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Abstract
Extensive empirical studies presented in this paper con-

firm that the quality of radio communication between low-
power sensor devices varies significantly with time and envi-
ronment. This phenomenon indicates that the previous topol-
ogy control solutions, which use static transmission power,
transmission range, and link quality, might not be effective
in the physical world. To address this issue, online trans-
mission power control that adapts to external changes is nec-
essary. This paper presents ATPC, a lightweight algorithm
for Adaptive Transmission Power Control in wireless sen-
sor networks. In ATPC, each node builds a model for each
of its neighbors, describing the correlation between trans-
mission power and link quality. With this model, we em-
ploy a feedback-based transmission power control algorithm
to dynamically maintain individual link quality over time.
The intellectual contribution of this work lies in a novel pair-
wise transmission power control, which is significantly dif-
ferent from existing node-level or network-level power con-
trol methods. Also different from most existing simulation
work, the ATPC design is guided by extensive field exper-
iments of link quality dynamics at various locations over a
long period of time. The results from the real-world exper-
iments demonstrate that 1) with pairwise adjustment, ATPC
achieves more energy savings with a finer tuning capability
and 2) with online control, ATPC is robust even with envi-
ronmental changes over time.

1 Introduction
With the integration of sensing and communication abil-

ities in tiny devices, wireless sensor networks are widely
deployed in a variety of environments, supporting military
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surveillance [1] [24], emergency response [41], and scien-
tific exploration [36]. The in-situ impact from these environ-
ments, together with energy constraints of the nodes, makes
reliable and efficient wireless communication a challenging
task. Under a constrained energy supply, reliability and effi-
ciency are often at odds with each other. Reliability can be
improved by transmitting packets at the maximum transmis-
sion power [13] [38], but this situation introduces unneces-
sarily high energy consumption. To provide system design-
ers with the ability to dynamically control the transmission
power, popularly used radio hardware such as CC1000 [6]
and CC2420 [7] offers a register to specify the transmission
power level during runtime. It is desirable to specify the min-
imum transmission power level that achieves the required
communication reliability for the sake of saving power and
increasing the system lifetime.

Although theoretical study and simulation provide a valu-
able and solid foundation, solutions found by such efforts
may not be effective in real running systems. Simplified as-
sumptions can be found in these studies, for example, static
transmission power, static transmission range, and staticlink
quality. These studies do not consider the spatial-temporal
impact on wireless communication. In this paper, we present
systematic studies on these impacts. There are a number of
empirical studies on communication reality conducted with
real sensor devices [43] [40] [44] [4] [29] [20]. Their results
suggest that for a specified transmission power and commu-
nication distance, the received signal power varies and the
link quality is unstable. But they do not focus on a system-
atic study on the radio and link dynamics in the context of
different transmission power settings. Our extensive exper-
iments with MICAz [8] confirm the observations presented
in previous work. We also go further and explore the radio
and link dynamics when different transmission power lev-
els are applied. Our experimental results identify that link
quality changes differently according to spatial-temporal fac-
tors in a real sensor network. To address this issue, we
design a pairwise transmission power control. Our empiri-
cal study also reveals that it is feasible to choose a minimal
and environment-adapting transmission power level to save
power, while guaranteeing specified link quality at the same
time.

To achieve the optimal power consumption for specified
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(a) Experiments on a Grass Field (b) Experiments in a Parking Lot (c) Experiments in a Corridor

Fig. 1. Experimental Sites

link qualities, we propose ATPC, an adaptive transmission
power control algorithm for wireless sensor networks. The
result of applying ATPC is that every node knows the proper
transmission power level to use for each of its neighbors, and
every node maintains good link qualities with its neighbors
by dynamically adjusting the transmission power through
on-demand feedback packets. Uniquely, ATPC adopts a
feedback-based and pairwise transmission power control. By
collecting the link quality history, ATPC builds a model for
each neighbor of the node. This model represents an in-situ
correlation between transmission power levels and link qual-
ities. With such a model, ATPC tunes the transmission power
according to monitored link quality changes. The changes
of transmission power level reflect changes in the surround-
ing environment. ATPC supports packet-level transmission
power control at runtime for MAC and upper layer protocols.
For example, routing protocols with transmission power as
a metric [33] [35] [12] [9] [5] can make use of ATPC by
choosing the route with optimal power consumption to for-
ward packets.

The topic of transmission power control is not new, but
our approach is quite unique. In state-of-art research, many
transmission power control solutions use a single transmis-
sion power for the whole network, not making full use of
the configurable transmission power provided by radio hard-
ware to reduce energy consumption. We refer to this group as
network-level solutions, and typical examples in this group
are [27] [25] [2] [18] [31]. Also, some other work takes the
configurable transmission powers into consideration. They
either assume that each node chooses a single transmission
power for all the neighbors [2] [18] [19] [28] [37] [17]
[26] [30] [22], which we refer to as node-level solutions, or
nodes use different transmission powers for different neigh-
bors [23] [42] [3], which we call neighbor-level solutions.
While these solutions provide a solid foundation for our re-
search, ATPC goes further to support packet-level transmis-
sion power control in a pairwise manner.

Also, most existing real wireless sensor network systems
use a network-level transmission power for each node, such
as in [13] [38]. These coarse-level power controls lead to
high energy consumption. The authors of [34] present a valu-

able study about the impact of variable transmission power
on link quality. Through our empirical experiments with
the MICAz platform, it is observed that different transmis-
sion powers are needed to achieve the same link quality over
time. This leads to our feedback-based transmission power
control design, which is not addressed in [34]. Also, the au-
thors of [34] use a fixed number of transmission powers (13
levels), which fixes the maximum accuracy for power tun-
ing. The ATPC we propose chooses different transmission
power levels based on the dynamics of link quality, and it
also allows for better tuning accuracy and more energy sav-
ings. Our approach essentially represents a good tradeoff
between accuracy and cost, a finer control at each node in
exchange for less energy consumption when transmitting the
packets.

In this work, we invest a fair amount of effort to obtain
empirical results from three different sites and over a rea-
sonably long time period. These results give practical guid-
ance to the overarching design of ATPC. We demonstrate
that ATPC greatly extends the system lifetime by choosing
a proper transmission power for each packet transmission,
without jeopardizing the quality of data delivery. In our
3-day experiment with 43 MICAz motes, ATPC achieves
above a 98% end-to-end Packet Reception Ratio in natu-
ral environment through fair and rainy days. The solu-
tions without online tuning can barely deliver half of pack-
ets. Compared to other solutions, ATPC also significantly
saves transmission power. With equivalent communication
performance, ATPC only consumes 53.6% of the transmis-
sion energy of the maximum transmission power solution
and 78.8% of the transmission energy of the network-level
transmission power solution. More specifically, the contri-
butions of our work lie in two aspects.

• Our systematic study and experiments reveal the spa-
tiotemporal impacts on wireless communication and
identify the relationship between dynamics of link qual-
ity and transmission power control.

• With run-time pairwise transmission power control, we
achieve high packet delivery ratio successfully with
small energy consumption under realistic scenarios.
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Fig. 2. Transmission Power vs. RSSI/LQI at Different Distances in Different Environments

The rest of this paper is organized as follows: the motiva-
tion of this work is presented in Section 2. In Section 3, the
design of ATPC is stated. In Section 4, ATPC is evaluated
in real world experiments. The state of the art is analyzed
in Section 5. In Section 6, conclusions are given and future
work is pointed out.

2 Motivation

Radio communication quality between low power sen-
sor devices is affected by spatial and temporal factors. The
spatial factors include the surrounding environment, suchas
terrain and the distance between the transmitter and the re-
ceiver. Temporal factors include surrounding environmen-
tal changes in general, such as weather conditions. In this
section, we present experimental results for investigation of
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these impacts. We note that previous empirical studies on
communication reality [43] [4] [44] [10] [29] [20] suggest
that for a specified transmission power, fixed communication
distance, and antenna direction, the received signal power
and the link quality vary. But they do not focus on a sys-
tematic study of the radio and link dynamics when differ-
ent transmission powers are considered. We conducted these
measurements, and we are the first to study systematically
the spatial and temporal impacts on the correlation between
transmission power and Received Signal Strength Indicator
(RSSI)/ Link Quality Indicator (LQI) [15]. Both RSSI and
LQI are useful link metrics provided by CC2420 [7]. RSSI
is a measurement of signal power which is averaged over 8
symbol periods of each incoming packet. LQI is a measure-
ment of the “chip error rate” [7] which is also implemented
based on samples of the error rate for the first eight symbols
of each incoming packet. Transmission power level index
refers to the value specified for the RF output power pro-
vided by CC2420 [7]. It can be mapped to output power in
units of dBm.

Our empirical results show that link quality is signifi-
cantly influenced by spatiotemporal factors, and that every
link is influenced to a different degree in a real system. This
observation proves that the assumptions made from previ-
ous work about the static impact of the environment on link
quality do not hold. Solutions based on these simplifying as-
sumptions may not accurately capture the dynamics of com-
munication quality, and may result in highly unstable com-
munication performance in real wireless sensor networks.
Therefore, the in-situ transmission power control is essential
for maintaining good link quality in reality.

2.1 Investigation of Spatial Impact

To investigate the spatial impact, we study the correlation
between transmission power and link qualities in three differ-
ent environments: a parking lot, a grass field, and a corridor,
as shown in Figure 1. We use one MICAz as the transmitter
and a second MICAz as the receiver. They are put on the
ground at different locations, maintaining the same antenna
direction. The transmitter sends out 100 packets (20 packets
per second) at each transmission power level. The receiver
records the average RSSI, the average LQI, and the number
of packets received at each transmission power level. The
experiments are repeated with 5 different pairs of motes in
the same environmental conditions to obtain statistical con-
fidence.

Figure 2 shows our experimental data obtained from one
pair of nodes in different environments. Each curve demon-
strates the correlation between the transmission power and
RSSI/LQI at a certain distance of that pair. The confidence
intervals (97%) of RSSI/LQI are also plotted on Figure 2.
Clearly, there is a strong correlation between transmission
power level and RSSI/LQI. We note that there is an approx-
imately linear correlation between transmission power and
RSSI in Figures 2 (a) (c) (e). The LQI curves in Figures 2 (b)
(d) (f) also present approximately linear correlations when
the LQI readings are small. However, the LQI readings suf-
fer saturation when they get close to 110, which is the max-

imum quality frame detectable by the CC2420 [7]. We also
notice that each LQI curve and its corresponding RSSI curve
demonstrate similar trends and variations. This is because
the LQI reading is also a representation of the SNR value,
which is the ratio of the received signal power level to the
background noise level.

The slopes of RSSI curves generally decrease as the dis-
tance increases, but this is not always true. According
to [32], RSSI is inversely proportional to the square of the
distance. To obtain the same amount of RSSI increase, a
larger transmission power increase is needed at a longer dis-
tance. However, in reality, this rule doesn’t always hold. For
example, in Figures 2 (a) and (c), the slopes of RSSI curves
at a distance of 18 feet are bigger than those at a distance
of 12 feet, which is caused by multi-path reflection and scat-
tering [43]. Therefore, this measured correlation is a better
reflection of the communication reality.

The shapes of RSSI/LQI curves based on the results from
a grass field (Figures 2 (a) and (b)), a parking lot (Figures 2
(c) and (d)) and a corridor (Figures 2 (e) and (f)) are signif-
icantly different from one another, even with the same dis-
tance and antenna direction between a pair of nodes. For ex-
ample, with a transmission power level of 20 and a distance
of 12 feet, the RSSI is -90 dBm on a grass field (Figure 2
(a)), while above -70 dBm in a corridor (Figure 2 (e)). Even
though the curves for 12 feet on a grass field and on a park-
ing lot are similar (Figures 2 (a) and (c)), the 6 feet curves in
these two environments are not quite the same (Figures 2 (a)
and (c)). These experimental results confirm that radio prop-
agation among low power sensor devices can be influenced
largely by environment [43] [44] [10]. Moreover, RSSI/LQI
with specified transmission power and distance varies in a
very small range and the degree of variations is related to the
environment. According to the confidence intervals (97%)
shown on Figure 2, RSSI readings are more stable than LQI.
The confidence intervals of RSSI are not observable at most
of the sampling points in Figures 2 (a) (c) and (e).

2.2 Investigation of Temporal Impact

We also investigate the impact of time on the correla-
tion between transmission power and link quality. Empirical
results in this section suggest that this correlation changes
slowly but noticeably over a long period of time. Therefore,
online transmission power control is requisite to maintainthe
quality of communication over time.

A 72-hour outdoor experiment is conducted to demon-
strate the variations of the radio communication quality over
time. We place 9 MICAz motes in a line with a 3-feet spac-
ing. These motes are wrapped in tupperware containers to
protect against the weather. The tupperware containers are
placed in brushwood. They are about 0.5 feet high above the
ground because the brushwood is very dense. During the ex-
periment, each mote sends out a group of 20 packets at each
transmission power level every hour. The transmission rate
is 10 packets per second. All the other motes receive and
record the average RSSI and the number of packets they re-
ceived at each transmission power level. The transmissions
of different motes are scheduled at different times to avoid
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Fig. 3. Transmission Power vs. RSSI at Different Times

collision.
In this experiment, data obtained from different pairs ex-

hibit similar trends. Figure 3 presents our empirical data ob-
tained from a pair of motes at a distance of 9 feet apart. Each
curve represents the correlation between transmission power
and RSSI at a specific time. The correlation between trans-
mission power and RSSI every 8-hour is plotted in Figure 3
(a). The shapes of these curves are different due to environ-
mental dynamics. As a result, different transmission power
levels are needed to reach the same link quality at different
times. For example, to maintain RSSI value at -89 dBm, the
transmission power level needs to be 11 at 0 AM on the first
day, while at 4 PM on the second day the transmission power
level needs to be 20. Figure 3 (b) shows the hourly changes
of the correlation. From Figure 3 (b), we can see that the re-
lation between transmission power and RSSI changes more
gradually and continuously than that in Figure 3 (a). For
example, the maximum change in RSSI is 8 dBm over an 8-
hour period in Figure 3 (a), while it is 3 dBm over a one-hour
period in Figure 3 (b).

These curves are approximately parallel, and the relation-
ship between transmission power and RSSI varies differently
at different times of day. For example, in Figure 3 (a) the
curve at 4 PM on the first day is much lower than the curve
at 8 AM on the first day. The same variation happens on
curves at 8 AM and 4 PM on the second day, but the de-
gree of variation is different. All these results indicate that
it is critical for transmission power control algorithms pro-
posed for sensor networks to address the temporal dynamics
of communication quality.

2.3 Dynamics of Transmission Power Control

To establish an effective transmission power control
mechanism, we need to understand the dynamics between
link qualities and RSSI/LQI values. In this section, we
present empirical results that demonstrate the relation be-
tween the link quality and RSSI/LQI. The key observations,
which serve as the basis of our work, are as follows:

• Both RSSI and LQI can be effectively used as binary
link quality metrics for transmission power control.

• The link quality between a pair of motes is a detectable
function of transmission power.

2.3.1 Link Quality Threshold

Wireless link quality refers to the radio channel communi-
cation performance between a pair of nodes. PRR (packet re-
ception ratio) is the most direct metric for link quality. How-
ever, the PRR value can only be obtained statistically over
a long period of time. Our experiments indicate that both
RSSI and LQI can be used effectively as binary link quality
metrics for transmission power control1. We record the PRR
and the average RSSI/LQI for every group of 100 packets
from a grass field (Figures 4 (a) and (d)), a parking lot (Fig-
ures 4 (b) and (e)) and a corridor (Figures 4 (c) and (f)). All
experimental results show that both RSSI and LQI have a
strong relationship with PRR. There is a clear threshold to
achieve a nearly perfect PRR. However, these thresholds are
slightly different in different environments. Take RSSI asan
example: the 95% PRR threshold of RSSI is around -90 dBm
on the grass field (Figure 4 (a)), -91 dBm on the parking lot
(Figure 4 (b)), and -89 dBm in the corridor (Figure 4 (c)).

2.3.2 Relations between Transmission Power and
RSSI/LQI

Radio irregularity results in radio signal strength variation
in different directions, but the signal strength at any point
within the radio transmission range has a detectable correla-
tion with transmission power in a short time period.

In short term experiments, the correlation between trans-
mission power and RSSI/LQI for a pair of motes at a certain
distance is generally monotonic and continuous. From Fig-
ure 2, the overall trend of RSSI increases linearly when the
transmission power increases.

1It is still controversial whether RSSI or LQI is a better indicator
on link quality [43] [29] [20].
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However, RSSI/LQI fluctuates in a small range at any
fixed transmission power level. So, the correlation between
transmission power and RSSI/LQI is not deterministic. For
example, Figure 5 shows the RSSI upper bound and lower
bound of 100 received packets at each transmission power
level when we place two motes 6-feet apart on a grass field.
This result confirms the observation from previous stud-
ies [43] [44] [10].

There are mainly three reasons for the fluctuation in the
RSSI and LQI curves. First, fading [32] causes signal
strength variation at any specific distance. Second, the back-
ground noise impairs the channel quality seriously when the
radio signal is not significantly stronger than the noise sig-
nal. Third, the radio hardware doesn’t provide strictly stable
functionality [7].

Since the variation is small, this relation can be approxi-
mated by a linear curve. The correlation between RSSI and

transmission power is approximately linear, and the corre-
lation between LQI and transmission power is also approx-
imately linear in a range. From the confidence intervals in
Figure 2, we can see that RSSI and LQI are both relatively
stable when these values are not small. All the points with
confidence intervals bigger than 1 correspond to low link
quality points in Figure 4, and the RSSI/LQI values which
have the most fluctuations are below the good link quality
thresholds. Since we are only interested in RSSI/LQI sam-
plings that are above or equal to the good link quality thresh-
old, it is feasible to use a linear curve to approximate this
correlation. This linear curve is built based on samples of
RSSI/LQI. This curve roughly represents the in-situ correla-
tion between RSSI/LQI and transmission power.

This in-situ correlation between transmission power and
RSSI/LQI is largely influenced by environments, and this
correlation changes over time. Both the shape and the degree
of variation depend on the environment. This correlation also
dynamically fluctuates when the surrounding environmental
conditions change. The fluctuation is continuous, and the
changing speed depends on many factors, among which the
degree of environmental variation is one of the main factors.

3 Design of ATPC

Guided by the observations obtained from empirical ex-
periments, in this section, we propose our Adaptive Trans-
mission Power Control (ATPC) design. The objectives of
ATPC are: 1) to make every node in a sensor network find the
minimum transmission power levels that can provide good
link qualities for its neighboring nodes, to address the spatial
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impact, and 2) to dynamically change the pairwise transmis-
sion power level over time, to address the temporal impact.
Through ATPC, we can maintain good link qualities between
pairs of nodes with the in-situ transmission power control.

Figure 6 shows the main idea of ATPC: a neighbor table
is maintained at each node and a feedback closed loop for
transmission power control runs between each pair of nodes.
The neighbor table contains the proper transmission power
levels that this node should use for its neighboring nodes and
the parameters for the linear predictive models of transmis-
sion power control. The proper transmission power level is
defined here as the minimum transmission power level that
supports a good link quality between a pair of nodes. The lin-
ear transmission power predictive model is used to describe
the in-situ relation between the transmission powers and link
qualities. Our empirical data indicate that this in-situ relation
is not strictly linear. Therefore, we cannot use this model to
calculate the transmission power directly. Our solution isto
apply feedback control theory to form a closed loop to gradu-
ally adjust the transmission power. It is known that feedback
control allows a linear model to converge within the region
when a non-linear system can be approximated by a linear
model, so we can safely design a small-signal linear control
for our system, even if our linear model is just a rough ap-
proximation of reality.

3.1 Predictive Model for Transmission Power
Control

The design objective is to establish models that reflect the
correlation of the transmission power and the link quality
between the senders and the receivers. Based on our em-
pirical study and analysis in Section 2, we formulate a pre-
dictive model to characterize the relation between transmis-
sion power and link quality. Since no single model can cap-
ture precisely the per-network, or even per-node behavior,
we shall establish pairwise models, reflecting the in-situ im-
pact on individual links. Based on these models, we can pre-
dict the proper transmission power level that leads to the link
quality threshold.

The idea of this predictive model is to use a function to
approximate the distribution of RSSIs at different transmis-
sion power levels, and to adapt to environmental changes
by modifying the function over time. This function is con-
structed from sample pairs of the transmission power levels
and RSSIs via a curve-fitting approach. To obtain these sam-

ples, every node broadcasts a group of beacons at different
transmission power levels, and its neighbors record the RSSI
of each beacon that they can hear and return those values.

We formulate this predictive model in the following way.
Technically, this model uses a vectorT P and a matrixR.
T P = {t p1, t p2, ..., t pN}. T P is the vector containing dif-
ferent transmission power levels that this mote uses to send
out beacons.|T P| = N. N, the number of different trans-
mission power levels, is subject to the accuracy require-
ment for applications. Ideally the more sampling data we
have, the more accurate this model could be. MatrixR con-
sists of a set of RSSI vectorsRi, one for each neighbor
(R = {R1, R2, ..., Rn}

T ). Ri =
{

r1
i , r2

i , ..., rN
i

}

is the RSSI

vector for the neighbori, in which r j
i is a RSSI value mea-

sured at nodei corresponding to the beacon sent by transmis-
sion power levelt p j. We use a linear function (Equation 1)
to characterize the relationship between transmission power
and RSSI on a pairwise basis.

ri(t p j) = ai · t p j +bi (1)

We adopt a least square approximation, which requires lit-
tle computation overhead and can be easily applied in sensor
devices. Based on the vectors of samples, the coefficientsai
andbi of Equation 1 are determined through this least square
approximation method by minimizingS2.

∑
(

ri(t p j)− r j
i

)2
= S2 (2)

Accordingly, the value ofai and bi can be obtained in
Equation 3:

[

ai
bi

]

=
1

N ∑N
j=1 (t p j)

2− (∑N
j=1 t p j)2

×

[

∑N
j=1 r j

i ∑N
j=1 (t p j)

2−∑N
j=1 t p j ∑N

j=1 t p j · r
j
i

N ∑N
j=1 t p j · r

j
i −∑N

j=1 t p j ∑N
j=1 r j

i

]

, (3)

wherei is the neighboring node’s ID andj is the number of
transmissions attempted. Usingai andbi together with a link
quality thresholdRSSILQ identified based on experiments in
Section 2.3, we can calculate the desired transmission power
t p j =

RSSILQ−bi
ai

.
Note that Equation 3 only establishes an initial model.

We need to update this model continuously while the envi-
ronment changes over time in a running system. Basically,
the values ofai and bi are functions of time. These func-
tions allow us to use the latest samples to adjust our curve
model dynamically. Based on our experimental results in
Section 2,ai, the slope of a curve, changes slightly in our
3-day experiment, whilebi changes noticeably over time.
Therefore, once the predictive model of ATPC is built,ai
does not change any longer.bi(t) is calculated by the lat-
est transmission power and RSSI pairs from the following
feedback-based equation.

bi(t) =
∑K

t=1 [RSSILQ − ri(t −1)]

K
(4)
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Hereri(t −1) is the RSSI value of the neighboring node
i during time periodt −1. K is the number of feedback re-
sponses received from this neighboring node at time period
t − 1. Although the link quality varies significantly over a
long period of time, it changes gradually and continuously
at a slow rate. Our experiments indicate that one packet per
hour between a pair is enough to maintain the freshness of
the model in a natural environment. If the network has a rea-
sonable amount of traffic, such as several packets per hour,
nodes can use these packets to measure link quality change
and piggyback RSSI readings. In this way, these models are
refreshed with little overhead.

� �� ���� �� 	�
 ��� ��	
�� � ��� 
���� ��� �����	��� ������ ��	��� ��� �� 	�
 ���� �� �� ������ ��� � ��� �
��������� 

+

+

)1(

)1(1

krssi

krssi

m

!
"""#$%%%&'

+

+

)1(

)1(1

ktp

ktp

m

()))*+,,,-.
)(),(

)(),( 11

kbka

kbka

mm

// 0001233345
)()1(

)()1(1

krssirssi

krssirssi

mm

n677 6
8��� 9��: ;�� <���� � =���

��� ������ ��� � > ; �	 : ? �� ���@� A ��� A� ��BCDEFGHICJKLCMMNONDPN; �	:? �� ���@��	 ��� �QRST U
QT VW XYR Z [

Fig. 7. Feedback Closed Loop Overview for ATPC

3.2 Implementation of ATPC
The implementation of ATPC on sensor devices is pre-

sented in this subsection. We discuss mainly four aspects:
1) the two phase design and the feedback closed loop for
pairwise transmission power control, 2) the parameters that
affect system performance, 3) the techniques that optimize
system performance and reduce the cost, and 4) the other
issues.

ATPC has two phases, the initialization phase and the run-
time tuning phase.

In the initialization phase, a mote computes a predictive
model and chooses a proper transmission power level based
on that model for each neighbor. Since wireless communi-
cation is broadcast in nature, all the neighbors can receive
beacons and measure link qualities in parallel. Based on
this property, every node broadcasts beacons with different
transmission power levels in the initialization phase, andits
neighbors measure RSSI/LQI values corresponding to these
beacons and send these values back by a notification packet.

In the runtime tuning phase, a lightweight feedback mech-
anism is adopted to monitor the link quality change and tune
the transmission power online. Figure 7 is an overview pic-
ture of the feedback mechanism in ATPC. To simplify the de-
scription, we show a pair of nodes. Each node has an ATPC
module for transmission power control. This module adopts
a predictive model described in the previous subsection for
each neighbor. It also maintains a list of proper transmission
power levels for neighbors of this mote. When node A has a
packet to send to its neighbor B, it first adjusts the transmis-
sion power to the level indicated by its neighbor table in the

ATPC module, and then transmits the packet. When receiv-
ing this packet, the link quality monitor module at its neigh-
bor B takes a measurement of the link quality. Based on the
difference between the desired link quality and actual mea-
surements, the link quality monitor module decides whether
a notification packet is necessary. A notification packet is
necessary when 1) the link quality falls below the desired
level or 2) the link quality is good but the current signal en-
ergy is so high that it wastes the transmission energy. The
notification packet contains the measured link quality differ-
ence. When node A receives a notification from its neighbor
B, the ATPC module in node A uses the link quality differ-
ence as the input to the predictive model and calculates a new
transmission power level for its neighbor B.

If achieving good link quality requires using the maxi-
mum transmission power level, ATPC adjusts the transmis-
sion power to the maximum level. If using the maximum
transmission power level could not achieve good link qual-
ity, this link is marked so that routing protocols, like [33]
[35] [12] [9] [5], can choose another route based on the
neighbor table provided by ATPC. If all the routes cannot
provide good link quality, the mote can do best-effort trans-
mission to a neighbor with relative good link quality by using
the maximum transmission power level.

There is a tradeoff between accuracy and cost when ap-
plying ATPC. The practical values of these parameters are
obtained from analysis and empirical results. These impor-
tant parameters include the link quality thresholds, the sam-
pling rate of transmission power control, the number of sam-
ple packets in the initialization phase, and the small-signal
adjustment of transmission power control, which is propor-
tional to the link quality error. Choices of parameters are
essential for obtaining good performance.

The link quality monitor can have any of the following
three criteria to estimate link quality changes. The first one
is the link quality reflected by the RSSI value, the second one
is the LQI value if available, and the last one is the packet
reception ratio as detected by sequence number monitoring.
Our design is compatible with all these methods. Without
loss of generality, we use both RSSI and PRR in our exper-
iments. We note that the theory described in section 3.1 is
good guidance in ideal conditions.

To monitor the link quality by referring to RSSI values,
we set two link quality thresholds.LQupper is an upper
threshold andLQlower is a lower threshold. As long as the
RSSI value of the received packet lies within this range, the
system is in steady state. When a link is in steady state,
the receiver does not need to send a notification packet to
the sender, and the sender does not adjust the transmission
power. The range of [LQlower, LQupper] is critical to en-
ergy savings and tuning accuracy. If the range of [LQlower,
LQupper] is too small, radio signal fading may result in the
oscillation of transmission power. If the range of [LQlower,
LQupper] is too big, the transmission power control result
may not be accurate enough, and the optimal power control
will not be achieved. In our implementation, the value of
LQlower is chosen to guarantee that the link quality does not
drop below the tolerance level. With respect toLQupper in
our design, its value is chosen to trade off the energy cost
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paid to transmit notifications and the energy saved to trans-
mit data packets. This is a simple calculation for choosing
LQupper which compares the energy consumed by sending a
control packet with the energy saved forn data packets after
tuning the transmission power. In our experiment, we use n =
2 for simplicity. Thus, energy savings are achieved when at
least two data packets are transmitted using the tuned trans-
mission power level, compared to the energy consumed by
transmitting a notification packet.

A good feedback sampling rate is essential to maintain the
link quality at a desired level while minimizing the control
overhead. Two main factors influence the feedback sampling
rate: link quality dynamics and network traffic. On one hand,
the higher the link quality dynamics, the higher the sampling
rate needed. Based on our empirical results in Figure 3, the
maximum link quality variation per 8-hour is 8 dBm and the
maximum link quality variation per hour is 3 dBm. In order
to keep link quality error under 3 dBm, a sampling rate of 1
packet per hour is necessary. On the other hand, the regu-
lar network traffic can be used for ATPC sampling purposes
and considered as ATPC’s input. When the network traffic
is higher than this sampling rate, notification packets can be
sent on demand. There is only a low number of notification
packets needed and the control overhead is minimized. Our
running system evaluation demonstrates that this design is
very efficient. On average, 8 on-demand notification packets
are sent per link per day to deal with the runtime link quality
dynamics.

In applications with periodic multi-hop traffic, an over-
hearing approach can save the overhead of notification pack-
ets. Along the data transfer route, when a node is forward-
ing packets to its next hop, it can incorporate an extra byte
to record the RSSI value of the previous hop transmission
in the packet, and then the sender of the previous hop can
overhear the corresponding RSSI, thus eliminating explicit
notifications.

Another optimization technique is to use ATPC only on
critical paths with heavy traffic, so ATPC can extend the sys-
tem lifetime while supporting a high quality end-to-end com-
munication with little control overhead. For those links with
a low traffic load, directly using a conservative transmission
power level is a good tradeoff between communication qual-
ity and energy savings. This is because nodes do not need to
periodically generate control packets to monitor link quality.

Based on our empirical results, the RSSI readings can be
affected by stochastic environmental noise. For example, the
RSSI with a certain beacon packet can be unexpectedly high
or low, which is inconsistent with the monotonic relationship
between transmission power and RSSI. Filtering such noise
input can enhance the accuracy of ATPC’s modeling. On the
other hand, if some RSSI with a certain transmission power
level falls in our desired link quality range, using the cor-
responding transmission power level directly also enhances
ATPC’s performance.

The code for ATPC mainly includes functions for linear
approximation. The code size is 14122 bytes in ROM. The
data structures in ATPC mainly include a neighbor table, a
vectorT P and a matrixR as described in Section 3.1. For a
node with 20 neighbors, the data size is 2167 bytes in RAM.

4 Experimental Evaluation

ATPC is evaluated in outdoor environments. We first eval-
uate ATPC’s predictive model described in Section 3.1 with
a short term experiment. We then describe a 72-hour ex-
periment to compare ATPC against network-level uniform
transmission power solutions and a node-level non-uniform
transmission power solution. According to our empirical re-
sults, ATPC’s advantages lie in three core aspects:

1. ATPC maintains high communication quality over time
in changing weather conditions. It has significantly bet-
ter link qualities than using static transmission power
in a long term experiment, which confirms our observa-
tions in Section 2.2. Moreover, it maintains equivalent
link qualities as using the maximum transmission power
solution.

2. ATPC achieves significant energy savings compared
to other network-level transmission power solutions.
ATPC only consumes 53.6% of the transmission en-
ergy of the maximum transmission power solution, and
78.8% of the transmission energy of the network-level
transmission power solution.

3. ATPC accurately predicts the proper transmission
power level and adjusts the transmission power level in
time to meet environmental changes, adapting to spatial
and temporal factors.
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Fig. 9. Topology Fig. 10. Experimental Site

 
Date March 19 March 20 March 21 March 22 
High  56º F 54º F 41º F 49º F 
Low  27º F 31º F 31º F 30º F 
Precip. 0 inch 0 inch 0.05 inch 0 inch 
Condition Fair Mostly Fair Cloudy, Light 

Rain during 
10am ~ 12am 

Mostly Fair 

 

Fig. 11. Weather Conditions over 72 Hours

4.1 Initialization Phase

In the initialization phase of ATPC, each mote broadcasts
a group of beacons. Its neighbors record the RSSI and the
corresponding transmission power level of each beacon that
they can hear, and then send them back to the beaconing
node. Using these pairs of values as input for the ATPC
module, the beaconing node builds the predictive models and
computes the transmission power level for each of its neigh-
bors.

To evaluate the accuracy of the initialization phase, an ex-
periment is conducted in a parking lot with 8 MICAz motes;
it is repeated for 5 times. These motes are put in a line 3
feet apart from adjacent nodes. Each mote runs ATPC’s ini-
tialization phase in a different time slot, sending out 8 bea-
cons at a fixed rate using different transmission power levels.
These transmission power levels are distributed uniformlyin
the transmission power range supported by the CC2420 radio
chip. After the initialization phase of ATPC, each mote sends
a group of 100 packets to its neighbors using predicted trans-
mission power levels. Its neighbors record the average RSSI
and PRR. The experimental results are shown in Figure 8 (a)
and Figure 8 (b). Every point in Figure 8 (a) demonstrates a
pair of the predicted transmission power level and the PRR
when using that power level. In all these experiments, the av-
erage PRR is 99.0%. From Figure 8 (a), we can see that all
the RSSI readings are above or equal to -91 dBm. The stan-
dard deviation of the RSSI is 2. According to Section 2.3.1,
RSSIs that are above -91 dBm means good link quality in a
parking lot. These results prove that the predictive model of
ATPC works well. Moreover, in our long term experiments,
the predicted transmission power levels of all the nodes that
were obtained in ATPC’s initialization phase are in the de-
sired range.

4.2 Runtime Performance

To evaluate the runtime performance, we compare ATPC
against existing transmission power control algorithms:
network-level uniform solutions and a node-level non-
uniform solution (Non-uniform). Two kinds of network-
level transmission power levels are used: the max trans-
mission power level (Max) and the minimum transmission
power level over nodes in the network that allows them to
reach their neighbors (Uniform). A 72-hour continuous ex-
periment is conducted to evaluate the energy savings and
communication quality of ATPC over time. The empirical
data shows that ATPC achieves the best overall performance

in terms of communication quality and energy consumption.
The 3-hop end-to-end PRR of ATPC is constantly above 98%
over three days, and ATPC greatly saves transmission power
consumption compared to network-level uniform transmis-
sion power solutions.

4.2.1 Experiment Setup

A 72-hour experiment is conducted on a grass field with
43 MICAz motes. These motes are deployed according to
a randomly generated topology. They form a spanning tree
as shown in Figure 9. The root of the spanning tree is at
the center of Figure 9. The deployed area is a 15-by-15 me-
ter square. Figure 10 is a picture of the node deployment
for one of our experiments on a grass field. All the motes
are placed in tupperware containers to protect against the
weather. According to our experiments, these plastic boxes
(non-conducting material) do not attenuate radio waves sig-
nificantly.

There are 24 total leaf nodes in this spanning tree. These
leaf nodes report data to the base node hourly. Each hour
is evenly divided into 24 time slots and different leaf nodes
are assigned to different time slots. Transmissions of dif-
ferent motes are scheduled at different times to avoid col-
lision. Each leaf node reports 32 packets to the base node
at a transmission rate of 15 packets per minute in its time
slot. These packets are divided into 4 groups, correspond-
ing to different transmission power control solutions: ATPC,
Max, Uniform, and Non-Uniform. These four algorithms are
evaluated in the same environment. The predicted transmis-
sion power level obtained in ATPC’s initialization phase is
used for Non-Uniform, which satisfies the assumption that it
is the minimum transmission power for each node to reach
its neighbors. We use the maximum predicted transmission
power level of all nodes obtained in ATPC’s initialization
phase for Uniform. This transmission power level is the min-
imum transmission power level over all nodes to reach their
neighbors. Max, Uniform, and Non-Uniform all use static
transmission power. The statistical data about number of
packets sent and received and the transmission power level
used for each solution are recorded at each mote. In this ex-
periment, for simplicity, each node considers its parent inthe
spanning tree as its neighbor. This experiment is deployed
on 6 PM on March 19, and finished on 7 PM on March 22.
There was a shower that lasted for 2 hours on the morning of
March 21. Figure 11 shows the weather conditions of these
days.
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4.2.2 Data Delivery Ratio

Figure 12 shows the cumulative end-to-end PRR over
time. From this figure, we can see that Max achieves 100%
end-to-end PRR all the time. As using the maximum trans-
mission power makes the RSSI values at the receiver the
highest of all solutions, it is robust to random environmental
changes and noise.

ATPC and Uniform both achieve around 98% cumulative
end-to-end PRR. ATPC has a little better performance than
Uniform for 83% of the experimental time. However, the
reasons for packet loss of these two solutions are quite dif-
ferent. For ATPC, half of these end-to-end links have 100%
PRR. The other 12 links from leaves to the base node suffer
from random packet loss from time to time. For Uniform,
the packet loss mainly happens at 2 specific links. These
links have the same predicted transmission power level as
the uniform transmission power level. We pick up one of
these two links and plot its PRRs over time in Figure 13.
From Figure 13, we compare the PRRs of this link when it
works in Uniform and ATPC. This link quality maintained
by this static transmission power level is much more vulner-
able to environmental changes. After the first 12 hours, the
PRR of the link with static transmission power in Uniform
drops dramatically, and it is above 95% PRR only 25% of the
time. On the other hand, the same link with ATPC constantly
achieves above 99% PRR while exposed in the same environ-
ment and using the same radio hardware. These two weak
links are between leaf nodes and first-level parent nodes, so
the packet loss they caused does not have a big impact on the
average end-to-end PRR. However, if such a static transmis-
sion power level is used at links with more traffic, such as
a link between a 2-level parent and the base, the end-to-end

communication quality would drop severely.
Non-Uniform solution has weak performance over time.

All the links in this solution are vulnerable to link qual-
ity variation. However, in the short term and in relatively
static weather conditions, Non-Uniform can achieve more
than 99% end-to-end PRR, as shown in Figure 12. After the
first 12 hours, the communication quality of Non-Uniform
becomes poor and unstable. We also notice that the variation
of its trend is much bigger than other solutions. It means
the end-to-end PRR with these static transmission power
levels at certain time periods can be significantly better or
worse than at other time periods of the day. This observa-
tion confirms our judgment that the dynamics of link quality
may make communication performance unstable and unpre-
dictable when assuming static transmission power.

Considering the quality of wireless communication,
ATPC and maximum transmission power solutions are
proper to apply in real systems.
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4.2.3 Power Consumption
The total energy consumption of the network is measured

in the radio’s transmission mode when different schemes are
used. We calculate the total energy spent in the transmit state
of the system by the following formula,

E = ∑n

i=1

(

∑max
j=min ((NumDi j ×T E j)×LD)+NumCi ×maxT E ×LC

)

, (5)

wherei is the node ID andj is the transmission power level.
NumDi j is the number of data packets sent at nodei with
transmission power levelj. T E j is the transmission energy
consumed per bit from [7].LD is the length of a data packet,
which is 45 bytes. All the control packets are sent with the
maximum transmission power level.NumCi is the number
of control packets (beacons and notifications) sent at nodei.
maxT E is the transmission energy per bit when using the
maximum transmission power level. We getmaxT E also
from [7]. LC is the length of a control packet, which is 19
bytes. In our experiments, the ratio of the number of control
packets and the number of data packets is 3.9%. The ratio
of the energy consumed by control packets and the energy
consumed by data packets is 1.9%. ATPC achieves energy-
efficient transmission with small control overhead.

For better comparison, we take the energy consumption
of the Max scheme as the base line, which is unit 1 in Fig-
ure 14. The power consumptions of the other three schemes
are represented as percentage values compared with this base
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line. The empirical data demonstrate that ATPC and Non-
Uniform consume the least transmission energy. Consider-
ing that ATPC has much better communication quality than
Non-Uniform, ATPC is the most energy-efficient solution.
In Figure 14, ATPC has much less transmission energy con-
sumption than Max and Uniform. Although ATPC has ex-
tra beacon and feedback packets, the average transmission
energy consumption of ATPC is about 53.6% of Max and
78.8% of Uniform.

The trend of ATPC’s energy consumption varies a little
bit. The main factor causing this variation is the transmis-
sion power level variation. There are only 3 feedback pack-
ets per link per day on average. Comparing ATPC with Non-
Uniform in the first 6 hours, ATPC has similar energy con-
sumption as Non-Uniform. The reason is that the transmis-
sion power level of each mote does not change much in the
first 6 hours. In the next 6 hours, Non-Uniform has higher
energy consumption than ATPC because a large number of
nodes decrease their transmission power level to save energy
in ATPC. Later, the transmission energy of Non-Uniform
drops mainly because of its low PRR, which reduces the
number of transmission relays.

Max and Uniform have relatively stable transmission en-
ergy consumptions because they use a static transmission
power level and their network throughput is stable. The
transmission power level used in Uniform largely depends on
the topology. In a network with long distance neighbors, this
uniform transmission power level tends to get close to the
maximum transmission power level. Both solutions waste
significant transmission energy compared to ATPC.

The total energy consumption of the Non-Uniform varies
because its network throughput varies. Compared to the
other solutions, it consumes the least transmission energy
over time. It doesn’t have the overhead of feedback in ATPC,
but the energy is not used efficiently due to its low commu-
nication quality. However, it may provide good communica-
tion quality and save energy in the short term.

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

0 6 12 18 24 30 36 42 48 54 60 66 72

Time (hours)

T
ra

n
sm

is
si

o
n

 P
o

w
er

 L
ev

el
 In

d
ex

Link A

Link B

Link C

Fig. 15. Average Transmission Power Level Over Time

We choose three links and plot the average transmission
power they used over time in Figure 15. All these links con-
stantly have above 98% PRR. From Figure 15, we have two
main observations as follows.

From a historical record of the tuning process in ATPC,
it is confirmed that link qualities vary significantly in real-
ity. Though all these links work in the same environment,

the tuning rate and range of transmission power for different
links can be significantly different. We can see Link A has
a large varying range, which means high sensitivity to envi-
ronmental changes. Transmission power of Link C is quite
stable; it is a robust link to environmental changes. The vari-
ation of transmission power of Link B is in between. Link B
is a more typical case in our experiments.

ATPC is robust in handling dynamics of link quality in
reality, according to differences of link conditions. Although
all these links are exposed to the same environment, the im-
pacts of the environment on them are link-specific. ATPC
successfully adjusts the transmission power differently.It
also confirms our judgments in Section 2.3.2 both that en-
vironmental change is a major reason for the transmission
power adjustment, and that the adjustment speed depends on
the variation speed of the environment.

To summarize, ATPC maintains above 98% end-to-end
communication quality while saving transmission power sig-
nificantly. The static non-uniform transmission power solu-
tion may work well on the short term in static environments,
but its communication qualities are very vulnerable to envi-
ronmental changes. The maximum transmission power so-
lution is robust with regard to environmental changes but
wastes transmission energy.

5 State of the Art
There are three categories of research topics related to

our ATPC: Transmission Power Control, Topology Control
and empirical studies on wireless radio communication.

There is a small number of research on realistic transmis-
sion power control for wireless sensor networks. The au-
thors of [34] provide a valuable study about the impact of
transmission power control on link qualities and propose a
novel blacklisting approach. The ATPC we propose is dif-
ferent from their work. First, since link quality varies with
time, different transmission powers are needed to maintain
the same desired link quality. ATPC uses a feedback-based
scheme to pick optimal power levels at different times; thisis
not addressed in [34]. Second, protocol [34] fixes the num-
ber of configurable power levels, reducing the design flex-
ibility and also limiting the maximum power tuning accu-
racy that can be achieved. Also, [16] makes an experimental
comparison of several existing transmission power control
algorithms, and in [14], the authors give a short survey of
transmission power control.

There is some other work on transmission power con-
trol evaluated in simulation. In [28], the authors formulate
the transmission power adjustment problem for static and
dynamic network topologies. The authors of [37] describe
a power control algorithm to increase transmission power
to reach neighbors. Protocol [25] introduces cluster-based
transmission power control. The authors of [21] propose
an algorithm which increases transmission power to reach
neighbors in every cone of a certain degree. Most of these
works are simulation-based and they ignore the in-situ im-
pact on communication quality in reality. Our approach is
based on systematic empirical studies and we adopt a unique
feedback-based approach, tuning link quality pairwise.
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Topology control research is a well-studied area in ad hoc
and sensor network communities. The goal of a significant
portion of these efforts is to achieve better network perfor-
mance, considering throughput, connectivity, network size,
traffic load, and so on. These works can be classified in
three major categories according to the transmission range
and power assumptions: network-level uniform transmission
power [27] [25] [2] [18] [31], node-level non-uniform trans-
mission power [11] [2] [18] [19] [28] [37] [17] [26] [30] [22],
and neighbor-level transmission power solutions [23] [42]
[3]. Most of these works are based on simulations, which
carry the assumptions that the transmission range is static,
circular, and within the transmission range the link quality
is perfect and never changes. However, such assumptions
do not hold in reality. Therefore, solutions making these as-
sumptions may lead to unstable and unpredictable commu-
nication qualities. ATPC, based on empirical studies about
communication reality, addresses the practical issues of ra-
dio and link dynamics.

There are a number of experimental research results on
radio communication reality in wireless sensor networks.
In [10] [40], the authors extensively study communication
reality in a large scale sensor network. The authors of [43]
study the impact of spatial-temporal characteristics on packet
loss, and its environmental dependence on packet delivery
performance in a wireless sensor network. The authors
of [44] give a lot of insight on causes of the radio irregularity
phenomenon. In [29], the authors suggest using RSSI value
as a reliable parameter to predict a reception rate. The au-
thors of [20] study the relationship between SNR and PRR.
With different foci, these experimental works are comple-
mentary to our work.

Although the literature is rich, simplifying assumptions
may hinder most work from being applied directly to physi-
cally deployed sensor networks. We believe a practical trans-
mission power control algorithm like ATPC is the key to ap-
ply previous theoretical work to real-world wireless sensor
networks.

6 Conclusions and Future Work
We believe there is a serious gap between existing theory

work and the in-situ practice. As a solid step towards the
in-situ topology control in sensor networks, ATPC presents
a lightweight transmission power control technique in a pair-
wise manner. This fine-granularity tuning trades off com-
putation and local memory (e.g., need a table in each node)
with communication, a much more costly operation in terms
of energy. Our in-situ experiments reveal the correlation be-
tween RSSI/LQI and link quality. Such observations guide
us to set up a model to predict the proper transmission power,
which is enough to guarantee a good packet reception ratio.
We acknowledge that this work is by no means conclusive.
However, it indicates a worthwhile direction for future re-
search, so that we can build sensor systems for practical de-
ployment.

Our experiments are designed without congestion and
collision. According to our experimental results, ATPC
works very well in TDMA protocols. In a low utilization

network, where collision and congestion do not happen very
frequently, ATPC can still work well. This is because feed-
back control is renowned for its ability to handle stochastic
disturbances.

Conflicting transmissions and interferences may impact
the performance of ATPC. However, the capture effect
makes the influence of collision and interference on ATPC
less serious. Since a packet can be received even when there
are overlapped radio signals raised by simultaneous trans-
mission, using RSSI/LQI of such a packet may drive ATPC
to unsteady state. In [39], the authors address a technique
to detect packet collision. In [45], the authors create an ap-
proach to detect interferences. By adopting such techniques,
RSSI/LQI for packets identified from packet collision is not
considered as input for ATPC. Therefore, ATPC is expected
to work equally well in a CSMA network by filtering distur-
bances caused by collision and interference. This is one of
the major future works for ATPC.
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