single-frequencyMAC
protocols, like B-MAC. The use of SAS results in higher packet
reception ratio and system throughput, and a lower packet delay
and energy consumption.

I. I NTRODUCTION

With the maturity and wide application of low-power wire-
less protocols, such as IEEE 802.11b [1], 802.15.1 [2] and
802.15.4 [3], we envision a future in which wireless devices,
such as wireless keyboards, power-point presenters, cell phone
headsets, and health monitoring sensors [4] will be ubiquitous.
Unfortunately, the pervasiveness of these devices leads toin-
creased interference and congestion within as well as between
networks, since they adopt overlapping physical frequencies.
For example, 802.11b uses Direct Sequence Spread Spectrum
(DSSS) and divides the 2.4 GHz ISM band into 14 channels (5
MHz distance apart). IEEE 802.15.1 divides the 2.4 GHz ISM
band into 79 1-MHz channels and uses Frequency Hopping
Spread Spectrum (FHSS). IEEE 802.15.4 divides the 2.4 GHz
ISM band into 16 5-MHz channels and uses DSSS. When
these wireless devices are used in the same office or home
environment, there is a high likelihood that the 2.4 GHz ISM
band will be overloaded and congested.

In addition to the interference from co-existing networks
and wireless devices, communication in the 2.4 GHz ISM
band may also be affected by existing electrical appliances.
For example, Figure 1 displays the carrier-sensed power levels
of the 16 channels, from 11 to 26, in IEEE 802.15.4, measured
by the SeeMote [5] in a home environment. The x-axis is the
channel index number and the y-axis denotes the sensed power
level in dBm. Comparing Figure 1 (a) and (b), it is quite clear
that an existing WSN congests channel 11 (default channel
in Tinyos 2.1) and also generates interference on the other
channels. By comparing Figure 1 (a) with (c), we observe that

the presence of a microwave also greatly increases the sensed
power level in channel 19, from -94 dBm when the microwave
is off to -52 dBm when it is running. When the microwave is
on, it also leads to higher noise levels for the other channels.
By comparing Figure 1 (b) and (c), we surprisingly find
that the interference from the microwave is even stronger
than that arising from a co-existing WSN. One method to

(a) Quiet Envi-
ronment

(b) Co-existing
WSN

(c) Microwave
Running

Fig. 1. 2.4 GHz Spectrum Usage in a Home Environment

address the problem arising from this crowded spectrum is
to introduce more unlicensed frequency band. However, this
usually needs approval from government agencies (such as
the Federal Communications Commission (FCC) in the United
States). Another method to address the crowded spectrum is to
propose software solutions that can enable multiple nodes to
conduct parallel communication at different frequencies (i.e.
channels). In the low power wireless communication literature,
several approaches have been developed to utilize multiple
frequencies for parallel communication, including cognitive
radios [6] and multi-frequency MACs [7], [8]. Even though
these approaches have proven to be effective in improving
system performance for networks in which each individual
node has only a half-duplex radio transceiver, they are usually
designed for a specific PHY layer or encapsulated within a
specific MAC protocol. These solutions are not generic and
hence, can not be used to easily enhance existing single-
frequency MAC protocols with multi-frequency capability,in
order to support parallel communication.

Therefore, the lack of a generic solution to leverage existing
MAC protocols motivates us to design SAS: a Self-Adaptive
Spectrum Management middleware for wireless sensor net-

works, which can be easily integrated with an existing single-
frequency MAC protocol to take advantage of multiple fre-
quencies for parallel communication. The main contributions
of this work are: 1) We propose SAS as a middleware that can
easily enhance existing MAC protocols with multi-frequency
capability for system-wide parallel communication. 2) We
implement SAS in TinyOS 2.1 with nesC and evaluate its
performance using TelosB motes. The performance results
demonstrate that SAS is capable of enhancing the performance
of single-frequency MAC protocols (e.g. B-MAC [9]).

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III, we describe the design
of SAS and its implementation using TinyOS and TelosB.
We discuss performance evaluation results in Section IV, and
finally, present our conclusions in Section V.

II. STATE OF THE ART

A number of multi-frequency MAC protocols have been
proposed for wireless networks in which each node only has
a single half-duplex radio transceiver. According to [10],these
MAC protocols can be classified into two categories: those that
adopt RTS/CTS control packets and those that do not. Some
multi-frequency MAC protocols rely on RTS/CTS control (
[11] [12] [13] [14]), because either their designs are based
on IEEE 802.11b [1], or they adopt RTS/CTS control for
frequency negotiation ([7] [15] [16] [17]). The work in [10]
demonstrates that even though RTS/CTS control exhibits good
performance in general wireless ad-hoc networks, it is not
appropriate for WSNs, where the network bandwidth is very
limited and the MAC layer packet size is very small (typically
30∼50 bytes), compared to a packet size of at least 512 bytes
in general wireless ad-hoc networks.

Some other multi-frequency MAC protocols are specially
designed for wireless sensor networks applications and do
not use RTS/CTS controls [10] [18]. These MAC protocols
demonstrate largely improved system performance due to
the use of multiple frequencies for parallel communication,
but they are not generally designed for enhancing existing
single-channel MAC protocols (e.g. B-MAC [9]). The SAS
protocol we propose in this paper targets the same wire-
less sensor network applications, but without incurring the
overhead of RTS/CTS packets. Instead of proposing another
special-purpose multi-frequency MAC protocol, we put forth a
self-adaptive spectrum management middleware, which can be
easily integrated with existing single-channel MACs, in order
to dynamically share the spectrum for parallel communication.

III. SAS DESIGN

There are three important challenges to be addressed in
designing SAS. First, SAS is a middleware positioned between
the MAC and PHY layers, as shown in Figure 2. So clear
interface definitions are needed between SAS and MAC and
between SAS and PHY. Second, while neighboring nodes in
SAS are encouraged to use different frequencies for paral-
lel unicast communication, broadcast needs to be supported
from the root. SAS addresses this challenge through virtual

transceiver design. Third, SAS needs to manage available
physical frequencies during runtime and make the right deci-
sions for switching frequencies, according to current spectrum
usage. In the following subsections, we elaborate how SAS
addresses these challenges.

A. SAS Interface

MAC

Unicast Send
Broadcast Send

Clear Channel Assessment

SAS

PHY

Send Done
Packet Received

Broadcast Send
Clear Channel Assessment

Send Done
Packet Received
Prepare for Reception

--- Events

--- Commands

Fig. 2. SAS Middleware Architecture

SAS is a generic multi-frequency middleware that is ac-
cessible through the interfaces defined in Figure 2. The
multi-frequency service in SAS can be invoked through
three simple commands:UnicastSend, BroadcastSend
andClearChannelAssessment(CCA). UnicastSend
is used to send unicast packets,BroadcastSend is used
to transmit broadcast packets, andCCA is used for carrier
sensing. In response, SAS uses theSendDone event to
inform the MAC layer whether the packet has been sent or
dropped (transmission failure). ThePacketReceived event
is signaled to notify the MAC layer that a packet has been
correctly received.

SAS builds its service upon functions provided by the
PHY layer. As shown in Figure 2, SAS calls PHY’s
BroadcastSend command to send both unicast and broad-
cast packets, using different destination addresses for differen-
tiation. TheCCA command of PHY is used for carrier sensing.
The SendDone and PacketReceived events generated
by PHY are used to notify SAS about the result of packet
transmission and reception, respectively. The PHY layer also
generates thePrepareForReception event, which in-
forms SAS that a valid packet has been detected in the air.
Depending on the radio hardware at the PHY layer, this event
can have different implementations.

TheCCA command deserves further explanation. In a single-
frequency MAC design,CCA means “Isthe channel busy?”,
since the MAC assumes that there is only one physical
channel. However, when multiple frequencies are supported, a
CCA request implies “Is the channel that thereceiver is using
busy?” Since the MAC layer does not know what channel the
receiver currently uses, it is not possible for the MAC layerto
provide a frequency parameter within aCCA request. Instead,
theCCA command is slightly modified to take the receiver ID
as input, since the MAC layer knows the destination node that
the packet is addressed to.

When SAS gets the receiver ID from the CCA request, it
looks up its neighbor table to find out the channel number
that the destination node currently uses. SAS conducts carrier
sense on this specific channel and returns the results to MAC.

Thus, through this simpleCCA interface reconfiguration, SAS
is able to enhance single-frequency MAC protocols to take
advantage of multiple frequencies in a transparent manner,
without the need for redesigning MAC protocols to achieve
multi-frequency capability.

B. SAS Virtual Transceiver

As mentioned in Section II, a typical sensor device, like
MICAZ and TelosB [19], is usually equipped with a single
half-duplex radio transceiver, to reduce product cost, form
factor, and energy consumption. This limited radio transceiver
needs to be enhanced by software, to support multi-frequency
capability. The SAS virtual transceiver proposed in this section
is designed to meet this requirement.

In the multi-frequency context, we assign neighboring nodes
different frequencies for unicast packet reception, and the same
default channel for broadcast reception. This design philoso-
phy maximizes parallel unicast communication and at the same
time seamlessly supports broadcast from the root. With the
help of SAS, the limited radio transceiver is transformed toa
virtual transceiver that is able to snoop on three frequencies:
fBC , fUNI , and fCAN , simultaneously. fBC denotes the
default frequency chosen for broadcast, andfUNI indicates
the frequency for unicast reception. This unicast frequency is
selected from the currently least loaded frequencies and itmay
vary from time to time and from node to node, according to
a node’s current spectrum usage within its local geographic
area. When a node is first assigned a unicast frequency or
when it switches frequency, it notifies its neighbors with the
updatedfUNI value through a broadcast (reliability issues [20]
in broadcast can be incorporated in future). In addition to
the broadcast and unicast frequencies, a candidate frequency,
fCAN , is guessed at runtime, in order to replace the current
unicast frequency when it is congested. Details about how to
pick thefCAN frequency is explained later in Section III-C.

Packet Format: Preamble LengthSFD

Transmitter: Noti fication LengthSFDPreamble

(a) Original Packet Format

fUNIReceiver: …...

TTS

(b) Toggle Snooping

(c) SAS Transmission

Mac Protocol Data Unit

Mac Protocol Data Unit

Sleep fBC Sleep fCAN Sleep

TSlp

…

Fig. 3. SAS Virtual Transceiver

Figure 3 presents the detailed design of a SAS virtual
transceiver. As shown in Figure 3(a), a packet normally starts
with the preamble bytes, then follows with the Start-of-Frame
Delimiter (SFD) field, the packet length field, and then the
data bytes. Also, an optional CRC field is usually added at
the end of the data bytes.

In a single-frequency context, when a node is deployed
and turned on, it enters into the idle listening state. However,

in SAS’s multi-frequency context, the node enters the toggle
snooping state, as shown in Figure 3(b). The transceiver
listens to the unicast frequencyfUNI , the broadcast frequency
fBC , and the candidate frequencyfCAN , alternatingly (with
optional sleep periods for possible duty cycling extensions in
the future). After listening to each frequency, the transceiver
goes into sleep state to save power.TTS denotes the time that
a node stays on any of the three frequencies andTSlp denotes
the time that a node stays in the sleep state. Whenever the
transceiver stays in frequencyfUNI or fBC , and also detects
a radio signal in the air, it stops frequency toggling to prepare
for data reception. As shown in Figure 3(c), each data packetin
SAS is preceded by notification bytes, which inform a receiver
in the toggling state to stop frequency toggling and instead,
switch to the data reception state. The toggle snooping resumes
when the packet reception ends.

The toggle snooping performed by the receiver has the
same implementation in different radio hardware. However,
the implementation of the notification bytes in the SAS trans-
mission depends on the hardware platform. Since currently
many wireless sensor devices, like MicaZ, Telos and IMote2,
use the CC2420 radio, we present the details of the SAS
virtual transceiver that we implemented over the CC2420 radio
in TelosB motes. For the SAS virtual radio transceiver to
operate correctly, the time to send the notification (Tsend)
must be greater than2TTS + 3TSlp (see Figure 4). When this
condition is violated, the transmitter’s notification timeis not
long enough to ensure that the receiver will be able to pick
up a valid packet signal, and that the sending packet will be
received without interference.

CC2420 is a packet-level radio hardware. It does not pro-
vide software designers the ability to either configure a long
preamble or read individual preamble bytes when a packet is
in air. Instead, the radio hardware is in charge of adding and
removing preamble bytes automatically. So, we can not use
a long preamble to serve as the notification, as is possible in
a byte-level radio hardware (like CC1000 in Mica2 motes).
Hence, in our implementation, we use the data packet itself
(multiple duplicates) as the notification, as shown in Figure 4.

Transmitter:

Receiver: SleepfBC

TTS TSlp

fUNI Sleep fCAN fBCSleep

Notification Preamble LengthSFD Mac Protocol Data Unit

TSend

…...

Fig. 4. SAS Virtual Transceiver Implementation in CC2420 Radio

C. Runtime Frequency Switching

We have explained the communication protocol when the
SAS virtual transceiver operates on both broadcast and unicast
frequencies. We now explain how SAS switches its unicast
frequencyfUNI dynamically, according to the runtime spec-
trum usage. By switching unicast frequencies, it is possible

to take advantage of all available physical frequencies, in
order to balance the traffic load in both spatial and temporal
dimensions.

To achieve that, SAS needs to answer two questions at
runtime: 1)Is the current frequency (i.e. channel) congested?
and 2)What is the best frequency to switch to when the
current one is congested? To answer these two questions,
SAS carefully manages its available resources, which are the
physical frequencies. The state of each frequency in each node
varies according to the state machine depicted in Figure 5. A

InUse Candidate

InPoolWarm Up

Switch

Assign. (Hit)

Switch (Hit)
or

Guess (Hit)

Switch

Fig. 5. The SAS State Machine

node uses one of the following three states to denote the usage
status of each channel:InUse, InPool andCandidate.
The frequency that is chosen for current unicast reception is in
theInUse state. The currently guessed candidate frequency is
assigned theCandidate state. All the other frequencies are
placed in theInPool state. The state transition is triggered
by one of the following four actions: warm up, frequency
assignment, frequency guess, and frequency switch.

1) WarmUp and Frequency Assignment: When a sensor
network is newly deployed and started, it is important to detect
what frequencies are currently used and which of them suffer
interference from existing electrical and electronic devices.
An initial warmup phase serves this purpose, during which
the load on each frequency is measured and recorded. During
warmup, each node scans all physical frequencies in multiple
rounds. In each round, the node stays on each frequency for a
short time that is long enough for sampling the channel status.
The status is a binary result: 0 for idle and 1 for busy. This
value is assigned tōφ, which is used to generate a moving
average valueφ (see Table III-C.1) with a decay ofα:

φn+1 = α× φn + (1 − α) × φ̄ (1)

After collecting the channel load information, each node
knows the current spectrum usage of existing networks and
devices. Each node avoids choosing the congested frequencies
by checking correspondingφ values. Also, to avoid internal
congestion within the newly deployed network, frequency as-
signment is needed after the short warm-up. During frequency
assignment, each node backs off for a random time period
before it chooses its frequency. During the backoff period,each
node records the frequencies it overhears. When its backoff
timer fires, a node chooses one of the least loaded frequencies
for unicast reception.

TABLE I

TABLE ENTRY MAINTAINED FOR EACH PHYSICAL FREQUENCY

Frequency
State

At any time, a frequency should be in one of the three
states: InPool, InUse and Candidate.

ω It indicates how many times a frequency/channel has
been chosen for unicast packet reception.

φ It denotes the channel load, calculated as a moving
average with decayα. The moving average computa-
tion gets re-initialized each time a frequency enters the
Candidate state again.

ψ It represents the packet loss ratio, calculated as a
moving average with decayη. The moving average
gets re-initialized each time the frequency is used
again.

ξ This is the composite value that reflects how com-
petitive a frequency is, and is used for frequency
comparison. It is a balanced reflection of a frequency’s
most recently measured loadφ, the frequency’s credit
history ω and its current usage by neighboring nodes
ϕ.

2) Candidate Frequency Guess: In SAS, each node needs
to be prepared for frequency switches when congested. So
it is helpful for each node to know the traffic load of other
physical frequencies, even though they are currently not inuse.
Considering scalability, it is energy and bandwidth intensive
for each node to keep track of the loads of all frequencies all
the time. However, it is not necessary to continuously carrier
sense all the frequencies, since each node only needs one
candidate frequency to switch to when congested.

An energy-efficient and scalable design is to let each node
guess one frequency that may have the highest possibility of
being the most lightly loaded frequency in the near future, and
place that frequency in theCandidate state. ACandidate
frequency may be discarded, when it is found to be likely
overloaded and hence no longer promising. In that case, the
frequency is placed in theInPool state again.

To assist in deciding when and how to guess a candidate
frequency, we introduce theξ parameter. As shown in Ta-
ble III-C.1, ξ is a composite metric, which characterizes the
frequency’s recently measured load (φ), the frequency’s credit
history (ω), and the number of neighboring nodes (ϕ) that are
currently using it. The frequency loadφ is computed as in
Equation (1). To compute a frequency’s credit history, SAS
uses the parameterω to record how many times a frequency
has been used, which reflects how many times this frequency
has been discarded and replaced by a better one. The greater
theω value, the higher the probability that the frequency will
be congested and discarded again in the near future, and hence,
the less promising the frequency is. Also, each node should
avoid competing for the same frequency with its neighbors.
When the number of available physical frequencies is no less
than the node density, SAS should give neighboring nodes
different frequencies to avoid congestion. When the numberof
available physical frequencies is very limited compared tothe
node density, each node in SAS needs to give higher priority to
frequencies that are shared among fewer neighbors. Hence, the

ϕ parameter is introduced to indicate the number of neighbors
that share a frequency. Taking these three into consideration,
parameterξ can be calculated as in Equation (2), whereβ and
γ are coefficients:

ξ = β × ω + γ × φ+ (1 − β − γ) × ϕ (2)

The first frequency guess happens at the end of the warm-up,
when the initialCandidate frequency needs to be decided.
After that, frequency guess is triggered when the Candidate
frequency’sξ value exceedsξThr. If the frequency guessing
causes the Candidate frequency to enter into theInPool
state again, theCandidate frequency is replaced with the
frequency in theInPool state (see Figure 5) that has the
smallestξ value.

3) Frequency Switch: As illustrated in Figure 5, when
a frequency switch happens, the current unicast frequency,
fUNI , switches its state fromInUse to InPool. In addition,
the Candidate frequency replaces theInUse frequency,
and a newCandidate frequency is picked out from the pool.
SincefUNI is only used for unicast reception, the frequency
switch is triggered when the monitored packet loss ratio of the
application is above a threshold.

Typically, there are two ways for a receiver to obtain the
packet loss ratio. One solution is to use a packet sequence
number. By tracking the sequence numbers and calculating
the gaps, a receiver is able to compute the packet loss ratio.
The second scheme is to use transmitter-receiver handshakes,
such as RTS-CTS-DATA-ACK in IEEE 802.11b [1]. However,
both of them introduce extra overhead and neither of them
takes advantage of the SAS design. In the first scheme, SAS
is required to get access to and understand the upper layer’s
sequence numbers, which violates SAS’s design goal of being
a generic multi-frequency middleware that does not depend on
support from the MAC protocol layered above it. The second
scheme introduces significant communication overhead.

Hence, we propose a novel scheme to implicitly compute
the packet loss ratio in SAS, by taking advantage of the toggle
snooping design described in Section III-B. In SAS, toggle
snooping is the default behavior of each receiver, which only
gets interrupted when a valid data signal is detected in the
air. If a packet is correctly received after an interruption, the
receiver knows that the communication has succeeded, other-
wise a communication failure is detected. This success/failure
binary status is obtained for free, and is recorded in the packet
loss variable,ψ̄, and a moving average valueψ is computed
with decayη as follows:

ψn+1 = η × ψn + (1 − η) × ψ̄ (3)

By comparing theψ value with a thresholdψThr, the fre-
quency switch is automatically triggered, whenψ ≥ ψThr.

IV. PERFORMANCEEVALUATION

We integrated B-MAC with SAS in TinyOS 2.1 on TelosB
motes and experimentally evaluated its performance and com-
pared it with that of regular B-MAC protocol. The experiments
were conducted in a campus building, where the primary

source of interference was the wireless network in the building.
As we mentioned in Section III-B, the data packets themselves
are used for notification. So the duration of the continuous
CCA check interval should be longer than the interval between
the transmission of successive notification data packets. This
check interval was set to be the maximum delivery delay in the
network. During this interval, the CCA check was performed
400 times, which is also the default value in the B-MAC code.
In order to deal with heavy traffic, when a node receives a
data packet on a channel, the radio continues to stay on that
channel for a certain short period. We set this period to100
milliseconds, which is the default value used in the B-MAC
code. We set the notification time (Tsend) to 20 milliseconds
for the transmitter and let the transmitter send data packets as
fast as possible. For the parameters presented in Section III, we
used the following values:α = 0.96, β = 0.45, γ = 0.35, and
η = 0.96. In each of the experiments, we varied the number of
data flows from1 to 3 and each sender transmitted10, 000 data
packets to a different receiver, to emulate an environmental
monitoring application. When there was more than one flow,
the receivers adaptively chose a different frequency during the
warmup stage, when B-MAC with SAS was used.

Figure 6(a) shows the packet reception ratio (PRR) achieved
by B-MAC with and without SAS, as the number of contend-
ing flows in the network increases. The PRR is calculated
as the ratio of the total number of data packets successfully
delivered to the total number of data packets transmitted. The
PRR when SAS is used remains almost100%, even when the
number of flows increases. On the other hand, B-MAC without
SAS delivers100% of its given load when there is only one
sender-receiver pair. However, the reception ratio drops to 99%
when there are2 simultaneous data flows, and further drops to
96% when there are3 data flows. This degradation may either
be due to collision or because the contention in the network
may result in the transmitter queues being full, forcing some of
the transmitters to drop some of the packets from their queues.

Figure 6(b) shows the measured system throughput. The
throughput measures the performance gain and is calculated
as the total amount of useful data successfully delivered in
the network per unit time. The packet size we used is54
bytes (data payload plus MAC header). With SAS, the total
network throughput achieved when there are3 contending
flows, is almost3 times that achieved when there is a single
flow. The reason is that the multi-frequency management in
SAS enables neighboring nodes to adaptively choose different
physical frequencies. As a result, when the number of flows
in the network increases, the MAC layer above SAS does
not suffer as much radio interference as the regular B-MAC
and more nodes are able to simultaneously transmit without
collisions. In the case of B-MAC without SAS, the total
throughput also increases when the number of flows increases.
However, due to congested channels, each node has to backoff
more number of times, in order to transmit one packet.

Figure 6(c) shows the average packet delay as the number
of contending flows in the networks increases. The packet
delay measures the one-way latency experienced by a data

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

1 2 3

P
ac

ke
t R

ec
ep

tio
n

R
at

io

Number of Flows

BMAC w.o. SAS BMAC w. SAS

(a) Packet Reception Ratio

2500

3500

4500

5500

6500

7500

8500

9500

10500

1 2 3

T
hr

ou
gh

pu
t (

 B
yt

e/
s)

Number of Flows

BMAC w.o. SAS BMAC w. SAS

(b) System Throughput

10

11

12

13

14

15

16

1 2 3

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Number of Flows

BMAC w.o. SAS BMAC w. SAS

(c) Average Packet Delay

1.64

1.65

1.66

1.67

1.68

1.69

1.70

1.71

1.72

1 2 3

E
ne

rg
y

C
on

su
m

pt
io

n
P

er

D
el

ie
ve

re
d

D
at

a
B

yt
e

(E
-6

 J
)

Number of Flows

BMAC w.o. SAS BMAC w. SAS

(d) Energy Consumption

Fig. 6. Delay and Overhead of SAS

packet from the time it is transmitted by the MAC layer on
the transmitter side to the time at which it is received by
the MAC layer on the receiver side. B-MAC without SAS
experiences a higher packet delay compared to B-MAC with
SAS. The average delay of B-MAC with SAS remains close
to 12 milliseconds as the number of flows increases from
1 to 3. In contrast, the packet delay for B-MAC without
SAS increases from12.6 milliseconds, when there is a single
sender-receiver pair, to15.3 milliseconds, when the number
of flows increases to3. The increased delay in the latter case
is primarily because the the number of backoff in B-MAC
increases as the number of flows increases. The delay when
using SAS does not increase significantly, since the load is
distributed across three frequencies.

The energy consumption per byte of successfully delivered
data is shown in Figure 6(d). This is the sum of the energy
consumed for sending a packet and for performing the CCA
check. The power level used for transmissions is0 dBm. With
SAS, the energy consumed remains almost constant, as the
number of flows increases from1 to 3, whereas in the case of
B-MAC without SAS, the energy consumed increases with the
number of flows. The reason is that when the traffic is heavy,
the packet loss is higher in the case of B-MAC without SAS
(see Figure 6(a)) and hence, more energy is spent in sending
data that was finally corrupted.

V. CONCLUSIONS

SAS is an adaptive spectrum management middleware for
wireless sensor networks, which provides a way to deal with
the problem of crowded spectrum. SAS is designed to en-
hance single-frequency MAC protocols with multi-frequency
capability, so that an existing MAC protocol like B-MAC, can
dynamically adapt to the least congested physical frequency
at runtime. This dynamic choice of frequency is useful in
order to address the performance degradation resulting from
interference and time-varying traffic patterns. Our performance
results, based on an implementation on a TelosB testbed,
demonstrate that SAS improves the performance of single-
frequency B-MAC, and results in higher packet reception ratio
and system throughput, and a lower packet delay. As part of
future work, we plan to perform a more extensive evaluation
of SAS, especially in the presence of dynamic traffic patterns
and with different radio platforms.

REFERENCES

[1] “IEEE 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification,” ANSI/IEEE Std. 802.11, 1999.

[2] “IEEE 802.15.1, Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Wireless Personal Area Networks
(WPANs),” IEEE Std. 802.15.1, 2002.

[3] “IEEE 802.15.4, Wireless Medium Access Control (MAC) and Physi-
cal Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs),” IEEE Std. 802.15.4, 2003.

[4] G. Zhou, J. A. Stankovic, and S. F. Son, “Crowded Spectrumin Wireless
Sensor Networks,” inIEEE EmNets, 2006.

[5] L. Selavo, G. Zhou, and J. A. Stankovic, “SeeMote: In-Site Visual-
ization and Logging Device for Wireless Sensor Networks,” in IEEE
BASENETS, 2006.

[6] F. Wang, M. Krunz, and S. Cui, “Spectrum Sharing in Cognitive Radio
Networks,” Tech. Rep., University of Arizona, 2007.

[7] J. So and N. Vaidya, “Multi-Channel MAC for Ad-Hoc Networks:
Handling Multi-Channel Hidden Terminal Using A Single Transceiver,”
in ACM MobiHoc, 2004.

[8] J. Mo, H. So, and J. Walrand, “Comparison of Multi-Channel MAC
Protocols,” in Symposium on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, 2005.

[9] J. Polastre, J. Hill, and D. Culler, “Versatile Low PowerMedium Access
for Wireless Sensor Networks,” inACM SenSys, 2004.

[10] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F.Abdelzaher,
“MMSN: Multi-Frequency Media Access Control for Wireless Sensor
Networks,” in IEEE INFOCOM, 2006.

[11] P. Bahl, R. Chancre, and J. Dungeon, “SSCH: Slotted Seeded Channel
Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless
Networks,” in ACM MobiCom, 2004.

[12] A. Raniwala and T. Chiueh, “Architecture and Algorithmfor an
IEEE 802.11-Based Multi-Channel Wireless Mesh Network,” in IEEE
INFOCOM, 2005.

[13] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A Multi-radio
unification protocol for IEEE 802.11 wireless networks,” inBroadNets,
2004.

[14] J. Li, Z. J. Haas, M. Sheng, , and Y. Chen, “Performance Evaluation
of Modified IEEE 802.11 MAC for Multi-Channel Multi-Hop Ad Hoc
Network,” in IEEE AINA 2003.

[15] N. Jain and S. R. Das, “A Multichannel CSMA MAC Protocol with
Receiver-Based Channel Selection for Multihop Wireless Networks,” in
IEEE IC3N, 2001.

[16] A. Tzamaloukas and J.J. Garcia-Luna-Aceves, “A Receiver-Initiated
Collision-Avoidance Protocol for Multi-Channel Networks,” in IEEE
INFOCOM, 2001.

[17] Z. Tang and J.J. Garcia-Luna-Aceves, “Hop-Reservation Multiple
Access (HRMA) for Ad-Hoc Networks,” inIEEE INFOCOM, 1999.

[18] Y. Wu, J. Stankovic, T. He, J. Lu, and S. Lin, “Realistic and Efficient
Multi-Channel Communications in Wireless Sensor Networks,” in IEEE
INFOCOM, 2008.

[19] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low
Power Wireless Research,” inACM/IEEE IPSN/SPOTS, 2005.

[20] J. Chang and N. F. Maxemchuk, “Reliable Broadcast Protocols,” in
ACM Transactions on Computer Systems, 1984.

	Introduction
	State of the Art
	SAS Design
	SAS Interface
	SAS Virtual Transceiver
	Runtime Frequency Switching
	WarmUp and Frequency Assignment
	Candidate Frequency Guess
	Frequency Switch

	Performance Evaluation
	Conclusions
	References

