
SiFi: Exploiting VoIP Silence for WiFi Energy Savings in
Smart Phones

Andrew J. Pyles
College of William & Mary

ajpyles@cs.wm.edu

Zhen Ren
College of William & Mary

renzh@cs.wm.edu
Gang Zhou

College of William & Mary
gzhou@cs.wm.edu

Xue Liu
Univ. of Nebraska Lincoln

xueliu@cse.unl.edu

ABSTRACT
Since one-third of a smart phone’s battery energy is con-
sumed by its WiFi interface, it is critical to switch the WiFi
radio from its active or Constantly Awake Mode (CAM),
which draws high power (726mW with screen off), to its
sleep or Power Save Mode (PSM), which consumes little
power (36mW). Applications like VoIP do not perform well
under PSM mode however, due to their real-time nature, so
the energy footprint is quite high. The challenge is to save
energy while not affecting performance. In this paper we
present SiFi: Silence prediction based WiFi energy adap-
tation. SiFi examines audio streams from phone calls and
tracks when silence periods start and stop. This data is stored
in a prediction model. Using this historical data, we predict
the length of future silence periods and place the WiFi radio
to sleep during these periods. We implement the design on
an Android Smart phone and acheive 40% energy savings
while maintaining high voice fidelity.

Author Keywords
Silence prediction, VoIP, energy efficiency, WiFi, smart phone.

ACM Classification Keywords
C.2.1 Computer-Communication Networks: Network Archi-
tecture and Design—Wireless communication; C.4 Perfor-
mance of Systems: Design studies

General Terms
Design, Algorithm, Performance, Measurement, Experimen-
tation.

INTRODUCTION
As demonstrated in [25], there is a tradeoff between the cel-
lular data network and WiFi communication that both ex-
ist in currently widely used smart phones. Compared to
the WiFi interface, the cellular data network incurs a lower

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp’11, September 17–21, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0630-0/11/09...$10.00.

penalty to stay connected, but much higher energy price per
MB of data transfer. In addition, the cellular data network
has higher latency and may incur additional airtime charges.
Towards improving battery lifetime and enhancing user ex-
perience and productivity [26] [24] [5], many newly devel-
oped smart phone related applications choose to involve the
WiFi radio communication [25] [21] [3] [19] [32].

Even though WiFi radio is energy efficient when communi-
cating a large amount of data, it is expensive just to stay con-
nected. For example, the Sprint HTC Hero [30] consumes
726mW (with screen off) in the Constantly Awake Mode
(CAM). So, it is essential to put WiFi to the Power Save
Mode (PSM) which consumes 20 fold less energy (36mW
in Sprint HTC Hero). In the research community, a large
number of efforts have been proposed to reduce energy con-
sumption. For example, [15] [9] [1] propose to save WiFi en-
ergy by exploiting periods of idleness, while [28] improves
scheduling on the WiFi Access Point (AP). [14] shows a gen-
eral purpose 802.11 protocol changes to save energy for gen-
eral real-time applications, and [23] analyzes the VoIP net-
work traffic playout deadline to determine when to put the
radio to sleep. Also, the Adaptive PSM [28] commonly de-
ployed saves energy by monitoring throughput through the
WLAN. The radio stays in PSM by default, but switches to
CAM when traffic is observed.

However, none of the aforementioned existing work exam-
ines the RTP payload to exploit silence period for WiFi en-
ergy savings during a VoIP call, even though it has been
shown that up to 60% [10] of a typical human conversation is
made up of silence. Therefore, we are motivated to address
the research challenges towards exploiting silence period for
energy saving during a smart phone VoIP call: (1)how to
model and predict VoIP silence periods of a phone call at
runtime? and (2)how to apply silence prediction to the exist-
ing WiFi infrastructure of an Android phone to save energy?

To address the first challenge, we first developed a light weight
silence detection algorithm that is able to distinguish silence
from voice in RTP packets during a phone call. Then, once
an adequate set of silence periods are obtained during run-
time, a running statistical model is built to characterize the
silence periods distribution in an accurate and energy effi-
cient way. Finally, when the statistical model is observed

stable enough, runtime prediction of the future silence pe-
riod length is conducted based on statistical analysis.

To address the second challenge, we propose SiFi, a silence
prediction based WiFi energy adaptation framework for smart
phones. SiFi is carefully designed so that it fits well with ex-
isting mobile phone constraints as discussed in [20], namely
OS limitations, API and operational limitations, energy man-
agement limitations, etc. SiFi is able to incorporate the sta-
tistical modeling and prediction theory and realize it in the
limited smart phone WiFi infrastructure and demonstrates
more than 40% energy saving.

Our main contributions can be summarized as follows:

• With lightweight digital signal processing, and statistical
modeling and prediction, we successfully exploit during
runtime the silence periods of a VoIP call which forms
a solid base for runtime WiFi energy saving. To ensure
high accuracy and low cost for the runtime silence ex-
ploitation, different modeling and prediction techniques
including empirical cumulative distribution function and
time series analysis are compared, and important statisti-
cal issues like runtime training length and confidence of
prediction are thoroughly explored.

• To apply the statistical silence exploitation technique we
develop, we propose a silence prediction based WiFi en-
ergy adaptation framework, called SiFi, for smart phones
energy saving. By making modifications to the low level
system architecture as well as application components,
SiFi is able to directly control the WiFi power save mode
based on silence prediction, and fits well with the limited
Android phone infrastructure.

• We deploy SiFi on a real system with Sprint HTC Hero
that runs VoIP application and obtain more than 40% power
savings during runtime. We achieve high call fidelity by
sleeping during silence periods and being active during
voice periods. Our real system evaluation also demon-
strate SiFi’s resilience to network congestion, and its ro-
bustness in different phone call scenarios like with differ-
ent phone call lengths, different languages, different num-
ber of speakers, and different genders of speakers.

The rest of the paper is organized as follows. We explain
background knowledge followed by related work. Next, we
present details of detecting, modeling and predicting VoIP
silence periods of a phone call at runtime. Then, a detailed
design of the SiFi framework is given followed by details of
the SiFi implementation on an Android phone. Real system
performance evaluation with Sprint HTC Hero is illustrated
next. Finally, we present the conclusions.

BACKGROUND
Session Initiation Protocol (SIP) is widely used in Internet
Telephony. It is used to establish and tear down calls where
Real Time Protocol (RTP) media is streamed. To illustrate
how SIP works, imagine two phones A and B, where A
would like to call B. Once a call has been established, RTP
packets are sent bi-directionally until a call is terminated

with a BYE message. Detailed description of SIP is outside
the scope of this paper, and interested readers are referred
to [27]. When a call is initiated with an INVITE packet,
phone A notifies phone B which UDP port it is listening for
RTP packets. Phone B responds soon after with a 200 OK
message. The 200 OK message will notify phone A which
UDP port it will listen for RTP packets. During this nego-
tiation phase, the two parties also agree on the codec to use
and also whether or not Voice Activity Detection (VAD) and
Comfort Noise (CN) is supported.

VOICE

non-VAD

VOICESILENCE

RTP STREAM

VAD

Figure 1. VAD and RTP

RTP packets are usually sent at evenly spaced intervals that
the two parties agree upon during the codec negotiation phase.
For instance, if two parties use the G.711 codec, typically a
20ms RTP interval is used. Figure 1 shows a typical RTP
flow. RTP packets that do not use VAD, that is silence pack-
ets are transmitted the same as voice packets, we define as
non-VAD. However during silence periods, VAD has a dif-
ferent behavior. When the silence period starts at the sender
end, the next scheduled RTP packet is a Comfort Noise (CN)
packet. When the CN packet is received at the receiver side,
it knows that a silence period has begun. When the period of
silence has stopped, a normal RTP packet with the Marker
bit is set. When the this RTP packet is received, the silence
period has ended and a new voice period has begun.

RELATED WORK
A large amount of research attention has been recently paid
to the problem of WiFi energy saving in mobile devices.
Here we discuss the work most relevant to SiFi.

Exploiting Idle opportunities. Considerable work has been
done finding idle opportunities within WLAN to exploit for
power savings. In Bounded Slowdown [15], idle periods be-
tween TCP establishment are exploited to switch WiFi be-
tween CAM and PSM modes. Time periods between slow
start and between Web transactions are used. Beacon inter-
vals are dynamically adjusted to minimize PSM overhead.

Micro Power Management [18] exploits small time periods
(µ seconds) between MAC frames to save energy. Micro
power sleep periods are effective since the speed of WLANs
are typically much greater than the WLAN up-link speed.
This approach is complimentary to SiFi. SiFi examines the
payload of RTP packets and based on the prediction meth-
ods, puts the radio to sleep. Micro power management could
be combined with SiFi to gain additional energy savings.

Another approach, Catnap [9] stores data into blocks that
are combined at the AP, then the blocks can be transmit-
ted efficiently to the STA allowing for additional power sav-
ings. This approach is not applicable to real-time applica-

tions such as VoIP due to the added delay incurred.

Self-Tuning [1] provides an API to application developers
to identify network traffic that is considered background or
foreground traffic. Using these hints, the kernel driver can
schedule background traffic into PSM mode while foreground
traffic can be scheduled at a higher priority. Self-Tuning is
not a good fit for the real-time nature of VoIP for two rea-
sons. First, in the case of non-VAD RTP traffic, the same
traffic pattern exists for voice and silence RTP packets which
is difficult for Self-Tuning to attach different traffic hints.
Second, unlike SiFi that directly controls the WiFi driver,
the Self-Tuning kernel module may introduce delay that im-
pacts VoIP performance.

VoIP Specific Approaches w/o Idle Exploitation. There
are several other VoIP specific approaches that do not exploit
idle opportunities for saving WiFi energy. The GreenCall al-
gorithm [23] uses a deadline approach that does not consider
silence periods. By examining the inter-arrival times of the
packets, they determine the play-out deadline. As long as
the play-out deadline has not been reached, the WiFi radio is
put into PSM mode. Our approach is complimentary to this
approach with the following distinction. We place special
emphasis on putting the radio to sleep particularly during si-
lence periods. The play-out deadline for silence packets is
not as important as for voice packets.

AP Modification. Some AP centric approaches are also de-
veloped for WiFi energy. Napman [28] focuses on modify-
ing the AP scheduler so that PSM traffic and CAM traffic are
treated fairly. Specific care is given to Adaptive PSM imple-
mentations on the latest smart phones such as the iPhone and
Android based approaches. By adjusting the TCP window
size, PSM-Throttling [31] increases the burstiness of multi-
media streaming traffic causing energy saving to be realized.

IEEE 802.11e U-APSD. IEEE 802.11e also introduces U-
APSD [14] to provide an extra layer of QoS while saving
energy. When the AP receives a frame from the STA, the
AP will send all buffered data to the client without requiring
the PS-POLL mechanism. This works when upstream and
downstream RTP streams are complimentary as in the non-
VAD case. However, in cases such as VAD, the upstream and
downstream RTP streams can be asymmetric and the down-
link frames will not be triggered.

In [7] an exponential backoff scheme is employed during
silence periods of VoIP calls to determine the maximum pe-
riod to put the radio into sleep mode. For long silence peri-
ods, this scheme has the potential problem of over sleeping
causing delay. By using training data, SiFI can more accu-
rately determine the length of the silence period, to prevent
extended oversleeping.

SILENCE MODELING & PREDICTION
In this section, we use a lightweight threshold based algo-
rithm to detect silence RTP packets from voice RTP pack-
ets. Then, we compute the length of silence periods between
consecutive voice packets and also use statistical analysis to
characterize the silence data. We finally present an algorithm
to predict the future silence period length based on observed
silence history. Such prediction will be used in the next sec-
tion for saving WiFi energy in smart phones.

Lightweight Silence Detection
It has been shown that approximately 60% of a typical con-
versation is made up of silence [10]. Intuitively, during a
silent period of a conversation we should not need to trans-
mit any packet and therefore maximize the energy savings
of the WiFi radio used. Our approach is to look for mu-
tual silence where at time t, all RTP streams are silent from
both parties. That is, the payload in the RTP packets have no
meaningful data. This can correspond to a short silence pe-
riod between two consecutive words in a sentence or a pause
in a conversation, for example.

Although some codecs such as g.729b and G.273.1 3GPP
provide Silence suppression [11], these codecs are not al-
ways available. By implementing a lightweight silence de-
tection on the phone, this allows greater flexibility and al-
lows SiFi to be used with any voice codec.

In order to find the start of a period of mutual silence, we
have two cases to deal with. The first case is that the remote
end of the conversation supports VAD. In this case the si-
lence detection is dealt with by the sender. By examining
the RTP packets, we can easily determine when the silence
starts. For the second case where VAD is not in use, we
implemented a simple Digital Signal Processing (DSP) al-
gorithm. This algorithm and its associated problem, which
is well studied in the Speech and Language Processing re-
search area, is known as Endpoint Detection. However, most
recent Endpoint Detection algorithms [13] [17], although
highly accurate, are very computational expensive. Since the
end result of our research is to save energy, we decided upon
a lightweight threshold based algorithm that relies upon the
amplitude of the audio stream which from our analysis per-
forms reasonably well.

The DSP algorithm we use is as follows. We set a threshold
th. th is configured manually to the noise level of a normal
conversation. When the average audio level (over the past k
samples) are less than th, Silence = true, where k is the
number of audio samples in a single RTP packet. When the
average audio level equals or exceeds th, Silence = false.

For the purpose of simplification, we assume the VAD case
in the following discussions unless explicitly stated other-
wise. Since we can observe the start of the mutual silence
period we need to determine how long the silence period
will be so that we can maximize the radio sleep time.

ECDF Based Silence Prediction
In this subsection, we discuss in detail how to design the
silence length prediction. An accurate but simple (less com-
putationally intensive) silence length prediction algorithm is
important as this helps achieve better conversation quality
while at the same time saves more energy.

To this end, we first analyze 7 Skype call traces which last
5 hours and 41 minutes in total and contain 52, 929 silence
periods (65% of the call time). These Skype calls are con-
ducted by 3 different groups of participants. Group 1 and
Group 2 each has three participants using two Skype clients:
one participant at one end, and two at the other end. We col-
lected 3 traces from Group 1, and 2 traces from Group 2. In
Group 3, 4 participants use 4 Skype clients respectively for
conference calls, and we collected 2 traces. The silence pe-
riod lengths from the traces are used to build the empirical
cumulative distribution function (ECDF) as shown in Figure
3. From the ECDF, we observe that the length of the silence
period can range from 20ms to more than one minute, with
variation as large as more than 900ms. With this observa-
tion, we propose a staged prediction algorithm that utilizes
the conditional probability. The call traces were gathered
from conference calls with students as well as personal calls
provided by student volunteers.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Silence Period Length (s)

E
m

pe
ric

al
 C

D
F

 %

Group 1 1to2 call trace 1

Group 1 1to2 call trace 2

Group 1 1to2 call trace 3

Group 2 1to2 call trace 1

Group 2 1to2 call trace 2

Group 3 4 clients call trace 1

Group 3 4 clients call trace 2

Figure 2. ECDF of Silence Length

Let X denotes the length of the silence period, and P (α) =
P (X ≤ α) be the probability that the silence period X lasts
less than time α. Then, the probability of the silence period
lasting longer than α is P (X > α) = 1 − P (α). Assume
that the silence period has already lasted for time α, the con-
ditional probability that it will last longer than (α+ ∆) is:

P (X > α+ ∆|X > α) =
P (X > α,X > α+ ∆)

P (X > α)

=
1− P (α+ ∆)

1− P (α)
(1)

With the ECDF, our prediction algorithm is able to look for
appropriate value of ∆ (i.e. new increment in time) that has
conditional probability P (X > α + ∆|X > α) larger than
or equal to a given confidence interval β. If such ∆ can be
found, the algorithm predicts that if the silence period has

Algorithm 1 ECDF Based Silence Prediction
Input: confidence interval β, observed silence length α,
ECDF
Output: predicted silence length ∆
on event that a silence period has lasted for time α, find
the maximum ∆ that satisfies P (X > α+∆|X > α) ≥ β

if no ∆ can be found then
∆ = 0

else
α = α+ ∆

end if
return(∆)

lasted for time α, it would stay silence for the next period
of ∆ with high confidence. By the end of each predicted
period, the algorithm will predict again if it detects that the
silence period continues. The prediction loop breaks when
the silence period ends or no ∆ value can be found with the
confidence bound. This algorithm is shown in algorithm 1.

We use R2 error value to evaluate the accuracy of the pre-
diction, which is commonly used to measure how well sta-
tistical models can predict the future outcomes. Let fi be the
predicted value, yi be the real value, and ȳ be the mean of
yi. R2 is computed using Equation 2. With R2 value closer
to 1, the predictions are more accurate.

SSE =
∑
i

(yi − fi)2

SST =
∑
i

(yi − ȳ)2

R2 = 1− SSE

SST
(2)

We apply the prediction algorithm to the 7 Skype traces with
the first half of the traces as training data to build the ECDF,
and predict for the second half and test its accuracy. Given
β = 65% and α initiated as 50ms, 6 of the prediction results
have R2 value above 0.9 and the other one over 0.8.

Determine the Runtime Training Length
To determine the proper length of the training period, we
compute the Kullback-Leibler divergence [16] of the silence
period length distribution. When a new call starts, the sys-
tem begins to collect the training data of silence periods in
groups of 50 (usually included in about 20s calling time). If
the Kullback-Leibler divergence between the current train-
ing set including and excluding the new group of silence pe-
riods is larger than a predefined threshold KLthres, the new
group of 50 silence periods is added to the training data set,
and the training continues. Otherwise, we know that the cur-
rent training data is enough to build a stable ECDF. When the
training period ends, the prediction period begins. KLthres
is a design parameter. For example, with KLthres = 0.02,
in one of our traces the training periods stops after 500 si-
lence periods, which lasts 193s in call time, see Figure 3.

After the training period, we also check whether the ECDF

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

Groups in Training Data Set

K
L

D
iv

er
ge

nc
e

KL
thres

=0.02

Figure 3. KL Divergence vs. Training Length

needs to be updated with every 50 new silence periods. If
the Kullback-Leibler divergence raises above KLthres. The
system stops predicting and updates the ECDF with new si-
lence periods. When the Kullback-Leibler divergence is be-
low KLthres, the prediction resumes.

The Observed Silence Length α

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

Observed Silence Period Length α (s)

P
re

di
ct

ed
 S

ile
nc

e
P

er
io

d
Le

ng
th

 ∆
 (

s)

β = 0.9

β = 0.8

β = 0.7

β = 0.6

β = 0.5

β = 0.4

β = 0.3

β = 0.2

Figure 4. Observed Silence Period Length α vs. Predicted Silence Pe-
riod Length ∆

Figure 4 show the analysis of the predicted silence period
length with different observed silence period lengths. For
different values of confidence interval β, we observed that
the predicted silence period length ∆ generally increases
when α increases. When a silence period starts, Algorithm
1 waits for an initial period of α before prediction, with the
phone on the CAM mode. If the setting of the initial α is
too large, some silence periods may be too short to predict.
For longer silence periods, less energy can be saved with
the long initial waiting period. If the initial period α is too
short, however, the predicted silence period may be too short
to save energy. Also, the lightweight silence detection is not
very accurate in classifying very short silence periods, even
though it is very accurate for longer silence periods.

Therefore, we decide to use a larger value of initial α and
do not predict for very short silence periods. We configure
the initial value of α so that the first predicted ∆ (a sequence
of ∆ predictions are possible within the same long silence
period) is larger than 20ms. In our trace data, the corre-
sponding initial α value is 50ms.

The Confidence of Prediction

β R2 Mean Iteration Mean ∆
0.15 0.0237 1.1155 0.7846
0.20 0.2894 1.1636 0.6215
0.25 0.5778 1.2084 0.4998
0.30 0.6332 1.2641 0.4192
0.35 0.8044 1.3362 0.3509
0.40 0.8448 1.4246 0.3039
0.45 0.8902 1.5262 0.2612
0.50 0.9047 1.6576 0.2260
0.55 0.8965 1.8258 0.1925
0.60 0.9149 2.0046 0.1664
0.65 0.9251 2.2376 0.1425
0.70 0.9187 2.5303 0.1214
0.80 0.8946 4.0082 0.0679
0.75 0.9387 3.1789 0.0905
0.85 0.8750 5.5128 0.0472
0.90 0.7861 9.3979 0.0259

Table 1. Prediction with Different β

For each silence period, our prediction algorithm iterates un-
til the silence period ends or no ∆ can be found with the
given confidence interval β. We analyze the effect of β on
the prediction accuracy in Table 1. R2 is used to measure
the prediction accuracy. We observe that when the confi-
dence interval β increases from 0.10 to 0.65, R2 increases
because each ∆ is calculated with higher accuracy. But R2

fluctuates when β increases after 0.65, and when β equals
0.90, the R2 drops to 0.7861. This is because the algorithm
can not find a ∆ prediction for very large α with the given
confidence interval.

In order to save more energy, large silence prediction ∆ is
preferred with a lower confidence interval β, but the predic-
tion also risks large errors which may degrade the quality of
the phone call. We can estimate the expected error for each
prediction of ∆. If the silence period stops at some time x
before the predicted time (α+ ∆), the voice packets arrived
after x will be delayed. Also considering the beacon interval
I in the Power Save Mode, the delayed packets won’t be re-
ceived until the next beacon. Equation 4 defines the expected
error E of prediction which is also the expected delay.

di =

{
α+ ∆− xi, if ∆ ≤ I

I − (xi mod I), if ∆ > I
(3)

E =
∑

xi∈(α,α+∆]

P (X > xi)− P (X > xi−1)

P (X > α)
∗ di.

We find the value of β so that for all possible prediction ∆
the expected error is below a threshold. Besides the predic-
tion accuracy, we also consider the cost for the algorithm to
wake up and check for each iteration. For each silence pe-
riod, the prediction algorithm should not wake up too many
times. From Table. 1, we can see the mean iterations for pre-
dictions within one silence period increases as β increases.
Considering both accuracy and cost, in our experiments, we
limit β values within the range of 0.25∼0.6. We found im-
perically that the phone call fidelity was of good quality for
β values in that range.

Time series models such as Autoregressive moving aver-

age (ARMA) and Autoregressive Integrated Moving Aver-
age (ARIMA) [6] were also examined, but the drawbacks
were many. We found a weak data correlation and low pre-
diction accuracy, not to mention the higher computation cost.
Our ECDF based prediction algorithm is both efficient and
can predict the silence period length with high accuracy.

SIFI: SILENCE PREDICTION BASED WIFI ENERGY ADAP-
TATION
We propose SiFi: silence prediction based WiFi energy adap-
tation. As shown in figure 5, SiFi is composed of the follow-
ing main components: Modeling and Prediction, WiFi Man-
ager, and the Silence Classifier. The RTP Media Server is
an optional component included here to handle the case of
VAD. Each of these components has been added to the SIP
user agent on Android.

RTP
SIP Proxy

Server

Remote

RTP Media
Server

AP

Playback
Buffer

Silence
Classifier

Modeling &
Prediction

WiFi
Manager

Kernel WiFi Driver

Buffer

Figure 5. SiFi Architecture

Modeling and Prediction. Based upon the call history, we
can determine how long we can sleep for. Modeling has two
modes: training and running mode. During training mode,
the modeling component is fed the observed silence period
lengths from the silence classifier. The cumulative silence
period length data is stored in an internal data structure. We
transition to the running mode as soon as we have enough
silence period lengths. Immediately after entering the run-
ning mode, we compute the empirical cumulative distribu-
tion function (ECDF) based on this training data. We also
calculate an appropriate α based on the ECDF.

The prediction component is idle during the training period.
As input, the prediction component receives two arguments:
the silence period start event and β. We immediately sleep
for the predefined α milliseconds. Then we follow Algo-
rithm 1. Based on the value of β we predict the length of the
sleeping period.

WiFi Manager. The WiFi manager is responsible for putting
the WiFi radio to sleep. When the current WiFi power mode
is switched to active we override the Adaptive PSM and
forcibly place the WiFi driver into PSM mode for a speci-
fied time period. Once the time period expires, the driver is
switched back to Adaptive PSM.

Silence Classifier. This component is responsible for de-
tecting silence in both directions: inbound RTP packets and
outbound RTP streams. When RTP packets are received, the

silence classifier observes the silence start and silence stop
events. We compute the average amplitude level over each
received RTP packet. By using a known threshold value, we
can detect if the current packet is a start or stop silence event.

Inbound RTP packet processing needs to deal with two sep-
arate cases. The first case is when silent packets are embed-
ded into the RTP stream or the non-VAD case. In the non-
VAD case, the silence classifier checks every packet. The
silence classifier also handles the case when VAD is enabled
for a call. In this case, it has the same responsibility for de-
tecting silence, with an additional layer of complexity. In
addition to checking every received packet for the average
amplitude level as before, the call state is implicitly received
through Comfort Noise (CN) packets and those packets with
the marker bit set. Silence starts when a CN packet is re-
ceived while silence stops when the Marker bit is set. The
silence classifier still computes the amplitude level of every
packet, in case the remote VAD implementation is not ag-
gressive enough at detecting silence.

For the silence classifier to handle outbound RTP streams,
we sample input from the microphone and detect the average
amplitude level. The sample interval is determined by codec
negotiation. As before, when the amplitude level drops the
threshold th, a silence start event occurs. Similarly, when the
amplitude level exceeds the pre-defined threshold, a voice
event occurs. If VAD is enabled, we do not send silence
packets. Only voice RTP packets are transmitted.

The voice and silence states from both outbound and in-
bound are combined to produce a joint event we call mu-
tual silence. Mutual silence occurs when there is silence
both with the sender and receiver RTP streams. These mu-
tual silence start and mutual silence stop events are sent to
the Modeling and Prediction component. To illustrate mu-
tual silence, we consider the following scenario: the receiver
RTP stream is silent for three seconds. Starting at time 0, the
sender RTP stream alternates between one second of silence,
then one second of voice and so on until three seconds. This
means the first mutual silence period is between time zero
and one. The second is between time two and three.

RTP Media server. Finally, our last component is the RTP
Media server. This is an optional component included here
to handle the case of VAD. We found an open source RTP
Media Server [12] that allows us to relay any RTP traffic
including embedded silence in the RTP payload. The media
server has its own DSP algorithm and detects when silence
occurs. When silence starts, a CN packet is inserted. When
voice starts, an RTP packet with the marker bit is sent.

ANDROID PHONE IMPLEMENTATION
We implemented our design on the Sprint HTC Hero [30]
with root access. This version contains version 2.1 of An-
droid with HTC enhancements. The Hero has the TI WLAN
1251 driver which is part of the Android source repository
that is freely available on top of the 2.6.29 Linux Kernel. The
implementation is comprised of two parts: the WiFi system
modifications and the application modifications done within

the Android virtual machine layer. We first start with the
application, followed by system level modifications.

Application Level Modifications
There are a number of VoIP clients available on the Android
market. For our research, we wanted one that is well estab-
lished on the Android Market. A big plus was also to find a
package that was open source since we need to make a num-
ber of changes. One such SIP User Agent [29], hereafter re-
ferred to as SIPua, is available for Android with over 250K
downloads from the Android Market and has high user rat-
ings. It provides the ability to make and receive VoIP phone
calls using WiFi or a mobile data plan. It is able to handle
video and audio and a number of codecs are supported. It is
comprised of third party SIP and RTP stacks.

The silence classifier component is shared between the SIPua’s
RTP sending and receiving threads. We analyze the energy
level of the payload of each RTP packet. We first imple-
mented the component in Java. We quickly realized, how-
ever, that the energy calculation was too computationally
expensive and the performance was unacceptable. Using
the Android Native Development Kit (NDK) [2] for a na-
tive code implementation, we were able to obtain acceptable
performance with a minimal performance penalty. We mea-
sured the performance penalty to be a 3% energy overhead.
The penalty was realized by comparing a call with the si-
lence classifier enabled for both inbound, outbound streams
to a call made with the silence classification disabled.

System Level Modifications

Android Virtual Machine

Application

Android Socket

WiFi Manager

FIFO

Android Socket

Kernel WiFi Driver

IOCTL

WPA Supplicant

Figure 6. Android WiFi Architecture

We introduce the WiFi Manager implementation. The WiFi
Manager has two components: the low level system imple-
mentation and the Application API. The latest Android sys-
tem (as of this writing version 2.2) is missing the function-
ality to forcibly switch the WiFi radio from adaptive PSM to
static PSM from the Android environment. We modified the
Android Virtual Machine to include this functionality, but
quickly realized this broke other parts of the system. As we
discovered, although Android is open source, contributors
can add to the system various components that are not. By
modifying the Android VM, we would not be able to have
a fair comparison since our modified VM would be missing
key components. Instead we needed a simpler design that
would not require modifications to the Android VM.

Radio Status Screen ON Screen Off
CAM 1070.00 mW 726.05 mW
PSM 381.40 mW 36.5 mW
Disabled 345.94mW 4.9 mW

Table 2. Baseline Average Power

Figure 6 describes how the current WiFi subsystem works
within Android. When an application makes an API call
to the WiFi sublayer, it passes through the VM and con-
nects to the WPA Supplicant daemon running on the sys-
tem. To save energy, when the WiFi radio is inactive, it
runs for 15 minutes and then the driver is disabled in the
Linux kernel. When the Android system receives an indi-
cation that network activity starts again, the driver is then
loaded again. During the loading and unloading phase, the
WPA Supplicant daemon is also started and stopped. The
WPA Supplicant listens for events through an Android
Socket interface. The Android socket is essentially a UNIX
socket with some modifications.

We created a separate daemon process called the WiFi Man-
ager. This daemon simply listens on a FIFO interface which
our application has access to. Then, when the Android ap-
plication wants to send a special WiFi command, it can send
a FIFO message to the WiFi Manager. We used the An-
droid NDK to implement a native code interface to interact
with the WiFi Manager. The WiFi Manager then commu-
nicates to the WPA Supplicant daemon through the same
Android Socket as the VM. We modified the init scripts on
the phone such that whenever WiFi is enabled and disabled,
WiFi Manager is also started and stopped, respectively.

Once the aforementioned system was in place, it was trivial
to implement the sleepforMS() WiFi function. This function
an integer millisecond argument and sends a request to the
WiFi Manager through the FIFO interface.

We also modified the WPA supplicant daemon. When it re-
ceives the sleepforMS() command, it forcibly puts the radio
into PSM mode. Then it pauses for the specified millisec-
onds before changing the radio back to Adaptive PSM.

Finally, we modify the RTP Media Server. When a silence
start event is observed, a CN RTP packet is sent. Prior to
our modifications, the RTP Media Server would only set
the marker bit when a voice start event occurred. With this
change, the Silence Classifier component can easily detect
when silence starts and stops when VAD is enabled.

PERFORMANCE EVALUATION
With the implementation in Sprint HTC Hero phone, we
present system performance evaluation in the Android plat-
form. Our results demonstrate that our SiFi solution achieves
more than 40% energy savings in the smart phone.

Evaluation Setup
Our evaluation setup consists of a Linux server that runs a
media server [12] and runs hostapd to serve as a WiFi AP.
The media server is configured to host audio recordings.

Threshold Metric
AutoPowerModeActiveTh 8 packets/sec
AutoPowerModeDozeTh 4 packets/sec
Transition δ 1.5 sec

Table 3. Adaptive PSM Settings in Sprint HTC Hero

When a specific dial string is called the recording is played
back. The phone is approximately one meter from the AP.
The only delay incurred is isolated to the wireless leg.

Figure 7. Energy Measurement Setup

We measure the energy use of the phone in real-time us-
ing a power meter from Monsoon technologies. Figure 7
shows the setup for energy measurement. A simple circuit
is configured such that the positive terminal on the battery
is insulated with electrical tape and the positive feed from
the power meter is instead connected to the phone’s battery
terminal. When the phone is powered on, we can measure in
real-time the energy usage.

Table 2 shows the baseline power usage of the phone. We
measured the power usage by placing the phone in ‘airplane
mode’ which disables all the network interfaces including
Bluetooth and mobile radio. Clearly CAM mode is very
expensive and should be avoided if possible. Powering the
screen is also quite expensive as well. The measurements
indicate the power consumed when the radio is idle.

Evaluation Method

PSM
(Initial state)

CAM

AutoPowerModeActiveTh
threshold triggered

switching

AutoPowerModeDozeTh
threshold triggered

switching

Transition δ

Figure 8. Adaptive PSM State Transitions in Sprint HTC Hero

In the following sections we show the results on how SiFi
compares with Adaptive PSM in the VAD case and the NON-
VAD case. The Sprint HTC Hero phone uses Adaptive PSM
to save energy [15]. Adaptive PSM is complectly controlled
by the WiFi kernel driver. The Adaptive PSM sets the de-
fault power mode to PSM. When the network interface starts

20 40 60 80 100 120 140 160 180 200

600

800

1000

1200

1400

1600

P
o
w

e
r

(m
W

)

VAD + Adaptive PSM

VAD + SiFi

Power Savings:
42.92%

Figure 9. VAD + Adaptive PSM vs. VAD + SiFi

to receive packets, it transitions to CAM mode by sending a
NULL:Awake packet to the AP. When the wireless network
interface is idle and the driver desires to switch to PSM, it
sends a NULL:Sleep packet to the AP.

20 40 60 80 100 120 140 160 180 200
500

700

900

1100

1300

1500

1700

Time (s)

P
ow

er
 (

m
W

)

non−VAD + Adaptive PSM
non−VAD + SiFi

Power Savings:
39.85%

Figure 10. non-VAD + Adaptive PSM vs. non-VAD + SiFi

In Table 3 we see the settings for Adaptive PSM for the
Sprint HTC Hero. The AutoPowerModeActiveTh parame-
ter refers to the number of packets necessary to trigger the
phone to switch from PSM to CAM mode, while the Au-
toPowerModeDozeTh parameter shows the threshold value
necessary to switch back to PSM mode. We note these set-
tings are the default settings for this phone. The transition
δ parameter is not configurable (without hacking the driver,
as we do in the next section). We observed this parameter
by sending a small packet burst to the phone that exceeds
the AutoPowerModeActiveTh threshold. By watching
the kernel logs on the WiFi Access point, we recorded the
time difference from when the STA returned to PSM after
switching to CAM. We also determined that no other net-
work traffic was sent on the interface.

Although the observed transition δ value might be unique to
this phone, others have also observed similar behavior. [28]
cites several variations in implementation among common
Smartphones. Agressive Adaptive PSM, is when the transi-
tion δ is small. Default Adaptive PSM is when the transition
δ is longer such as the Sprint HTC Hero. When we refer to
Adaptive PSM, we are referring to the default case.

There is tradeoff between the agressive and default adap-
tive PSM. As noted in [28], Agressive Adaptive PSM can in
some cases lose packets, and ultimately consume more en-
ergy when the AP is under heavy use and the transmit buffer
is full. This is best illustrated by the following example.
Suppose the phone is in CAM mode due to a high packet re-
ceive rate. Some time later, the AP transmit buffer becomes
full from some other traffic. If it takest longer than the tran-
sition δ to process the packet through the transmit buffer, the

phone will go to sleep and the packet may be lost.

SiFi Energy Savings
In this section we show how SiFi improves both the VAD
and non-VAD cases. SiFi is able to efficiently save 40∼43%
average power over Adaptive PSM.

Figure 9 shows the results of VAD with SiFi enabled. For
this call, β was set to .5 and α to 50ms. A 43% power sav-
ings was achieved over Adaptive PSM. At certain extended
voice periods of the call, for example at 150 seconds, the
power levels of Adaptive PSM and SiFi are the same. Sim-
ilarly when extended silence periods occur, Both Adaptive
PSM and SiFi can take advantage. For instance, during the
periods right before and after the 100 second mark we see
the energy use drop significantly. Adaptive PSM performs
poorly due to the long transition δ.

We present the results of non-VAD + SiFi in Figure 10 . β
was set to .25 and α to 50ms. When SiFi detects silence
and puts the radio into PSM mode, RTP packets continue
to queue up at the AP. This results in extra overhead since
the phone has to PS-POLL every packet queued at the AP.
Therefore, even though β is set to half of the setting used
for VAD, the overall power savings are slightly less. Com-
pared to Adaptive PSM, SiFi has 39% power savings. Since
RTP packets are always sent even during silence periods,
Adaptive PSM never switches to PSM. Once a call is es-
tablished, there will always be a packet rate that exceeds the
AutoPowerModeActiveTh threshold.

To be fair, since the Android phone has a very long transition
δ setting, we modified the WiFi driver such that the transition
δ was as close to α as possible. Without major modifications
to the driver, the lowest setting we were able to maintain was
approximately 70ms. Adjusting the transition δ to anything
lower than 70 caused stability issues(exceeding the Active
threshold did not always keep the driver in CAM). We com-
pared SiFi vs. Aggressive Adaptive PSM and a non-VAD
call. In this case, SiFi clearly wins out because the amount
of RTP traffic does not change during silence periods, so it
will never switch to PSM. Secondly, we compare a VAD call
with SiFi vs. a VAD call with Aggressive Adaptive PSM. In
this case, SiFi has a 34% improvement (1070 vs 710 mW).

SiFi Application Fidelity
We evaluated the application fidelity of SiFi by using the in-
dustry standard for evaluating Voice Quality, the Mean Opin-
ion Score (MOS). The MOS scale ranges from 5-1, with (5)
best quality, (4) High quality, (3) Medium quality, (2) Low
quality and (1) Completely unusable. VoIP is particularly
susceptible to packet loss and delay. The E-model [8] can be
used to calculate the MOS rating of a call.

The MOS score was originally designed to be a subjective
measurement of call quality. The E-model can be used to es-
timate the MOS score based on the observed packet loss,
one way delay and codec metrics from the codec in use.
The E-model computes the R-factor which can then be used
to calculate the MOS score as follows: 1 + 0.035R + 7 ∗

Description Length µOWD(ms) ejitter MOS
non-VAD 1 hour 85 1.4% 3.76
VAD 10 minutes 63 1.4% 4.03

Table 4. SiFi Fidelity

Call SiFi #People Duration
(min:sec)

µPower
(mW)

µOWD
(ms)

ejitter MOS

#1 y 2 people 26:38 615 68.6 0.63% 4.28
#2 y 3 people 48:53 618 69.3 2.03% 4.15
#3 y 4 people 50:00 675 69.3 1.14% 4.25

Table 5. Multiple Longer Call Tests: VAD + SiFi

10−6R(R− 60)(100−R).

The R-Factor can be calculated as R ∼ 100 − Is − Id −
Ief + A. Where Id is the delay impairment, Ief the loss
impairment, Is the signal-to-noise impairment and A the ex-
pectaton factor. The latter is a subjective measurement that
is higher when users expect higher call quality. We set A to
zero as in [8, 4] since it is not easily quantified. Since we
are using the g.711 codec, the R-Factor can then be simpli-
fied to [8]: R ∼ 94.2 − 0.024d − 0.11(d − 177.3)H(d −
177.3) − 30ln(1 + 15e). Where d is the mouth-to-ear de-
lay comprised of the codec delay, the delay due to the jitter
buffer and the network delay. e is the error rate comprised
of total packets lost and late packets dropped by the jitter
buffer. H is a heavy-side function where H(X) = 0, X < 0
and H(X) = 1, X ≥ 0.

The g.711 coding delay is 20ms and we assume the jitter
buffer delay is 60 ms. Finally, the network delay is calcu-
lated as follows: We assume the one way delay across the
US is 40ms to account for VoIP calls over the Internet. d is
then equal to dnet + 120ms, where dnet is the delay caused
by WiFi. dnet is computed by measuring the one-way delay
from the media server to the phone. We measure the one-
way delay by using the same method in [4]. We assume that
the delay is identical in both directions and remove the clock
skew according to [22].

We calculate the ejitter by assuming any packet with jitter
higher than the jitter buffer, that is 60ms is lost. We made
a number of 10 minute calls comparing both the non-VAD
and VAD and show the results in Table 4. The overall MOS
score on the VAD call slightly outperforms the non-VAD call
since only voice packets are transmitted. The MOS is calcu-
lated by adding the extra 40ms Internet delay to the shown
values. The overall results show that SiFi causes minimal
call quality degredation.

SiFi Robustness for Longer Calls
In this section, we show the robustness of SiFi for longer
calls. Different call scenarios are explored: longer call lengths,
different languages, different genders, and different numbers
of people in the phone call. Table 5 describes the following
scenarios: Call #1 consists of 2 people (both females & using
Chinese) conversing for 26 minutes. Call #2 is a 3 person (all
males & using English) conference lasting for 48 minutes.
Call #3 is a 4 person (all males & using English) conference

lasting for 50 minutes. In all three combinations, SiFi shows
consistent high power savings. For reference, the average
power consumption with VAD + Adaptive PSM enabled on
Call #2 and SiFi disabled was recorded as 1263mW. For
longer calls, SiFi performs 51% better than VAD + Adap-
tive PSM. While saving energy, the quality does not suffer
as well, the MOS in all cases is well above 4.

We also tested the stability of the training period. First, train-
ing was enabled for call #2 as reflected in Table 5. Call # 3
was made using the training data from call #2. Less than a
10% difference in is apparent between the two calls. As was
shown in Figure 2, the silence period distributions observed
in the traces are similar. This shows that if training from a
previous call is re-used, significant energy savings can still
be realized while maintaining high fidelity.

CONCLUSIONS
In this paper, with lightweight digital processing, and run-
time modeling and prediction, we exploit during runtime the
silence periods of a VoIP call. Thorough statistic analysis
is conducted to ensure high modeling and prediction accu-
racy and low cost for the runtime silence exploitation. To
apply silence period exploitation to save smart phone WiFi
energy, we also propose the design, implementation, and real
system evaluation of a silence prediction based WiFi energy
saving framework called SiFi. By making modifications to
the low level system architecture and also application com-
ponents, SiFi is able to directly control the WiFi power save
mode based on silence prediction. Our real system evalua-
tion running VoIP application demonstrates that SiFi saves
more than 40% energy compared to the standard Adaptive
PSM solution deployed in Sprint HTC Hero. We achieve
high call fidelity by sleeping during silence periods and ac-
tive during voice periods. Our real system evaluation also
demonstrate SiFi is resistant to network congestion and ro-
bust in multiple phone call scenarios.

REFERENCES
1. M. Anand, E. B. Nightingale, and J. Flinn. Self-Tuning Wireless

Network Power Management. In ACM MobiCom, 2003.

2. Android Native Development Kit, 2010.
http://developer.android.com/sdk/ndk/index.html.

3. M. Azizyan, I. Constandache, and R. R. Choudhury. SurroundSense:
Mobile Phone Localization via Ambience Fingerprinting. In ACM
MobiCom, 2009.

4. A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine,
and J. Zahorjan. Interactive wifi connectivity for moving vehicles. In
ACM SIGCOMM, 2008.

5. N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong.
Users and Batteries: Interactions and Adaptive Energy Management
in Mobile Systems. In ACM UbiComp, 2007.

6. C. Chatfield. The Analysis of Time Series: An Introduction, Sixth
Edition. Chapman and Hall/CRC, 2003.

7. H. Choi and J. Lee. Hybrid Power Saving Mechanism for VoIP
Services with Silence Suppression in IEEE 802.16e Systems. In IEEE
Communications Letters, 2007.

8. R. Cole and J. Rosenbluth. Voice over IP performance monitoring. In
ACM SIGCOMM, 2001.

9. F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting
High Bandwidth Wireless Interfaces to Save Energy for Mobile
Devices. In ACM MobiSys, 2010.

10. P. Drago, A. Molinari, and F. Vagliani. Digital Dynamic Speech
Detectors. In IEEE TON, 1978.

11. A. Estepa, R. Estepa, and J. Vozmediano. A new approach for VoIP
traffic characterization. In IEEE Communications Letters, 2004.

12. Freeswitch, 2010. http://www.freeswitch.org.

13. M. Fujimoto, K. K. Ishizuka, and T. Nakatani. A Voice Activity
Detection based on the Adaptive Integration of Multiple Speech
Features and a Signal Decision Scheme. In IEEE ICASSP, 2008.

14. Medium Access Control (MAC) and Physical Layer (PHY)
specifications Amendment 8: Medium Access Control (MAC) Quality
of Service Enhancements, 2005. ANSI/IEEE Std. 802.11e.

15. R. Krashinsky and H. Balakrishnan. Minimizing Energy for Wireless
Web Access with Bounded Slowdown. In ACM MobiCom, 2002.

16. S. Kullback and R. A. Leibler. On Information and Sufficiency. In The
Annals of Mathematical Statistics, 1951.

17. L. Lamel, L. R. Rabiner, A. Rosenberg, and J. Wilpon. An Improved
Endpoint Detector for Isolated Word Recognition. In IEEE TOASSP,
2003.

18. J. Liu and L. Zhong. Micro Power Management of Active 802.11
Interfaces. In ACM MobiSys, 2008.

19. H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell.
The Jigsaw Continuous Sensing Engine for Mobile Phone
Applications. In ACM SenSys, 2010.

20. E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing Meets Mobile
Social Networks: The Design, Implementation and Evaluation of the
CenceMe Application. In ACM SenSys, 2008.

21. E. Miluzzoy, C. T. Corneliusy, A. Ramaswamyy, T. Choudhuryy,
Z. Liux, and A. T. Campbelly. Darwin Phones: the Evolution of
Sensing and Inference on Mobile Phones. In ACM MobiSys, 2010.

22. S. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock
skew from network delay measurements. In IEEE INFOCOM, 1999.

23. V. Namboodiri and L. Gao. Towards Energy Efficient VoIP over
Wireless LANs. In ACM MobiHoc, 2008.

24. T. Pering, Y. Agarwal, R. Gupta, and R. Want. Coolspots: Reducing
the Power Consumption of Wireless Mobile Devices with Multiple
Radio Interfaces. In ACM MobiSys, 2006.

25. A. Rahmati and L. Zhong. Context for Wireless: Context-Sensitive
Energy-Efficient Wireless Data Transfer. In ACM MobiSys, 2007.

26. A. Rahmati and L. Zhong. Human-Battery Interaction on Mobile
Phones. In Pervasive and Mobile Computing, 2009.

27. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation
Protocol. In RFC 3261, 2002.

28. E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman:
Network-Assisted Power Management for WiFi Devices. In ACM
MobiSys, 2010.

29. Sipdroid, 2010. http://www.sipdroid.org.

30. Sprint HTC Hero, 2010. www.htc.com/us/support/hero-sprint.

31. E. Tan, L. Guo, S. Chen, and X. Zhang. PSM-throttling: Minimizing
Energy Consumption for Bulk Data Communications in WLANs. In
IEEE ICNP, 2007.

32. Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, and
B. Krishnamachari. A Framework of Energy Efficient Mobile Sensing
for Automatic User State Recognition. In ACM MobiSys, 2009.

	Introduction
	Background
	Related work
	Silence Modeling & Prediction
	Lightweight Silence Detection
	ECDF Based Silence Prediction
	Determine the Runtime Training Length
	The Observed Silence Length
	The Confidence of Prediction

	SiFi: Silence Prediction based WiFi Energy Adaptation
	Android Phone Implementation
	Application Level Modifications
	System Level Modifications

	Performance Evaluation
	Evaluation Setup
	Evaluation Method
	SiFi Energy Savings
	SiFi Application Fidelity
	SiFi Robustness for Longer Calls

	Conclusions
	REFERENCES

